Skip to main content

Advertisement

Log in

Effect of Formulation Variables and Gamma Sterilization on Transcorneal Permeation and Stability of Proniosomal Gels as Ocular Platforms for Antiglaucomal Drug

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This study aims to evaluate the effect of different formulation variables (surfactant type and HLB value) adopting full factorial design (51. 21) using coacervation phase technique on in vitro characterization of dorzolamide hydrochloride (DZ)-loaded proniosomal gels, namely, entrapment efficiency percentage (EE%), vesicle size distribution, polydispersion index (PDI), and in vitro DZ release. The optimum formula F2 with a desirability value of 0.937 composed of 40 mg DZ, 500 mg span 60, 500 mg of L-α-Lethicin, and 55.5 mg cholesterol showing EE% of 84.5 ± 1.5%, PS of 189.5 ± 35.76 nm with PDI 0.8 ± 0.28 and 58.51% ± 1.00 of DZ released after 8 h was further evaluated using differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). The effect of gamma sterilization on transcorneal permeation and stability of DZ from the selected formulation (F2) revealed that F2 was significantly tolerable, stable, and competent to corneal permeation confirmed by histological examination, confocal laser microscopy, and intraocular pressure (IOP) measurement. Significant corneal bioavailability was attained from formula F2 (370.6 mg. h/m) compared to the market product Trusopt® eye drops (92.59 mg. h/ml) following IOP measurement, thereby proniosomal gels could be considered as tolerable and competent ocular platforms for improving the transcorneal permeation of DZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Janoria KG, Gunda S, Boddu SH, Mitra AK. Novel approaches to retinal drug delivery. Expert Opin Drug Deliv. 2007;4:371–88.

    CAS  PubMed  Google Scholar 

  2. Le Bourlais C, Acar L, Zia H, Sado PA, Needham T, Leverge R. Ophthalmic drug delivery systems recent advances. Prog Retin Eye Res. 1998;17:33–58.

    CAS  PubMed  Google Scholar 

  3. Mishra A, Kapoor A, Bhargava S. Proniosomal gel as a carrier for improved transdermal drug-delivery. Asian J Pharm Clin Res. 2011;2231:4423.

    Google Scholar 

  4. Khaw P, Shah P, Elkington A. ABC of eyes: glaucoma—1: diagnosis. BMJ. 2004;328:97.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Schellack N, Bezuidenhout S. Glaucoma: a brief review. SA Pharm J. 2015;82:18–22.

    Google Scholar 

  6. Fouda NH, Abdelrehim RT, Hegazy DA, Habib BA. Sustained ocular delivery of Dorzolamide-HCl via proniosomal gel formulation: in-vitro characterization, statistical optimization, and in-vivo pharmacodynamic evaluation in rabbits. Drug Deliv. 2018;25:1340–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Shah PA, Gevariya NR, Christian JR, Patel KG, Thakkar VT, Gohel MC, et al. Science based development of viscous eye drop of dorzolamide hydrochloride and timolol maleate using full factorial design. Pharm Methods. 2018;9:69–78.

    CAS  Google Scholar 

  8. Gaudana R, Jwala J, Boddu SH, Mitra AK. Recent perspectives in ocular drug delivery. Pharm Res. 2009;26:1197.

    CAS  PubMed  Google Scholar 

  9. Lavik E, Kuehn M, Kwon Y. Novel drug delivery systems for glaucoma. Eye. 2011;25:578.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ammar H, Salama H, Ghorab M, Mahmoud A. Development of dorzolamide hydrochloride in situ gel nanoemulsion for ocular delivery. Drug Dev Ind Pharm. 2010;36:1330–9.

    CAS  PubMed  Google Scholar 

  11. El-Salamounia NS, Farida RM Recent drug delivery systems for treatment of glaucoma www.smgebooks.com.

  12. Kurniawansyah IS, Sopyan I, Aditya WA, Nuraini H, Alminda FD, Nurlatifah A. Preformed gel vs in situ gel: a review. Int Res J Pharm. 2018;9:1–5.

    CAS  Google Scholar 

  13. Sarada K, Firoz S, Padmini K. In-situ gelling system: a review. Int J Curr Pharma Rev Res. 2014;15:76–90.

    Google Scholar 

  14. Yadav KYD, Saroha K, Nanda S, Mathur P. Proniosomal gel: a provesicular approach for transdermal drug delivery. Pharm Lett. 2010;2:189–98.

