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Abstract

The subtle interplay between critical phenomena and electrostatics is investigated by considering

the effective force acting on two parallel walls confining a near-critical binary liquid mixture with

added salt. The ion-solvent coupling can turn a non-critical repulsive electrostatic force into an

attractive one upon approaching the critical point. However, the effective force is eventually

dominated by the critical Casimir effect, the universal properties of which are not altered by the

presence of salt. This observation allows a consistent interpretation of recent experimental data.
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Introduction. Effective interactions among surfaces in contact with fluid media play a

central role for a variety of topical fields in soft and condensed matter physics, cell biology,

colloid and surface science, and nanotechnology. Since many relevant fluid media contain

polar liquids such as water, their confining surfaces acquire an electric charge due to ion

association or dissociation. As a result, electrostatic forces are expected to contribute signif-

icantly to the interactions. In addition, a strong and highly temperature-sensitive solvent-

mediated effective force arises upon approaching critical points. This critical Casimir force

has recently been reported for a single colloidal particle close to a wall and immersed in

a binary liquid mixture near its critical demixing point [1]. This force is expected to play

also a role for the aggregation of colloidal suspensions [2, 3]. Motivated by recent exper-

iments, here we investigate the interplay between electrostatic and critical Casimir forces,

which turns out to be responsible for rather unexpected effects in binary liquid mixtures

with added salt. Colloids dispersed in such a solvent have been reported [2] to aggregate

at a temperature difference from the critical demixing point which increases upon increas-

ing the ionic strength, i.e., the screening of the electrostatic forces. This observation has

been confirmed experimentally also for a single colloid near a wall [4]. While it was orig-

inally argued [2] that the aggregation could be completely explained in terms of a simple

superposition of the critical Casimir and screened Coulomb forces (see, however, Ref. [3]),

subsequent experimental results challenge this picture: An attractive colloid-wall interaction

has been observed within a suitable temperature range even though both the electrostatic

and the critical Casimir force are expected to be separately repulsive under these experi-

mental conditions [4]. This points towards an important and yet unexplored aspect of the

coupling between electrostatics and the critical fluctuations of the medium. Certain features

of ion-solvent coupling near critical points were investigated in the past, such as the possi-

bility of a micro-heterogeneous phase [5] and the influence of criticality onto the solubility

of ions [6]. However, the complementary point of view, i.e., the influence of ions onto the

critical fluctuations of a solvent and therefore onto the critical Casimir effect has not yet

been studied. We present a minimalistic but sufficiently enriched theory which explains the

aforementioned unexpected experimental results. This contribution is intended to initiate

a cross fertilization between research areas which so far focused separately on the critical

Casimir effect in salt-free systems or on electrostatic interactions in fluctuation-free solvents.

We expect that understanding — and thus being able to use on purpose — the coupling
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between the critical Casimir effect and electrostatics provides a key to push forward the

topical fields mentioned above. Our findings actually reach beyond the realm of soft matter

because the counterintuitive behavior en route to universality discussed here is expected to

be paradigmatic for many branches of physics in which generically critical and non-critical

fields are coupled.

Model. In a three-dimensional (d = 3) Cartesian coordinate system, we consider two

parallel walls located at positions z̃ = 0 and z̃ = L̃ > 0, respectively, with the space in

between being filled by a binary liquid mixture. In this solvent cations (+) and anions

(−) are dissolved. The solvent particles are all assumed to be of equal size with volume

ã3 > 0 whereas the ions are considered point-like. At the dimensionless position z := z̃/ã,

the number densities of the solvent components are given by φ(z)ã−3 and (1 − φ(z))ã−3

with 0 ≤ φ ≤ 1, whereas the densities of the cations and anions are given by ̺+(z)ã
−3 and

̺−(z)ã
−3, respectively. The walls carry surface charge densities σ0eã

−2 at z = 0 and σLeã
−2

at z = L := L̃/ã, where e is the elementary charge. The composition φ(z) couples to surface

fields h0 at z = 0 and hL at z = L, where h0,L > 0 (< 0) leads to a preferential adsorption of

the solvent component with φ = 1 (= 0). The equilibrium profiles φ, ̺+, and ̺− minimize

the approximate grand potential density functional kBTΩ[φ, ̺±],

Ω[φ, ̺±]

A
=

L∫

0

dz

{
ωsol(φ(z)) +

χ(T )

6
φ′(z)2

+
∑

i=±

[
ω
(i)
ion(̺i(z)) + ̺i(z)Vi(φ(z))

]
(1)

