Skip to main content

Advertisement

Log in

Nanoparticulated Systems Based on Natural Polymers Loaded with Miconazole Nitrate and Lidocaine for the Treatment of Topical Candidiasis

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

People with weakened immune systems are at risk of developing candidiasis which is a fungal infection caused by several species of Candida genus. In this work, polymeric nanoparticles containing miconazole nitrate and the anesthetic lidocaine clorhydrate were developed. Miconazole was chosen as a typical drug to treat buccopharyngeal candidiasis whereas lidocaine may be useful in the management of the pain burning, and pruritus caused by the infection. Nanoparticles were synthesized using chitosan and gelatin at different ratios ranging from 10:90 to 90:10. The nano-systems presented nanometric size (between 80 and 300 nm in water; with polydispersion index ranging from 0.120 to 0.596), and positive Z potential (between 20.11 and 37.12 mV). The determined encapsulation efficiency ranges from 65 to 99% or 34 to 91% for miconazole nitrate and lidocaine clorhydrate, respectively. X-ray diffraction and DSC analysis suggested that both drugs were in amorphous state in the nanoparticles. Finally, the systems fitted best the Korsmeyer–Peppas model showing that the release from the nanoparticles was through diffusion allowing a sustained release of both drugs and prolonged the activity of miconazole nitrate over time against Candida albicans for at least 24 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aljaeid BM, Hosny KM. Miconazole-loaded solid lipid nanoparticles: formulation and evaluation of a novel formula with high bioavailability and antifungal activity. Int J Nanomedicine. 2016;11:441–7.

    CAS  Google Scholar 

  2. Tejada G, Piccirilli GN, Sortino M, Salomón CJ, Lamas MC, Leonardi D. Formulation and in-vitro efficacy of antifungal mucoadhesive polymeric matrices for the delivery of miconazole nitrate. Mater Sci Eng C. 2017;79:140–50.

    CAS  Google Scholar 

  3. Pina-Vaz C, Rodrigues AG, Sansonetty F, Martinez-De-Oliveira J, Fonseca AF, Mårdh PA. Antifungal activity of local anesthetics against Candida species. Infect Dis Obstet Gynecol. 2000;8(3–4):124–37.

    CAS  Google Scholar 

  4. Palmeira-De-Oliveira A, Ramos AR, Gaspar C, Palmeira-De-Oliveira R, Gouveia P, Martinez-De-Oliveira J. In vitro anti-Candida activity of lidocaine and nitroglycerin: alone and combined. Infect Dis Obstet Gynecol. 2012;2012:1–4.

    Google Scholar 

  5. Tejada G, Barrera MG, Piccirilli GN, Sortino M, Frattini A, Salomón CJ, et al. Development and evaluation of buccal films based on chitosan for the potential treatment of oral candidiasis. AAPS PharmSciTech. 2017;18(4):936–46.

    CAS  Google Scholar 

  6. Tejada G, Lamas MC, Svetaz L, Salomón CJ, Alvarez VA, Leonardi D. Effect of drug incorporation technique and polymer combination on the performance of biopolymeric antifungal buccal films. Int J Pharm. 2018;548(1):431–42.

    CAS  Google Scholar 

  7. Birsan M, Apostu M, Todoran N, Antonoaea P, Rusu A, Ciurba A. Development of dermal films containing miconazole nitrate. Molecules. 2018;23(7):1–12.

    Google Scholar 

  8. Cartagena AF, Lyra AM, Kapuchczinski AC, Urban AM, Esmerino LA, Klein T, et al. Miconazole nitrate-loaded microparticles for buccal use: immediate drug release and antifungal effect. Curr Drug Deliv. 2016;14(8):1144–53.

    Google Scholar 

  9. Cartagena AF, Esmerino LA, Polak-Junior R, Olivieri Parreiras S, Domingos Michél M, Farago PV, et al. New denture adhesive containing miconazole nitrate polymeric microparticles: antifungal, adhesive force and toxicity properties. Dent Mater. 2017;33(2):e53–61.