    CAS  Google Scholar 

  15. Perrett S, Golding M, Williams WP. A simple method for the preparation of liposomes for pharmaceutical applications: characterization of the liposomes. J Pharm Pharmacol. 1991;43:154–61.

    CAS  PubMed  Google Scholar 

  16. Aburahma MH, Abdelbary GA. Novel diphenyl dimethyl bicarboxylate provesicular powders with enhanced hepatocurative activity: preparation, optimization, in vitro/in vivo evaluation. Int J Pharm. 2012;422:139–50.

    CAS  PubMed  Google Scholar 

  17. Agarwal R, Katare O, Vyas S. Preparation and in vitro evaluation of liposomal/niosomal delivery systems for antipsoriatic drug dithranol. Int J Pharm. 2001;228:43–52.

    CAS  PubMed  Google Scholar 

  18. Pani NR, Nath LK, Acharya S, Bhuniya B. Application of DSC, IST, and FTIR study in the compatibility testing of nateglinide with different pharmaceutical excipients. J Therm Anal Calorim. 2011;108:219–26.

    Google Scholar 

  19. Abd-Elbary A, El-Laithy H, Tadros M. Sucrose stearate-based proniosome-derived niosomes for the nebulisable delivery of cromolyn sodium. Int J Pharm. 2008;357:189–98.

    CAS  PubMed  Google Scholar 

  20. Elsayed I, Sayed S. Tailored nanostructured platforms for boosting transcorneal permeation: Box–Behnken statistical optimization, comprehensive in vitro, ex vivo and in vivo characterization. Int J Nanomedicine. 2017;12:7947–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sayed S, Elsayed I, Ismail MM. Optimization of β-cyclodextrin consolidated micellar dispersion for promoting the transcorneal permeation of a practically insoluble drug. Int J Pharm. 2018;549:249–60.

    CAS  PubMed  Google Scholar 

  22. Priyanka H, Bhaskar NV, Prashanthi Priya SP, Ravi Shankar V. Formulation and evaluation of carvedilol proniosomal gel. Int J Pharm Pharm Sci. 2015;4:191–202.

    Google Scholar 

  23. Volland C, Wolff M, Kissel T. The influence of terminal gamma-sterilization on captopril containing poly (D, L-lactide-co-glycolide) microspheres. J Control Release. 1994;31:293–305.

    CAS  Google Scholar 

  24. Weyenberg W, Vermeire A, Vandervoort J, Remon JP, Ludwig A. Effects of roller compaction settings on the preparation of bioadhesive granules and ocular minitablets. Eur J Pharm Biopharm. 2005;59:527–36.

    CAS  PubMed  Google Scholar 

  25. Vora B, Khopade AJ, Jain N. Proniosome based transdermal delivery of levonorgestrel for effective contraception. J Control Release. 1998;54:149–65.

    CAS  PubMed  Google Scholar 

  26. Abdelbary GA, Amin MM, Abdelmoteleb M. Novel mixed hydrotropic solubilization of Zaleplon: formulation of oral tablets and in-vivo neuropharmacological characterization by monitoring plasma GABA level. J Drug Deliv Sci Tec. 2016;33:98–113.

    CAS  Google Scholar 

  27. Abdelbary GA, Amin MM, Zakaria MY. Ocular ketoconazole-loaded proniosomal gels: formulation, ex vivo corneal permeation and in vivo studies. Drug Deliv. 2017;24:309–19.

    CAS  PubMed  Google Scholar 

  28. Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery an overview. Acta Pharm Sin B. 2011;1:208–19.

    Google Scholar 

  29. Moghimi SM, Hunter AC. Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends Biotechnol. 2000;18:412–20.

    CAS  PubMed  Google Scholar 

  30. Nematollahi MH, Pardakhty A, Torkzadeh-Mahanai M, Mehrabani M, Asadikaram G. Changes in physical and chemical properties of niosome membrane induced by cholesterol: a promising approach for niosome bilayer intervention. RSC Adv. 2017;7:49463–72.

    CAS  Google Scholar 

  31. Rajabalaya R, David SR, Chellian J, Xin Yun G, Chakravarthi S. Transdermal delivery of oxybutynin chloride proniosomal gels for the treatment of overactive bladder. Drug Deliv. 2016;23:1578–87.

    CAS  PubMed  Google Scholar 

  32. Hao Y, Zhao F, Li N, Yang Y. Li Ka. Studies on a high encapsulation of colchicine by a niosome system. Int J Pharm. 2002;244:73–80.

