Skip to main content

Advertisement

Log in

Augmented Therapeutic Efficacy of Naringenin Through Microemulsion-Loaded Sericin Gel Against UVB-Induced Photoaging

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Naringenin (NAR) is a flavonoid found in citrus fruits such as grapes and oranges. Recently, NAR has demonstrated its potential in inhibition of photoaging. The aim of the present study was to investigate the efficacy of sericin (SR) gel loaded with NAR microemulsion (ME) to inhibit UVB-induced photoaging and prevention of epidermoid carcinoma in animal model. NAR -ME was prepared and optimized through Box–Behnken design. The optimized ME was loaded into sericin (SR) gel. The formulations were subjected to various in vitro, in vivo and cytotoxicity studies over A431 cell lines. The optimized ME revealed a globule size of 249.05 ± 3.78 nm, 6.7 ± 0.5 pH and 73.1 ± 2.11% release over a period of 24 h respectively. Cytotoxicity studies revealed a depression in IC50 value in NAR -ME (65.11 ± 1.54 μg/ml) when compared with NAR (118.1 ± 2.09 μg/ml). The NAR-ME-SR gel displayed enhanced therapeutic potential when compared with plain NAR, in terms of augmented antiproliferative activity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BBD:

Box–Behnken design

FACS:

Fluorescence-activated cell sorting

ICH:

International Conference on Harmonization

ME:

Microemulsion

MMP:

Mitochondrial membrane potential

MTT:

Methylthiazoltetrazolium

mV:

Milli volt

Nar:

Naringenin

nm:

Nanometre

OA:

Oleic acid

ROS:

Reactive oxygen species

RPMI:

Roswell Park Memorial Institute medium

UV:

Ultra violet

WGO:

Wheat germ oil

References

  1. Cevenini E, Invidia L, Lescai F, Salvioli S, Tieri P, Castellani G, et al. Human models of aging and longevity. Expert Opin Biol Ther. 2008;8:1393–405.

    CAS  PubMed  Google Scholar 

  2. Fisher GJ. The pathophysiology of photoaging of the skin. Cutis. 2005;75:5–8 discussion −9.

    PubMed  Google Scholar 

  3. Kligman L, Kligman A. The nature of photoaging: its prevention and repair. Photo-dermatology. 1986;3:215–27.

    CAS  PubMed  Google Scholar 

  4. Yaar M, Eller MS, Gilchrest BA. Fifty years of skin aging. Invest Derm Symp Proc. Elsevier. 2002:51–8.

  5. Millsop JW, Sivamani RK, Fazel N. Botanical agents for the treatment of nonmelanoma skin cancer. Dermatol Res Pract. 2013;2013:1–9.

    Google Scholar 

  6. Uliasz A, Spencer JM. Chemoprevention of skin cancer and photoaging. Clin Dermatol. 2004;22:178–82.

    PubMed  Google Scholar 

  7. Yim S, Lee J, Hae J, et al. Chrysanthemum morifolium extract and ascorbic acid-2-glucoside (AA2G) blend inhibits UVA-induced delayed cyclobutane pyrimidine dimer (CPD) production in melanocytes. Clin Cosmet Investig Dermatol. 2019;12:823.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ahn B-N, Kim J-A, Kong C-S, Seo Y, Kim S-K. Protective effect of (2′ S)-columbianetin from Corydalis heterocarpa on UVB-induced keratinocyte damage. J Photochem Photobiol B Biol. 2012;109:20–7.

    CAS  Google Scholar 

  9. Lee KW, Kang NJ, Rogozin EA, Kim HG, Cho YY, Bode AM, et al. Myricetin is a novel natural inhibitor of neoplastic cell transformation and MEK1. Carcinogenesis. 2007;28:1918–27.

    CAS  PubMed  Google Scholar 

  10. Singh P, Arya M, Kanoujia J, Singh M, Gupta KP, Saraf SA. Design of topical nanostructured lipid carrier of silymarin and its effect on 7, 12-dimethylbenz [a] anthracene (DMBA) induced cellular differentiation in mouse skin. RSC Adv. 2016;6:84965–77.

    CAS  Google Scholar 

  11. Abel EL, Angel JM, Kiguchi K, DiGiovanni J. Multi-stage chemical carcinogenesis in mouse skin: fundamentals and applications. Nat Protoc. 2009;4:1350–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Tripp CS, Blomme EA, Chinn KS, Hardy MM, LaCelle P, Pentland AP. Epidermal COX-2 induction following ultraviolet irradiation: suggested mechanism for the role of COX-2 inhibition in photoprotection. J Investig Dermatol. 2003;121:853–61.