+ 2πℓBD(z, [̺±])
2

}
− h0φ(0)− hLφ(L),

with ωsol(φ) = φ(lnφ−µφ)+(1−φ) ln(1−φ)+χ(T )φ(1−φ) and ω
(±)
ion (̺±) = ̺±(ln ̺±−1−µ±)

as the grand potential bulk densities of the solvent and the ±-ions, respectively. Here kBT

is the thermal energy, Aã2 is the area of one wall, µφkBT and µ±kBT are the chemical

potentials of the solvent composition and the ±-ions, respectively, and ℓB ã = e2/(4πεkBT ) is

the Bjerrum length for a uniform permittivity ε; a φ-dependent permittivity [7] corresponds

to modified surface fields h0,L [8]. The (temperature-dependent) Flory-Huggins parameter

χ(T ) > 0 describes the solvent-solvent interaction, which leads to a phase separation in

the range χ(T ) ≥ χ(Tc); the gradient term ∝ φ′(z)2 accounts for the spatial variation

of the solvent composition [9]. The ion-solvent interaction is given by the effective ion
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potential kBTV±(φ) due to the solvent, with V±(φ) = − ln(1− φ(1− exp(−f±))) and where

f±kBT is the difference of the bulk solvation free energies of a ±-ion in solvents with φ = 1

and φ = 0. This expression of V±(φ) leads to a bulk phase diagram with a critical point

which is shifted towards larger values of χ(Tc) as the salt concentration increases [8]. V±(φ)

is an improvement of the standard approximation φf± (which it reduces to for f± ≪ 1)

because for f± & 1 the latter leads to multiple critical points [8] which are, however, not

observed experimentally. For f± → ∞ the ion potentials V±(φ) reduce to − ln(1− φ) which

describes the entropy loss and thus free energy increase due to the insolubility of ions in

the solvent component with φ = 1. The electric displacement D(z, [̺±])eã
−2 in Eq. (1)

fulfills Gauss’ law with fixed surface charges [10]: D′(z, [̺±]) = ̺+(z) − ̺−(z), D(0, [̺±]) =

σ0, D(L, [̺±]) = −σL. Note that D(z, [̺±]) is generated by the ±-ions and the surface

charges σ0,L, independent of φ. Within the present model, ions interact with the walls only

electrostatically.

In order to highlight the effect of the ion-solvent coupling we focus on an approximate

grand potential functional for the solvent composition alone, which is obtained by expand-

ing Ω[φ, ̺±] in Eq. (1) in terms of the order parameter ϕ := φ − φb and the ion density

differences ∆̺± := ̺± − I retaining quadratic contributions as well as terms proportional

to ϕ3 and ϕ4. Here φb and I = ̺±b denote the bulk solvent composition and the bulk ionic

strength, respectively, corresponding to the chemical potentials µφ and µ±. The minimiza-

tion with respect to ∆̺± leads to linear, analytically solvable Euler-Lagrange equations for

∆̺±eq(z, [ϕ]), which are functionals of ϕ. Inserting these solutions into Eq. (1) one obtains

a Ginzburg-Landau-type functional

H[ϕ]

A
=

L∫

0

dz
{
U(z)ϕ(z) +

t(T )

2
ϕ(z)2

+
g

24
ϕ(z)4 +

χ(T )

6
ϕ′(z)2

}
(2)

− h0ϕ(0)− hLϕ(L) +W (L) +O((∆γ)2)

with the temperature-like variable t(T ) := 1/φb + 1/(1− φb)− 2χ(T ). Here we assume that

the mixture is at its critical composition such that there is no ϕ3-term. The electrostatic

effects are contained in the coupling g := 2/φ3
b + 2/(1 − φb)

3 + 6I(γ4
+ + γ4

−
), γ± := V ′

±
(φb),
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as well as in an “external” field generated by the surface charges σ0,L:

U(z) := −
κ∆γ

2(1 − exp(−2κL))

×
[
(σ0 + σL exp(−κL)) exp(−κz) + (3)

(σL + σ0 exp(−κL)) exp(−κ(L− z))
]

with the Debye screening length κ−1 = (8πℓBI)
−1/2 and ∆γ := γ+ − γ−. The “direct”,

i.e., solely ion-mediated, electrostatic interaction between the walls is given by W (L) :=

(4πℓB/κ)P (κL, σ0, σL) where

P (x, y0, yL) :=
2y0yL + (y20 + y2L) exp(−x)

2 sinh(x)
. (4)

The ion-solvent coupling affects the critical point only at order O((∆γ)2) [8].