    CAS  PubMed  Google Scholar 

  33. Ruckmani K. SV. Formulation and optimization of Zidovudine niosomes. AAPS PharmSciTech. 2010;11(11):19–27.

    Google Scholar 

  34. Arunothayanun P, Bernard M-S, Craig D, Uchegbu I, Florence A. The effect of processing variables on the physical characteristics of non-ionic surfactant vesicles (niosomes) formed from a hexadecyl diglycerol ether. Int J Pharm. 2000;201:7–14.

    CAS  PubMed  Google Scholar 

  35. Manosroi A, Wongtrakul P, Manosroi J, Sakai H, Sugawara F, Yuasa M, et al. Characterization of vesicles prepared with various non-ionic surfactants mixed with cholesterol. Colloids Surf B: Biointerfaces. 2003;30:129–38.

    CAS  Google Scholar 

  36. Uchegbu IFVS. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm. 1998;172:33–70.

    CAS  Google Scholar 

  37. Ruckmani KSV, Durga S, Jailani S. Pak. Proniosomes as drug carriers. J Pharm Sci. 2010;23:103–7.

    Google Scholar 

  38. Abdelbary G, El-gendy N. Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS PharmSciTech. 2008;9:740–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Abdelbary GA, Aburahma MH. Oro-dental mucoadhesive proniosomal gel formulation loaded with lornoxicam for management of dental pain. J Liposome. 2015;25:107–21.

    CAS  Google Scholar 

  40. Madheswaran T, Baskaran R, Yong CS, Yoo BK. Enhanced topical delivery of finasteride using glyceryl monooleate-based liquid crystalline nanoparticles stabilized by cremophor surfactants. AAPS PharmSciTech. 2014;15:44–51.

    CAS  PubMed  Google Scholar 

  41. Bandivadekar M, Pancholi S, Kaul-Ghanekar R, Choudhari A, Koppikar S. Single non-ionic surfactant based self-nanoemulsifying drug delivery systems: formulation, characterization, cytotoxicity and permeability enhancement study. Drug Dev Ind Pharm. 2013;39:696–703.

    CAS  PubMed  Google Scholar 

  42. Pople PV, Singh KK. Development and evaluation of topical formulation containing solid lipid nanoparticles of vitamin A. AAPS PharmSciTech. 2006;7:E63–9.

    PubMed Central  Google Scholar 

  43. Kassem M, Rahman AA, Ghorab M, Ahmed M, Khalil R. Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Int J Pharm. 2007;340:126–33.

    CAS  PubMed  Google Scholar 

  44. Yoshioka T, Sternberg B, Florence AT. Preparation and properties of vesicles (niosomes) of sorbitan monoesters (Span 20, 40, 60 and 80) and a sorbitan triester (Span 85). Int J Pharm. 1994;105:1–6.

    CAS  Google Scholar 

  45. Carafa M, Santucci E, Alhaique F, Coviello T, Murtas E, Riccieri F, et al. Preparation and properties of new unilamellar non-ionic/ionic surfactant vesicles. Int J Pharm. 1998;160:51–9.

    CAS  Google Scholar 

  46. Shaker S, Gardouh AR, Ghorab MM. Factors affecting liposomes particle size prepared by ethanol injection method. Res Pharm Sci. 2017;12:346.

    PubMed  PubMed Central  Google Scholar 

  47. Hasan AA. Design and in vitro characterization of small unilamellar niosomes as ophthalmic carrier of dorzolamide hydrochloride. Pharm Dev Technol. 2014;19:748–54.

    CAS  PubMed  Google Scholar 

  48. Szűts A, Makai Z, Rajkó R, Szabó-Révész P. Study of the effects of drugs on the structures of sucrose esters and the effects of solid-state interactions on drug release. J Pharm Biomed Anal. 2008;48:1136–42.

    PubMed  Google Scholar 

  49. Basalious EB, Shawky N, Badr-Eldin SM. SNEDDS containing bioenhancers for improvement of dissolution and oral absorption of lacidipine. I: development and optimization. Int J Pharm. 2010;391:203–11.

    CAS  PubMed  Google Scholar 

  50. Zimmer A, Kreuter J. Microspheres and nanoparticles used in ocular delivery systems. Adv Drug Deliv Rev. 1995;16:61–73.

    CAS  Google Scholar 

  51. Gonzalez-Mira E, Egea M, Garcia M, Souto E. Design and ocular tolerance of flurbiprofen loaded ultrasound-engineered NLC. Colloids Surf B: Biointerfaces. 2010;81:412–21.