    CAS  PubMed  Google Scholar 

  13. Poon F, Kang S, Chien AL. Mechanisms and treatments of photoaging. Photodermatol Photoimmunol Photomed. 2015;31:65–74.

    CAS  PubMed  Google Scholar 

  14. Pal RR, Parashar P, Singh I, Saraf SA. Tamanu oil potentiated novel sericin emulgel of levocetirizine: repurposing for topical delivery against DNCB-induced atopic dermatitis, QbD based development and in vivo evaluation. J Microencapsul. 2019:1–30.

  15. Gilchrest BA. Photoaging. J Investig Dermatol. 2013;133:E2–6.

    PubMed  Google Scholar 

  16. Suryawanshi R, Kanoujia J, Parashar P, Saraf SA. Sericin: a versatile protein biopolymer with therapeutic significance. Curr Pharm Des. 2020.

  17. Verma J, Kanoujia J, Parashar P, Tripathi CB, Saraf SA. Wound healing applications of sericin/chitosan-capped silver nanoparticles incorporated hydrogel. Drug Del Transl Res. 2017;7:77–88.

    CAS  Google Scholar 

  18. Voegeli R. Sericin silk protein: unique structure and properties. Cosmetics Toiletries. 1993;108:101–8.

    CAS  Google Scholar 

  19. Yamada H, Yuri O. Sericin coated powders for cosmetics. Jpn Kokai Tokkyo Koho Jap 10226626 A2. 1998: 9.

  20. Padamwar M and Pawar A. Silk sericin and its applications: a review. 2004.

    Google Scholar 

  21. Yavuz B, Chambre L, Kaplan DL. Extended release formulations using silk proteins for controlled delivery of therapeutics. Expert Opin Drug Deliv. 2019;16:741–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Parashar P, Tripathi CB, Arya M, et al. Biotinylated naringenin intensified anticancer effect of gefitinib in urethane-induced lung cancer in rats: favourable modulation of apoptotic regulators and serum metabolomics. Artif Cells Nanomed Biotechnol. 2018:1–13.

  23. Yoshioka M, Segawa A, Veda A, Omi S. UV absorbing compositions containing fine capsules. Jpn Kokai Tokkyo Koho Jap2001049233 A2. 2001: 14.

  24. Jung SK, Ha SJ, Jung CH, Kim YT, Lee HK, Kim MO, et al. Naringenin targets ERK 2 and suppresses UVB-induced photoaging. J Cell Mol Med. 2016;20:909–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. El-Mahdy MA, Zhu Q, Wang QE, et al. Naringenin protects HaCaT human keratinocytes against UVB-induced apoptosis and enhances the removal of cyclobutane pyrimidine dimers from the genome. Photochem Photobiol. 2008;84:307–16.

    CAS  PubMed  Google Scholar 

  26. Singh M, Kanoujia J, Singh P, Tripathi CB, Arya M, Parashar P, et al. Development of an α-linolenic acid containing soft nanocarrier for oral delivery: in vitro and in vivo evaluation. RSC Adv. 2016;6:77590–602.

    CAS  Google Scholar 

  27. Su R, Fan W, Yu Q, Dong X, Qi J, Zhu Q, et al. Size-dependent penetration of nanoemulsions into epidermis and hair follicles: implications for transdermal delivery and immunization. Oncotarget. 2017;8:38214–26.

    PubMed  PubMed Central  Google Scholar 

  28. Schneider M, Stracke F, Hansen S, Schaefer UF. Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinol. 2009;1:197–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kanoujia J, Singh M, Singh P, Saraf SA. Novel genipin crosslinked atorvastatin loaded sericin nanoparticles for their enhanced antihyperlipidemic activity. Mater Sci Eng C. 2016;69:967–76.

    CAS  Google Scholar 

  30. Tsai MJ, Huang YB, Fang JW, Fu YS, Wu PC. Preparation and characterization of naringenin-loaded elastic liposomes for topical application. PLoS One. 2015;10:e0131026.

    PubMed  PubMed Central  Google Scholar 

  31. Kumar JP, Mandal BB. Antioxidant potential of mulberry and non-mulberry silk sericin and its implications in biomedicine. Free Radic Biol Med. 2017;108:803–18.

    CAS  PubMed  Google Scholar 

  32. Sharma M, Sharma S, Sharma V, Sharma K, Yadav SK, Dwivedi P, et al. Oleanolic-bioenhancer coloaded chitosan modified nanocarriers attenuate breast cancer cells by multimode mechanism and preserve female fertility. Int J Biol Macromol. 2017;104:1345–58.