    CAS  Google Scholar 

  10. Tejada G, Lamas MC, Sortino M, Alvarez VA, Leonardi D. Composite microparticles based on natural mucoadhesive polymers with promising structural properties to protect and improve the antifungal activity of miconazole nitrate. AAPS PharmSciTech. 2018;19(8):3712–22.

    CAS  Google Scholar 

  11. Bhalekar MR, Pokharkar V, Madgulkar A, Patil N, Patil N. Preparation and evaluation of miconazole nitrate-loaded solid lipid nanoparticles for topical delivery. AAPS PharmSciTech. 2009;10(1):289–96.

    CAS  Google Scholar 

  12. Fernandes Costa A, Evangelista Araujo D, Santos Cabral M, Teles Brito I, Borges de Menezes Leite L, Pereira M, et al. Development, characterization, and in vitro-in vivo evaluation of polymeric nanoparticles containing miconazole and farnesol for treatment of vulvovaginal candidiasis. Med Mycol. 2019;57(1):52–62.

    Google Scholar 

  13. Amaral AC, Saavedra PHV, Oliveira Souza AC, de Melo MT, Tedesco AC, Morais PC, et al. Miconazole loaded chitosan-based nanoparticles for local treatment of vulvovaginal candidiasis fungal infections. Colloids Surf B: Biointerfaces. 2019;174:409–15.

    CAS  Google Scholar 

  14. Amaral AC, Marques AF, Muñoz JE, Bocca AL, Simioni AR, Tedesco AC, et al. Poly(lactic acid-glycolic acid) nanoparticles markedly improve immunological protection provided by peptide P10 against murine paracoccidioidomycosis. Br J Pharmacol. 2010;159(5):1126–32.

    CAS  Google Scholar 

  15. Kenechukwu FC, Attama AA, Ibezim EC. Novel solidified reverse micellar solution-based mucoadhesive nano lipid gels encapsulating miconazole nitrate-loaded nanoparticles for improved treatment of oropharyngeal candidiasis. J Microencapsul. 2017;34(6):592–609.

    CAS  Google Scholar 

  16. Choonara BF, Choonara YE, Kumar P, Bijukumar D, du Toit LC, Pillay V. A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules. Biotechnol Adv. 2014;32(7):1269–82.

    CAS  Google Scholar 

  17. Calvo NL, Svetaz LA, Alvarez VA, Quiroga AD, Lamas MC, Leonardi D. Chitosan-hydroxypropyl methylcellulose tioconazole films: a promising alternative dosage form for the treatment of vaginal candidiasis. Int J Pharm. 2019;556:181–91.

    CAS  Google Scholar 

  18. Zhao X, Liu P. Reduction-responsive core-shell-corona micelles based on triblock copolymers: novel synthetic strategy, characterization, and application as a tumor microenvironment-responsive drug delivery system. ACS Appl Mater Interfaces. 2015;7(1):166–74.

    CAS  Google Scholar 

  19. Kalaydina RV, Bajwa K, Qorri B, Decarlo A, Szewczuk MR. Recent advances in “smart” delivery systems for extended drug release in cancer therapy. Int J Nanomedicine. 2018;13:4727–45.

    CAS  Google Scholar 

  20. Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics. 2017;9(4):1–26.

    CAS  Google Scholar 

  21. Mohebbi S, Nezhad MN, Zarrintaj P, Jafari SH, Gholizadeh SS, Saeb MR, et al. Chitosan in biomedical engineering: a critical review. Curr Stem Cell Res Ther. 2018;14(2):93–116.

    Google Scholar 

  22. Pellá MCG, Lima-Tenório MK, Tenório-Neto ET, Guilherme MR, Muniz EC, Rubira AF. Chitosan-based hydrogels: from preparation to biomedical applications. Carbohydr Polym. 2018;196:233–45.

