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Quantum limits in interferometric measurements

M.T. Jaekel a and S. Reynaud b
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Quantum noise limits the sensitivity of interferometric
measurements. It is generally admitted that it leads to an
ultimate sensitivity, the “standard quantum limit”. Using a
semi-classical analysis of quantum noise, we show that a ju-
dicious use of squeezed states allows one in principle to push
the sensitivity beyond this limit. This general method could
be applied to large scale interferometers designed for gravita-
tional wave detection.

PACS 42.50 - 06.30 - 03.65

Quantum noise ultimately limits the sensitivity in in-
terferometric detection of gravitational waves [1–3]. A
gravitational wave is detected as a phase difference be-
tween the optical lengths of the two arms. It seems
accepted that there exists a “standard quantum limit”
(SQL), equivalent to an ultimate detectable length vari-
ation

(∆z)SQL =

√
h̄τ

M
(1)

where M is the mass of the mirrors and τ the measure-
ment time [4]. The SQL can be derived by considering
that the positions z(t) and z(t+ τ), which are non com-
muting observables, are measured [5]. This interpreta-
tion of SQL has given rise to a long controversy [6].
Alternatively, the SQL can be understood by consid-

ering the quantum noise as a sum of two contributions.
Photon counting noise corresponds to fluctuations of the
number of photons detected in the two output ports while
radiation pressure noise stems from the random motion
of the mirrors which is sensitive to the fluctuations of the
numbers of photons in each arm. The sum of these two
contributions leads to an optimal sensitivity given by the
expression (1). This limit is reached for very large laser
power which is not presently achievable.
Caves [7] pointed out that these two contributions re-

flect the fluctuations of two quadrature components of
the vacuum field entering the unused input port of the
interferometer. He further suggested [8] a reduction in
the photon counting noise by entering squeezed light [9]
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in this port. This possibility, which has been experimen-
tally demonstrated [10], allows one to attain the optimal
sensitivity for more reasonable laser powers. It does not
overcome the SQL because the reduction in photon noise
is compensated by the increase in radiation pressure fluc-
tuations.
Unruh [11] has shown that a judicious extension of

Caves’ proposal leads to a sensitivity beyond the SQL.
The key point is that photon counting noise and radiation
pressure noise are not independent sources of fluctuations
as implicitly assumed in the derivation of the SQL. Both
contributions are linearly superimposed in the fluctua-
tions of the monitored signal [12]. It is therefore possible
to reduce the total noise by squeezing the appropriate
quadrature component of the field entering the unused
input port.
We present in this letter a simple method for treat-

ing quantum noise in interferometric measurements. It
is based on a semi-classical linear input output theory al-
ready used for computing the field fluctuations generated
by optical parametric oscillators [13]. Using this general
method, we show that the sensitivity can be pushed be-
yond the SQL. The method can be used for incorporat-
ing a detailed analysis of quantum noise in discussions
about large scale interferometers designed for gravita-
tional wave detection. As a first step in this direction,
we discuss the quantum limits when taking into account
some constraints.

MEASUREMENT OF THE POSITION OF A

MIRROR

We first analyze the simple case where the position of
a single mirror is measured. The mirror is illuminated by
an incident laser beam. The phase of the reflected field
at some arbitrary point contains the information about
the mirror position.
The incident electric field E(t) will be written as the

sum of a prescribed monochromatic field (frequency ω0

and wavevector k0 = ω0

c
) and the quantum fluctuations

of a monodimensional scalar field (propagation along the
z direction with one polarization only, but all possible
frequencies)

E(t) =

√
h̄ω0

2ε0c

(
u(t)eik0z−iω0t + u†(t)e−ik0z+iω0t

)

(2a)

u(t) =
1

2
(< p > +δp(t) + iδq(t)) (2b)
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δx(t) = x− 〈x〉 (2c)

The operators p and q represent respectively the ampli-
tude and phase quadrature components of the field.
We will use a semi-classical description of quantum

fluctuations [13]. The classical random variables p and
q are defined so that they fit the symmetrically ordered
momenta of the quantum fluctuations p and q

〈x(t)y(t′)〉 = 1

2
〈x(t)y(t′) + y(t′)x(t)〉 (3)