    CAS  PubMed  Google Scholar 

  52. Botha S, Lötter A. Compatibility study between naproxen and tablet excipients using differential scanning calorimetry. Drug Dev Ind Pharm. 1990;16:673–83.

    CAS  Google Scholar 

  53. Siepmann J, Peppas N. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2012;64:163–74.

    Google Scholar 

  54. Gupta SAD, Sharma NK, Jhade D. Proniosomal gel as a carrier for improved transdermal delivery of Griseofulvin: preparation and in-vitro characterization. Res J Pharm Dos Tech. 2009;1:33–7.

    Google Scholar 

  55. Thakur RKAM, Shams MS, Ali A, Khar RK. Proniosomal transdermal therapeutic system of losartan potassium: development and pharmacokinetic evaluation. J Drug Target. 2009;17:442–9.

    CAS  PubMed  Google Scholar 

  56. Murdan S, van den Bergh B, Gregoriadis G, Florence AT. Water in sorbitan monosterate organo gels (water in oil gels). J Pharm Sci. 1999;88:615–9.

    CAS  PubMed  Google Scholar 

  57. Gobindpura PO-P. Ludhiana, Punjab, India. Design, development and evaluation of proniosomal gel of an antifungal drug - ketoconazole. Int J Pharm Sci Rev Res. 2015;31:265–72.

    Google Scholar 

  58. Van Abbe N. Eye irritation: studies relating to responses in man and laboratory animals. J Cosmet Sci. 1973;24:685–92.

    Google Scholar 

  59. Abdelbary AA, Abd-Elsalam WH, Al-mahallawi AM. Fabrication of novel ultradeformable bilosomes for enhanced ocular delivery of terconazole: in vitro characterization, ex vivo permeation and in vivo safety assessment. Int J Pharm. 2016;513:688–96.

    CAS  PubMed  Google Scholar 

  60. Salama AH, Shamma RN. Tri/tetra-block co-polymeric nanocarriers as a potential ocular delivery system of lornoxicam: in-vitro characterization, and in-vivo estimation of corneal permeation. Int J Pharm. 2015;492:28–39.

    CAS  PubMed  Google Scholar 

  61. O’rese JK, Lawrence SD. Sustained drug delivery in glaucoma. Curr Opin Ophthalmol. 2014;25:112–7.

    Google Scholar 

  62. Gasthuys F, Pockelé K, Vervaet C, Weyenberg W, De Prijck K, Pille F, et al. Evaluation of the in vivo behaviour of gentamicin sulphate ocular mini-tablets in ponies. J Vet Pharmacol Ther. 2007;30:470–6.

    CAS  PubMed  Google Scholar 

  63. Dubey A, Prabhu P. Development and investigation of niosomes of brimonidine tartrate and timolol maleate for the treatment of glaucoma. Int J PharmTech Res. 2014;6:942–50.

    CAS  Google Scholar 

  64. Chandraprakash K, Udupa N, Umadevi P, Pillai G. Pharmacokinetic evaluation of surfactant vesicle-entrapped methotrexate in tumor-bearing mice. Int J Pharm Tech Res. 1990;61:R1–4.

    CAS  Google Scholar 

  65. Ruckmani K, Sankar V, Sivakumar M. Tissue distribution, pharmacokinetics and stability studies of zidovudine delivered by niosomes and proniosomes. J Biomed Nanotechnol. 2010;6:43–51.

    CAS  PubMed  Google Scholar 

  66. Diaz DA, Colgan ST, Langer CS, Bandi NT, Likar MD, Van Alstine L. Dissolution similarity requirements: how similar or dissimilar are the global regulatory expectations? The AAPS J. 2016;18:15–22.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinar Sayed.

Ethics declarations

The experimental protocol was confirmed by Research Ethics Committee, Faculty of Pharmacy, Cairo University (REC-FOPCU) with a number of PI 2134. This study was approved by “Animal Care and Use Committee, Faculty of Pharmacy, Cairo University” (PI 2134).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is not related to any previous work of my own.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayed, S., Abdelmoteleb, M., Amin, M.M. et al. Effect of Formulation Variables and Gamma Sterilization on Transcorneal Permeation and Stability of Proniosomal Gels as Ocular Platforms for Antiglaucomal Drug. AAPS PharmSciTech 21, 87 (2020). https://doi.org/10.1208/s12249-020-1626-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-1626-2

KEY WORDS

Navigation