    Google Scholar 

  23. Agotegaray M, Campelo A, Zysler R, Gumilar F, Bras C, Minetti A, et al. Influence of chitosan coating on magnetic nanoparticles in endothelial cells and acute tissue biodistribution. J Biomater Sci Polym Ed. 2016;27(11):1069–85.

    CAS  Google Scholar 

  24. Mao JS, Cui YL, Wang XH, Sun Y, Yin YJ, Zhao HM, et al. A preliminary study on chitosan and gelatin polyelectrolyte complex cytocompatibility by cell cycle and apoptosis analysis. Biomaterials. 2004;25(18):3973–81.

    CAS  Google Scholar 

  25. Oh S-A, Lee H-Y, Lee JH, Kim T-H, Jang J-H, Kim H-W, et al. Collagen three-dimensional hydrogel matrix carrying basic fibroblast growth factor for the cultivation of mesenchymal stem cells and osteogenic differentiation. Tissue Eng A. 2012;18(9–10):1087–100.

    CAS  Google Scholar 

  26. Hutson CB, Nichol JW, Aubin H, Bae H, Yamanlar S, Al-Haque S, et al. Synthesis and characterization of tunable poly(ethylene glycol): gelatin methacrylate composite hydrogels. Tissue Eng Part A. 2011;17(13–14):1713–23.

    CAS  Google Scholar 

  27. Lin YH, Liang HF, Chung CK, Chen MC, Sung HW. Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs. Biomaterials. 2005;26(14):2105–13.

    CAS  Google Scholar 

  28. Davoudi Z, Rabiee M, Houshmand B, Eslahi N, Khoshroo K, Rasoulianboroujeni M, et al. Development of chitosan/gelatin/keratin composite containing hydrocortisone sodium succinate as a buccal mucoadhesive patch to treat desquamative gingivitis. Drug Dev Ind Pharm. 2018;44(1):40–55.

    CAS  Google Scholar 

  29. Song Y, Nagai N, Saijo S, Kaji H, Nishizawa M, Abe T. In situ formation of injectable chitosan-gelatin hydrogels through double crosslinking for sustained intraocular drug delivery. Mater Sci Eng C. 2018;88:1–12.

    CAS  Google Scholar 

  30. Patel S, Srivastava S, Singh MR, Singh D. Preparation and optimization of chitosan-gelatin films for sustained delivery of lupeol for wound healing. Int J Biol Macromol. 2018;107(Pt B):1888–97.

    CAS  Google Scholar 

  31. Cheng YH, Ko YC, Chang YF, Huang SH, Liu CJ l. Thermosensitive chitosan-gelatin-based hydrogel containing curcumin-loaded nanoparticles and latanoprost as a dual-drug delivery system for glaucoma treatment. Exp Eye Res. 2019;179:179–87.

    CAS  Google Scholar 

  32. Azizian S, Hadjizadeh A, Niknejad H. Chitosan-gelatin porous scaffold incorporated with chitosan nanoparticles for growth factor delivery in tissue engineering. Carbohydr Polym. 2018;202:315–22.

    CAS  Google Scholar 

  33. Lee EJ, Khan SA, Lim KH. Gelatin nanoparticle preparation by nanoprecipitation. J Biomater Sci Polym Ed. 2011;22(4–6):753–71.

    CAS  Google Scholar 

  34. Zou T, Percival SS, Cheng Q, Li Z, Rowe CA, Gu L. Preparation, characterization, and induction of cell apoptosis of cocoa procyanidins-gelatin-chitosan nanoparticles. Eur J Pharm Biopharm. 2012 Sep 1;82(1):36–42.

    CAS  Google Scholar 

  35. Morri M, Castellano P, Leonardi D, Vignaduzzo S. First development, optimization, and stability control of a pediatric oral atenolol formulation. AAPS PharmSciTech. 2018;19(4):1781–8.

    CAS  Google Scholar 

  36. Raj V, Prava K, Seru G. RP-HPLC method development and validation for the simultaneous determination of clindamycin and miconazole in pharmaceutical dosage forms. Pharm Methods. 2014;5(2):56–60.