    CAS  PubMed  Google Scholar 

  33. Sharma M, Sharma S, Sharma V, Agarwal S, Dwivedi P, Paliwal SK, et al. Design of folic acid conjugated chitosan nano-cur–bioenhancers to attenuate the hormone-refractory metastatic prostate carcinoma by augmenting oral bioavailability. RSC Adv. 2016;6:25137–48.

    CAS  Google Scholar 

  34. Rastogi RP, Singh SP, Häder D-P, Sinha RP. Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2’, 7’-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem Biophys Res Commun. 2010;397:603–7.

    CAS  PubMed  Google Scholar 

  35. Mahmoud AM, Wilkinson FL, Sandhu MA, Dos Santos JM, Alexander MY. Modulating oxidative stress in drug-induced injury and metabolic disorders: the role of natural and synthetic antioxidants. Oxidative Med Cell Longev. 2019;2019:1–5.

    Google Scholar 

  36. Eruslanov E, Kusmartsev S. Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol. 2010;594:57–72.

    CAS  PubMed  Google Scholar 

  37. Agrawal S, Ahmad H, Dwivedi M, et al. PEGylated chitosan nanoparticles potentiate repurposing of ormeloxifene in breast cancer therapy. Nanomedicine (London). 2016;11:2147–69.

    CAS  Google Scholar 

  38. Tsai MJ, Huang YB, Fang JW, Fu YS, Wu PC. Preparation and evaluation of submicron-carriers for naringenin topical application. Int J Pharm. 2015;481:84–90.

    CAS  PubMed  Google Scholar 

  39. Ji P, Yu T, Liu Y, et al. Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics. Drug Des Devel Ther. 2016;10:911–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Prochazkova D, Bousova I, Wilhelmova N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia. 2011;82:513–23.

    CAS  PubMed  Google Scholar 

  41. Sak K. Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacogn Rev. 2014;8:122–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Song HM, Park GH, Eo HJ, Lee JW, Kim MK, Lee JR, et al. Anti-proliferative effect of naringenin through p38-dependent downregulation of cyclin D1 in human colorectal cancer cells. Biomol Ther. 2015;23:339–44.

    CAS  Google Scholar 

  43. Kocyigit A, Koyuncu I, Dikilitas M, Bahadori F, Turkkan B. Cytotoxic, genotoxic and apoptotic effects of naringenin-oxime relative to naringenin on normal and cancer cell lines. Asian Pac J Trop Biomed. 2016;6:872–80.

    Google Scholar 

  44. Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta. 1863;2016:2977–92.

    Google Scholar 

  45. Kim TH, Woo JS, Kim YK, Kim KH. Silibinin induces cell death through reactive oxygen species-dependent downregulation of notch-1/ERK/Akt signaling in human breast cancer cells. J Pharmacol Exp Ther. 2014;349:268–78.

    PubMed  Google Scholar 

  46. Ahamad MS, Siddiqui S, Jafri A, Ahmad S, Afzal M, Arshad M. Induction of apoptosis and antiproliferative activity of naringenin in human epidermoid carcinoma cell through ROS generation and cell cycle arrest. PLoS One. 2014;9:e110003.

    PubMed  PubMed Central  Google Scholar 

  47. Martinez RM, Pinho-Ribeiro FA, Steffen VS, Silva TCC, Caviglione CV, Bottura C, et al. Topical formulation containing naringenin: efficacy against ultraviolet B irradiation-induced skin inflammation and oxidative stress in mice. PLoS One. 2016;11:e0146296.

    PubMed  PubMed Central  Google Scholar 

  48. Martinez RM, Pinho-Ribeiro FA, Steffen VS, Caviglione CV, Vignoli JA, Barbosa DS, et al. Naringenin inhibits UVB irradiation-induced inflammation and oxidative stress in the skin of hairless mice. J Nat Prod. 2015;78:1647–55.

    CAS  PubMed  Google Scholar 

  49. Jung SK, Ha SJ, Jung CH, Kim YT, Lee HK, Kim MO, et al. Naringenin targets ERK2 and suppresses UVB-induced photoaging. J Cell Mol Med. 2016;20:909–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Singh M, Gangwar N, Parashar P, B. Tripathi C, Arya M, A. Saraf S, et al. Topical delivery of fluconazole via microemulsion incorporated hydrogel for the management of fungal dermatophytosis. Curr Drug Ther. 2016;11:129–41.