Upon approaching the critical point the dimensionless bulk correlation length ξ = ξ̃/ã =
√

χ(T )/(3t(T )), which characterizes the exponential decay of the two-point correlation func-

tion, diverges. Accordingly, on the scale ξ, U(z) is localized at the boundaries and therefore

it merely modifies the surface fields h0,L. Consequently H turns into a standard ϕ4-theory,

which describes the critical behavior of the Ising universality class [11]. Thus, within the

present model, electrostatic interactions do not affect the universal critical behavior of the

solvent.

The effective wall-wall interaction is defined by ω̃(L) := ω(L)kBT ã
−2 with ω(L) :=

(H(L) − H(∞))/A, where H(L)/A is the minimum of Eq. (2). In general, for the critical

contribution one has ω(L) = ϑ(L/ξ)/Ld−1 with a universal scaling function ϑ(x), which

depends only on the relative signs of h0,L [12], with ϑ(x → 0) = const and ϑ(x → ∞) =

Cxd−1 exp(−x), where C is a universal, boundary-condition-dependent constant [12].

For a sufficiently small bulk correlation length, i.e., if ξ ln ξ ≪ L, the term ∝ ϕ4 in Eq. (2)

can be neglected relative to the term ∝ ϕ2. The resulting quadratic functional can be readily

minimized and leads to the approximate effective wall-wall interaction

ω(L) = −
3ξ

χ(T )
P (L/ξ, h0, hL) +

4πℓB
κ

P (κL, σ0, σL)

−∆γ
3κξ2

χ(T )
(Q1(κL, κξ)(h0σL + hLσ0) + (5)

Q2(κL, κξ)(h0σ0 + hLσL)) +O((∆γ)2)

with the function, which is analytical for y > 0,

Qk(x, y) :=
1

y2 − 1

( y exp(−kx/y)

1− exp(−2x/y)
−

exp(−kx)

1− exp(−2x)

)
. (6)
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In Eq. (5) the term ∝ P (L/ξ, h0, hL) corresponds to the contribution of the surface fields

to the wall-wall interaction in the absence of ion-solvent coupling (∆γ = 0) whereas the term

∝ P (κL, σ0, σL) is the direct electrostatic wall-wall interaction. The term ∝ (h0σL + hLσ0)

is the interaction (∝ ∆γ) of the order parameter profile close to one wall (∝ h0,L) with the

polarization of the diffuse ion layer due to the surface charge on the opposite wall (∝ σL,0).

This coupling between the order parameter and the ion density profiles is the central result

of the present analysis and has important consequences (see below). The analogous term

∝ (h0σ0 + hLσL) is small.

Discussion. In the following we discuss the experiments with colloids alluded to in the

Introduction. The predictions of the present model for two walls can be readily translated

into those for the wall-sphere and sphere-sphere geometry by means of the Derjaguin ap-

proximation, which is applicable at separations much smaller than the sphere radii [10]. It

turns out that assuming additivity of Casimir and Coulomb forces, i.e., independence of the

order parameter from electrostatics, is in general insufficient to explain the experimental

observations, whereas the present model, which includes ion-solvent coupling, leads to a

consistent picture.

First we consider symmetric boundary conditions, (h0, hL) = (−,−), for which the ion-

solvent coupling is masked by the strong direct electrostatic repulsion. This situation has

been investigated experimentally with a suspension of hydrophilic spherical colloids in a

water-oil mixture [2] as well as with a single hydrophilic colloidal sphere in a similar water-

oil mixture near a hydrophilic glass wall [4]. In the presence of salt aggregation [2] or strong

wall-sphere attraction [4] has been observed upon approaching the critical point of the binary

mixture already several Kelvin away from the critical point. Within the present model, this

setting is described by h0 = hL < 0 and σ0 = σL < 0 with the composition φ expressed as the

mole fraction of the non-aqueous component. For a certain choice of parameters Fig. 1(a)

displays the effective wall-wall interaction potential ω̃(L). Since ∆γ ≷ 0 corresponds to

f+ ≷ f−, a negative ion-solvent coupling strength ∆γ < 0 describes a salt the cations of

which are slightly better soluble in oil than the anions, which is expected because the oils

used in the experiments, 3-methylpyridine and 2,6-dimethylpyridine (2,6-lutidine), are Lewis

bases [13]. The parameters used in Fig. 1 correspond to a critical water-2,6-lutidine mixture

(ã = 0.34nm, ℓB = 2.82) with 10mM salt (1/κ = 7.73). Far away from Tc the effective wall-

wall potential ω(L) exhibits a repulsion due to the direct electrostatic wall-wall interaction.
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Upon approaching Tc, ω(L) starts to develop an increasing attraction due to the critical

Casimir effect. Since the change from repulsion to attraction occurs at κξ ≈ 1, the attraction

sets in only very close to the critical point if the ionic strength is small, whereas this change

occurs already considerably far away from the critical point if the ionic strength is large.