    Google Scholar 

  37. El-Feky GS, Abdulmaguid RF, Zayed GM, Kamel R. Mucosal co-delivery of ketorolac and lidocaine using polymeric wafers for dental application. Drug Deliv. 2018;25(1):35–42.

    CAS  Google Scholar 

  38. Peh KK, Wong CF. Polymeric films as vehicle for buccal delivery: swelling, mechanical, and bioadhesive properties. J Pharm Pharm Sci. 1999;2(2):53–61.

    CAS  Google Scholar 

  39. Borges AF, Silva C, Coelho JFJ, Simões S. Oral films: current status and future perspectives: I-Galenical development and quality attributes. J Control Release. 2015 May 28;206:1–19.

    CAS  Google Scholar 

  40. Kohda Y, Kobayashi H, Baba Y, Yuasa H, Ozeki T, Kanaya Y, et al. Controlled release of lidocaine hydrochloride from buccal mucosa-adhesive films with solid dispersion. Int J Pharm. 1997;158(2):147–55.

    CAS  Google Scholar 

  41. Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J [Internet]. 2010 Sep 6 [cited 2020 Aug 21];12(3):263–71. Available from: https://doi.org/10.1208/s12248-010-9185-1

  42. Clinical and Laboratory Standards Institute (CLSI). M27-A3. Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard. 3th Ed. 2008.

  43. Butassi E, Svetaz LA, Sortino MA, Quiroga AD, Carvalho VSD, Cortés JCG, et al. Approaches to the mechanism of antifungal activity of Zuccagnia punctata-Larrea nitida bi-herbal combination. Phytomedicine. 2019;54:291–301.

    CAS  Google Scholar 

  44. Clinical and Laboratory Standards Institute (CLSI). M44-A2. Method for antifungal disk diffusion susceptibility testing of yeasts. Approved guideline. 2nd Ed. 2009.

  45. Wang X, Tang Y, Li Y, Zhu Z, Du Y. The rheological behaviour and drug-delivery property of chitosan/rectorite nanocomposites. J Biomater Sci Polym Ed. 2010;21(2):171–84.

    Google Scholar 

  46. Wang Y, Qiu D, Cosgrove T, Denbow ML. A small-angle neutron scattering and rheology study of the composite of chitosan and gelatin. Colloids Surf B: Biointerfaces. 2009;70(2):254–8.

    CAS  Google Scholar 

  47. Rampino A, Borgogna M, Bellich B, Blasi P, Virgilio F, Cesàro A. Chitosan-pectin hybrid nanoparticles prepared by coating and blending techniques. Eur J Pharm Sci. 2016;84:37–45.

    CAS  Google Scholar 

  48. Salah S, Awad GEA, Makhlouf AIA. Improved vaginal retention and enhanced antifungal activity of miconazole microsponges gel: formulation development and in vivo therapeutic efficacy in rats. Eur J Pharm Sci. 2018;114:255–66.

    CAS  Google Scholar 

  49. Hussain MR, Maji TK. Preparation of genipin cross-linked chitosan-gelatin microcapsules for encapsulation of Zanthoxylum limonella oil (ZLO) using salting-out method. J Microencapsul. 2008;25(6):414–20.

    CAS  Google Scholar 

  50. Zhou Y, Fang A, Wang F, Li H, Jin Q, Huang L, et al. Core-shell lipid-polymer nanoparticles as a promising ocular drug delivery system to treat glaucoma. Chin Chem Lett. 2020;31(2):494–500.

    CAS  Google Scholar 

  51. Li XM, Wu ZZ, Zhang B, Pan Y, Meng R, Chen HQ. Fabrication of chitosan hydrochloride and carboxymethyl starch complex nanogels as potential delivery vehicles for curcumin. Food Chem. 2019;293:197–203.

    CAS  Google Scholar 

  52. Bastami TR, Entezari MH. High stable suspension of magnetite nanoparticles in ethanol by using sono-synthesized nanomagnetite in polyol medium. Mater Res Bull. 2013;48(9):3149–56.