    CAS  Google Scholar 

  51. Parashar P, Rathor M, Dwivedi M, Saraf SA. Hyaluronic acid decorated naringenin nanoparticles: appraisal of chemopreventive and curative potential for lung cancer. Pharmaceutics. 2018;10.

  52. Keshari AK, Singh AK, Raj V, et al. p-TSA-promoted syntheses of 5H-benzo [h] thiazolo [2, 3-b] quinazoline and indeno [1, 2-d] thiazolo [3, 2-a] pyrimidine analogs: molecular modeling and in vitro antitumor activity against hepatocellular carcinoma. Drug Des Dev Ther. 2017;11:1623.

    CAS  Google Scholar 

  53. Rawat D, Tripathi CB, Parashar P, Singh M, Kaithwas G, Saraf SA. Development and characterization of nanostructured lipid carriers of Vetiveria zizanoides oil for therapeutic potential in prickly heat treatment. J Pharm Sci Pharmacol. 2015;2:162–71.

    Google Scholar 

  54. Rehman K, Zulfakar MH. Recent advances in gel technologies for topical and transdermal drug delivery. Drug Dev Ind Pharm. 2014;40:433–40.

    CAS  PubMed  Google Scholar 

  55. Chen H, Chang X, Du D, Li J, Xu H, Yang XJ. Microemulsion-based hydrogel formulation of ibuprofen for topical delivery. Int J Pharm. 2006;315:52–8.

    CAS  PubMed  Google Scholar 

  56. Parashar P, Rathor M, Dwivedi M, Saraf S. Hyaluronic acid decorated naringenin nanoparticles: appraisal of chemopreventive and curative potential for lung cancer. Pharmaceutics. 2018;10:33.

    PubMed Central  Google Scholar 

  57. Aggarwal N, Goindi S. Preparation and evaluation of antifungal efficacy of griseofulvin loaded deformable membrane vesicles in optimized guinea pig model of Microsporum canis--dermatophytosis. Int J Pharm. 2012;437:277–87.

    CAS  PubMed  Google Scholar 

  58. Parashar P, Tripathi CB, Arya M, Kanoujia J, Singh M, Yadav A, et al. Biotinylated naringenin intensified anticancer effect of gefitinib in urethane-induced lung cancer in rats: favourable modulation of apoptotic regulators and serum metabolomics. Artif Cells Nanomed Biotechnol. 2018;46:S598–610.

    CAS  PubMed  Google Scholar 

  59. Mahmoud AA, Mohdaly AA, Elneairy NA. Wheat germ: an overview on nutritional value, antioxidant potential and antibacterial characteristics. Food Nutr Sci. 2015;6:265–77.

    CAS  Google Scholar 

  60. Parashar P, Rathor M, Dwivedi M, Saraf SA. Hyaluronic acid decorated naringenin nanoparticles: appraisal of chemopreventive and curative potential for lung cancer. Pharmaceutics. 2018;10:33.

    PubMed Central  Google Scholar 

  61. Parashar P, Rana P, Dwivedi M, Saraf SA. Dextrose modified bilosomes for peroral delivery: improved therapeutic potential and stability of silymarin in diethylnitrosamine-induced hepatic carcinoma in rats. J Liposome Res. 2019:1–13.

  62. Salehi B, Fokou PVT, Sharifi-Rad M, Zucca P, Pezzani R, Martins N, et al. The therapeutic potential of naringenin: a review of clinical trials. Pharmaceuticals. 2019;12:11.

    CAS  PubMed Central  Google Scholar 

  63. Zeng W, Jin L, Zhang F, Zhang C, Liang W. Naringenin as a potential immunomodulator in therapeutics. Pharmacol Res. 2018;135:122–6.

    CAS  PubMed  Google Scholar 

  64. Parashar P, Tripathi CB, Arya M, Kanoujia J, Singh M, Yadav A, et al. A facile approach for fabricating CD44-targeted delivery of hyaluronic acid-functionalized PCL nanoparticles in urethane-induced lung cancer: Bcl-2, MMP-9, caspase-9, and BAX as potential markers. Drug Deliv Transl Res. 2019;9:37–52.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubhini A. Saraf.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 473 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parashar, P., Pal, S., Dwivedi, M. et al. Augmented Therapeutic Efficacy of Naringenin Through Microemulsion-Loaded Sericin Gel Against UVB-Induced Photoaging. AAPS PharmSciTech 21, 215 (2020). https://doi.org/10.1208/s12249-020-01766-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01766-1

Key Words

Navigation