Due to the strong direct electrostatic wall-wall interaction between hydrophilic walls, the

ion-solvent coupling does not qualitatively influence the effective wall-wall potential, so that

the assumption of additivity of critical Casimir and Coulomb forces [2, 3] is justified.

The situation is different for antisymmetric boundary conditions, (h0, hL) = (+,−), as

studied experimentally in Ref. [4] using a single hydrophilic colloid near a hydrophobic glass

plate. Repulsion is observed far away from as well as close to the critical point, whereas

within an intermediate temperature range a strong attraction is found. The near-critical

repulsion is readily understood in terms of the critical Casimir effect for antisymmetric

boundary conditions and the repulsion far away from the critical point is of electrostatic

origin. However, the attraction occurring in the intermediate temperature range cannot

be explained within a picture without ion-solvent coupling. Figure 1(b) shows ω̃(L) for a

particular choice of non-symmetric surface fields h0 > 0, hL < 0 and surface charge densities

σ0, σL < 0, |σ0| ≪ |σL| corresponding to a weakly charged hydrophobic wall. Far from

(κξ ≤ 0.28) and close to (κξ ≥ 0.82) the critical point ω̃(L) is repulsive because in Eq. (5) the

terms ∝ P dominate. Upon increasing κξ beyond 0.28, i.e., en route towards Tc, attraction

occurs (see κξ = 0.39), which for the chosen parameters is strongest around κξ = 0.46 and

which weakens again closer to Tc (see κξ = 0.59). This attraction is caused by the coupling

(∆γ < 0) between the order parameter profile near the hydrophobic wall (∝ h0 > 0) and the

electrostatic potential due to the opposite, hydrophilic wall (∝ σL < 0). For this effect to

take place it is essential that the hydrophobic wall is sufficiently weakly charged (|σ0| ≪ |σL|,

see Ref. [14]).

Ion-solvent coupling manifests itself in yet another experiment described in Ref. [4], in

which the surface preference of the solvent has been measured by surface plasmon resonance.

It is reported that a hydrophilic surface (h0 < 0) becomes less hydrophilic upon adding salt,

whereas no changes have been detected for a hydrophobic surface (h0 > 0). According

to Eq. (2) the ”external” field U for a semi-infinite system (L → ∞) acts like an addi-

tional, hydrophobic surface field δh0 = −
∫
∞

0
z.U(z) exp(−z/ξ) = ∆γσ0κξ/(2(1 + κξ)) > 0 if

∆γ, σ0 < 0. A hydrophilic surface becomes less hydrophilic by adding salt or for T → Tc,

7



whereas a hydrophobic surface is influenced only weakly as |σ0| is small.

Conclusion. We have demonstrated that even though electrolytes do not alter the uni-

versal critical behavior of polar solvents close to their critical point, the ion-solvent coupling

is relevant further away, provided the direct electrostatic interaction is sufficiently weak.

The crossover from an electrostatics- to a critical Casimir-dominated behavior is expected

to occur near that temperature at which the bulk correlation length becomes comparable

with the Debye screening length. Several experiments with monovalent ions in binary liquid

mixtures can be consistently interpreted in terms of the present model, according to which

the influence of the ions on the order parameter can be described by an effective “external”

field proportional to a coupling parameter which measures the difference between the solu-

bility contrasts of cations and anions in a binary solvent. The insight gained in the present

study on the effects of ion-solvent coupling may provide an understanding of other situations

in which critical and non-critical fields are coupled.
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FIG. 1: Effective wall-wall interaction potential ω̃ as a function of the scaled wall separation

κL and the scaled bulk correlation length κξ for (a) (−−) and (b) (+−) boundary conditions;

σsat = κ/(πℓB) is the saturation surface charge density. For symmetric (−−) boundary conditions

ω̃ is repulsive far away from the critical point due to the direct electrostatic interaction between the

like-charged walls whereas the Casimir force gives rise to an increasing attraction upon approaching

the critical point. For antisymmetric (+−) boundary conditions ω̃ is repulsive far away from as

well as close to the critical point. Attraction (∝ ∆γ) occurs in an intermediate temperature range

due to the ion-solvent coupling induced by the difference between the solubility contrasts of cations

and anions in the binary solvent.
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