They are characterized by the spectra of stationary ran-
dom variables

Sxy(Ω) =

∫ +∞

−∞

dt 〈δx(t0 + t)δy(t0)〉 eiΩt (4)

The spectra obey a generalized Heisenberg inequality [14]
which can be written (in the frequency domain Ω ≪ ω0)
as

Spp(Ω)Sqq(Ω)− Spq(Ω)
2 � 1 (5)

Using these notations, we can define a normalized in-
tensity I, measured as a number of photons per unit time,
and a phase ϕ

u(t) =
1

2
(〈p〉+ δp(t) + iδq(t))

=
√
I + δI(t) exp(iδϕ(t)) (6)

In a linear treatment of the field fluctuations, one obtains

I =
1

4
〈p〉2 , δI(t) =

1

2
〈p〉 δp(t) =

√
Iδp(t) (7)

δϕ(t) =
δq(t)

〈p〉 =
δq(t)

2
√
I

(8)

We can now discuss the effect of quantum noise for this
position measurement. The phase of the reflected beam
can be written

ϕ = 2k0z + δϕ(t) (9)

where δϕ(t) represents the incident phase fluctuations
(8) and where the mirror position z depends on the in-
tensity fluctuations (7), due to radiation pressure force

2h̄k0 |u(t)|2. In order to evaluate this term, we have to
describe the response of the mirror to the force. In a lin-
ear analysis, this response is described in the frequency
domain by a susceptibility function χ.

Thus, ϕ̃(Ω)
2k0

provides an estimator z̃(Ω) for each fre-
quency component of the position

z̃(Ω) = z(Ω) + δz(Ω) (10)

where z(Ω) and δz(Ω) correspond to the signal and noise.
The noise is a sum of three error terms associated respec-
tively with the incident phase fluctuations δzpc superim-
posed to the signal, the mirror displacement δzrp due to

the radiation pressure and the mirror displacement δzef
due to extra fluctuations δf

δz(Ω) = δzpc(Ω) + δzrp(Ω) + δzef (Ω) (11a)

δzpc(Ω) =
δq(Ω)

4k0
√
I

(11b)

δzrp(Ω) = χ(Ω)2h̄k0
√
Iδp(Ω) (11c)

δzef (Ω) = χ(Ω)δf(Ω) (11d)

INTERFEROMETRIC MEASUREMENT

Up to now, we have not discussed a practical realisa-
tion of the phase measurement. In fact, this is the role
of the interferometer to transform the phase signal into
an intensity signal.
The interferometer can be schematized as consisting

of two input ports A and B, two output ports C and D
and two internal paths 1 and 2. We will consider here a
simple configuration. A mean field is entered only into
the port A. The beam splitters have equal transmission
and reflection probabilities and the difference J between
the two output intensities is measured around a working
point where it is zero. One obtains in this case

δI = δI1 − δI2 =
√
IAδpB(t) (12a)

J = IC − ID = IA2k0z +
√
IAδqB(t) (12b)

where z is the difference between the optical lengths of
the two arms (treated as a small quantity) and where δpB
and δqB represent the amplitude and phase fluctuations
of the field entering the port B (IA is the mean intensity
entering the port A).
If the two mirrors have the same susceptibility χ, the

differential displacement z can be written

z(Ω) = χ(Ω)
(
−MΩ2s(Ω) + 2h̄k0δI(Ω) + δf(Ω)

)
(13)

where the force is the sum of three terms associated re-
spectively with the gravitational wave, the radiation pres-
sure and the extra fluctuations. The gravitational signal
is measured as the variation s of a distance between two
free falling mirrors.
A signal estimator s̃(Ω) can be defined at each fre-

quency

s̃(Ω) =
J(Ω)

2k0IA
= −MΩ2χ(Ω)s(Ω) + δs(Ω) (14)

where the error is, as before, the sum of three terms

δs(Ω) = δspc(Ω) + δsrp(Ω) + δsef (Ω) (15a)

δspc(Ω) =
δqB(Ω)

2k0
√
IA

(15b)

δsrp(Ω) = χ(Ω)2h̄k0
√
IAδpB(Ω) (15c)