    CAS  Google Scholar 

  53. Wang XJ, Li X, Yang S. Influence of pH and SDBS on the stability and thermal conductivity of nanofluids. Energy Fuel. 2009;23(5):2684–9.

    CAS  Google Scholar 

  54. Azcona P, López-Corral I, Lassalle V. Fabrication of folic acid magnetic nanotheranostics: an insight on the formation mechanism, physicochemical properties and stability in simulated physiological media. Colloids Surfaces A Physicochem Eng Asp. 2018;537:185–96.

    CAS  Google Scholar 

  55. Wei Y, Nedley MP, Bhaduri SB, Bredzinski X, Boddu SHS. Masking the bitter taste of injectable lidocaine HCl formulation for dental procedures. AAPS PharmSciTech. 2014;16(2):455–65.

    Google Scholar 

  56. Zhou Q, Zhang Z, Chen T, Guo X, Zhou S. Preparation and characterization of thermosensitive pluronic F127-b-poly(e{open}-caprolactone) mixed micelles. Colloids Surf B: Biointerfaces. 2011;86(1):45–57.

    CAS  Google Scholar 

  57. Li X, Xie H, Lin J, Xie W, Ma X. Characterization and biodegradation of chitosan-alginate polyelectrolyte complexes. Polym Degrad Stab. 2009;94(1):1–6.

    CAS  Google Scholar 

  58. Gautam S, Chou CF, Dinda AK, Potdar PD, Mishra NC. Fabrication and characterization of PCL/gelatin/chitosan ternary nanofibrous composite scaffold for tissue engineering applications. J Mater Sci. 2014;49(3):1076–89.

    CAS  Google Scholar 

  59. Trivino A, Gumireddy A, Meng F, Prasad D, Chauhan H. Drug–polymer miscibility, interactions, and precipitation inhibition studies for the development of amorphous solid dispersions for the poorly soluble anticancer drug flutamide. Drug Dev Ind Pharm. 2019;45(8):1277–91.

    CAS  Google Scholar 

  60. Corazzari I, Nisticò R, Turci F, Faga MG, Franzoso F, Tabasso S, et al. Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: thermal degradation and water adsorption capacity. Polym Degrad Stab. 2015;112:1–9.

    CAS  Google Scholar 

  61. Sakurai K, Maegawa T, Takahashi T. Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolidone) blends. Polymer (Guildf). 2000;41(19):7051–6.

    CAS  Google Scholar 

  62. Zeng M, Fang Z, Xu C. Effect of compatibility on the structure of the microporous membrane prepared by selective dissolution of chitosan/synthetic polymer blend membrane. J Membr Sci. 2004;230(1–2):175–81.

    CAS  Google Scholar 

  63. Dranca I, Vyazovkin S. Thermal stability of gelatin gels: effect of preparation conditions on the activation energy barrier to melting. Polymer (Guildf). 2009;50(20):4859–67.

    CAS  Google Scholar 

  64. Mainardes RM, Gremião MPD, Evangelista RC. Thermoanalytical study of praziquantel-loaded PLGA nanoparticles. Brazilian J Pharm Sci. 2006;42(4):523–30.

    CAS  Google Scholar 

  65. de Britto D, Campana-Filho SP. A kinetic study on the thermal degradation of N,N,N-trimethylchitosan. Polym Degrad Stab 2004;84(2):353–361.

  66. Salerno A, Verdolotti L, Raucci MG, Saurina J, Domingo C, Lamanna R, et al. Hybrid gelatin-based porous materials with a tunable multiscale morphology for tissue engineering and drug delivery. Eur Polym J. 2018;99:230–9.

    CAS  Google Scholar 

  67. Basalious EB, Shamma RN. Novel self-assembled nano-tubular mixed micelles of Pluronics P123, Pluronic F127 and phosphatidylcholine for oral delivery of nimodipine: in vitro characterization, ex vivo transport and in vivo pharmacokinetic studies. Int J Pharm. 2015;493(1–2):347–56.