δsef (Ω) = χ(Ω)δf(Ω) (15d)
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Quantum fluctuations and extra fluctuations are inde-
pendent, but p and q fluctuations can be correlated. One
obtains from (15) the noise spectrum

Sss(Ω) =
Sqq(Ω)

4k20IA
+ 2h̄χR(Ω)Spq(Ω) (16)

+
(
χ2
R(Ω) + χ2

I(Ω)
) (

4h̄2k20IASpp(Ω) + Sff (Ω)
)

where χR(Ω) and χI(Ω) are the real and imaginary parts
of χ(Ω) (the spectra Sqq, Spq and Spp refer to the input
port B).
We will consider that the signal is measured through a

filter characterized by a function G(Ω) (maximum value
1 at the signal frequency ΩS). The filtered noise is given
by the integral

∆s2 = 2BSss (17)

where B is the detection bandwidth

2B =

∫ +∞

−∞

dΩ

2π
G(Ω) (18)

and where F is the mean value of a function F over the
normalized frequency distribution G

4πB .
When the mirrors are held in their equilibrium posi-

tions by damped harmonic systems, the susceptibility is

χ(Ω) =
1

M (Ω2
M − Ω2 − iΓΩ)

(19)

and the signal is accurately reproduced when the eigen-
frequency ΩM and the damping constant Γ are smaller
than the signal frequency ΩS . More general expressions
of χ(Ω), which are studied for the large scale interferom-
eters, must also obey [2]

−MΩ2χ(Ω)˜1 for ΩS − 2B < Ω < ΩS + 2B (20)

QUANTUM LIMITS

In the following, we disregard the extra fluctuations
and consider only the quantum noise

∆s2 =
2B

4k20IA
Sqq + 4Bh̄χRSpq

+8Bh̄2k20IA(χ
2
R + χ2

I)Spp (21)

We first consider the simplest case where the fluctuations
entering the port B are vacuum fluctuations (Spp(Ω) =
Sqq(Ω) = 1; Spq(Ω) = 0)

∆s2 =
2B

4k20IA
+ 8Bh̄2k20IAχ

2
R + χ2

I (22)

In this case, the quantum noise is effectively the sum
of two independent contributions associated with phase

and amplitude fluctuations. Its minimum when the laser
intensity IA is varied is the standard quantum limit

∆s2SQL = 4Bh̄

√
χ2
R + χ2

I (23)

Using condition (20), we obtain the usual expression (1)
with a time parameter τ ≈ 4B

Ω2

S

.

Caves’ proposal [8] corresponds to squeezed phase fluc-
tuations (Spp(Ω) = K; Sqq(Ω) = 1

K
; Spq(Ω) = 0). It

also leads to the standard quantum limit (23), but for a
smaller laser intensity.
We finally consider Unruh’s proposal [11] where corre-

lated squeezed fluctuations enter the input port B. The
noise ∆s2 can be decreased below the SQL by varying
Sqq(Ω), Spq(Ω) and Spp(Ω) and respecting the Heisen-
berg inequality (5). A lower bound for the sensitivity
is obtained by assuming that the squeezing can be opti-
mised at each frequency. One finds in this way

∆s2 = 4Bh̄|χI | (24)

This lower bound is far below the standard quantum limit
(23) since the reactive part χR of the susceptibility is
much larger than the dissipative part χI when the condi-
tion (20) is satisfied. For example, the damped harmonic
system leads to the expression (1) with a time parame-
ter τ ≈ 4BΓ

Ω3

S

. It has to be noted that the recoil effect

associated with the reflection of photons [11] gives rise
to a damping Γmin = h̄k0IA

M
. In practice, the damping

constant is larger than this minimum value but the lower
bound (24) is still below the SQL (23) as long as Γ < ΩS .
If broadband correlated squeezing is used, one has an-

other minimum noise

∆s2 = 4Bh̄

√
χ2
R + χ2

I − χR
2 (25)

This noise is intermediate between the SQL (23) and the
lower bound (24). It can be shown that it is close to the
SQL (23) when condition (20) is satisfied. This shows
that it is important to control the squeezing parameters
at each frequency in order to approach the lower bound
(24).
We are grateful to A.Heidmann, E.Giacobino and

C.Fabre for stimulating discussions.
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