    CAS  Google Scholar 

  68. Zhou G, Dong J, Wang Z, Li Z, Li Q, Wang B. Determination and correlation of solubility with thermodynamic analysis of lidocaine hydrochloride in pure and binary solvents. J Mol Liq. 2018;265:442–9.

    CAS  Google Scholar 

  69. Barba AA, D’Amore M, Grassi M, Chirico S, Lamberti G, Titomanlio G. Investigation of pluronicVCF127—water solutions phase transitions by DSC and dielectric spectroscopy. J Appl Polym Sci. 2009;114(2):688–95.

    CAS  Google Scholar 

  70. Eberbeck D, Kettering M, Bergemann C, Zirpel P, Hilger I, Trahms L. Quantification of the aggregation of magnetic nanoparticles with different polymeric coatings in cell culture medium. J Phys D Appl Phys. 2010;43(40):405002.

    Google Scholar 

  71. Sabuncu AC, Grubbs J, Qian S, Abdel-Fattah TM, Stacey MW, Beskok A. Probing nanoparticle interactions in cell culture media. Colloids Surf B: Biointerfaces. 2012;95:96–102.

    CAS  Google Scholar 

  72. Yurtdaş Kirimlioğlu G, Öztürk AA. Levocetirizine dihydrochloride-loaded chitosan nanoparticles: formulation and in vitro evaluation. Turkish J Pharm Sci. 2020;17(1):27–35.

    Google Scholar 

  73. Dozie-Nwachukwu SO, Danyuo Y, Obayemi JD, Odusanya OS, Malatesta K, Soboyejo WO. Extraction and encapsulation of prodigiosin in chitosan microspheres for targeted drug delivery. Mater Sci Eng C. 2017 Feb 1;71:268–78.

    CAS  Google Scholar 

  74. Kalam MA, Humayun M, Parvez N, Yadav S, Garg A, Amin S, et al. Release kinetics of modified pharmaceutical dosage forms: a review. Cont J Pharm Sci. 2007;1(1):30–5.

    Google Scholar 

  75. Unagolla JM, Jayasuriya AC. Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system. Eur J Pharm Sci. 2018;114:199–209.

    CAS  Google Scholar 

  76. Richter SS, Galask RP, Messer SA, Hollis RJ, Diekema DJ, Pfaller MA. Antifungal susceptibilities of Candida species causing vulvovaginitis and epidemiology of recurrent cases. J Clin Microbiol. 2005;43(5):2155–62.

    CAS  Google Scholar 

  77. Mady OY, Donia AM, Al-Madboly LA. Miconazole-urea in a buccal film as a new trend for treatment of resistant mouth fungal white patches. Front Microbiol. 2018;9(May):1–13.

    Google Scholar 

  78. Hazen KC. Fungicidal versus fungistatic activity of terbinafine and itraconazole: an in vitro comparison. J Am Acad Dermatol. 1998;38(5 III):S37–41.

    CAS  Google Scholar 

  79. Silvestri R, Artico M, La Regina G, Di Pasquali A, De Martino G, D’Auria FD, et al. Imidazole analogues of fluoxetine, a novel class of anti-Candida agents. J Med Chem. 2004;47(16):3924–6.

    CAS  Google Scholar 

  80. Krishnan N, Ramanathan S, Sasidharan S, Murugaiyah V, Mansor SM. Antimicrobial activity evaluation of Cassia spectabilis leaf extracts. Int J Pharmacol. 2010;6(4):506–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Lassalle, V. Alvarez or D. Leonardi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tejada, G., Barrera, M.G., García, P. et al. Nanoparticulated Systems Based on Natural Polymers Loaded with Miconazole Nitrate and Lidocaine for the Treatment of Topical Candidiasis. AAPS PharmSciTech 21, 278 (2020). https://doi.org/10.1208/s12249-020-01826-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01826-6

KEY WORDS

Navigation