Skip to main content
Log in

Preparation, Physicochemical Characterisation and DoE Optimisation of a Spray-Dried Dry Emulsion Platform for Delivery of a Poorly Soluble Drug, Simvastatin

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In the presented study, insight into the development and optimisation of the dry emulsion formulation and spray drying process is provided. The aim was to facilitate the dissolution of the poorly soluble, highly lipophilic drug, simvastatin, by forming spray-dried dry emulsion particles having adequate powder flow properties, while assuring sufficient drug content. Simvastatin and a mixture of caprylic, capric triglyceride and 1-oleoyl-rac-glycerol were employed as a model drug and solubilising oils, respectively. A matrix of the dry emulsions was composed at a fixed ratio mixture of mannitol and HPMC. Tween 20 was used in low amounts as the primary emulsion stabiliser. To facilitate process optimisation, a DoE surface response design was used to study the influence of formulation and process parameters on the particle size distribution, powder bulk properties, emulsion reconstitution ability, drug stability and process yield of spray-dried products. Two-fluid nozzle geometry was identified, studied and confirmed to be important for most product critical quality attributes. Models obtained after the study showed acceptable coefficients of determination and provided good insight in the relationship governing the process and product characteristics. Five model optimised products showed adequate process yield, suitable particle size distribution, good reconstitution ability and improved dissolution profile, when compared to a non-lipid-based tablet and the pure drug. However, the obtained dry emulsion powders exhibited poor flow character according to the Carr index. The optimised product was further analysed with NMR during lipolysis to gain insight into the species formed during digestion and the kinetics of their formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sareen S, Mathew G, Joseph L. Improvement in solubility of poor water-soluble drugs by solid dispersion. Int J Pharm Investig. 2012;2:12–7. https://doi.org/10.4103/2230-973X.96921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sharma K, Kumar K, Mishra N. Nanoparticulate carrier system: a novel treatment approach for hyperlipidemia. Drug Delivery. 2016;23:684–99. https://doi.org/10.3109/10717544.2014.920937.

    Article  CAS  Google Scholar 

  3. Carroll CB, Wyse RKH. Simvastatin as a potential disease-modifying therapy for patients with Parkinson’s disease: rationale for clinical trial, and current progress. J Park Dis. 2017;7:545–68. https://doi.org/10.3233/JPD-171203.

    Article  CAS  Google Scholar 

  4. Shah SR, Werlang CA, Kasper FK, Mikos AG. Novel applications of statins for bone regeneration. Natl Sci Rev. 2015;2:85–99. https://doi.org/10.1093/nsr/nwu028.

    Article  CAS  PubMed  Google Scholar 

  5. Xu L, Dong X, Shen L, Li F, Jiang J, Cao R, et al. Simvastatin delivery via inhalation attenuates airway inflammation in a murine model of asthma. Int Immunopharmacol. 2012;12:556–64. https://doi.org/10.1016/j.intimp.2012.01.012.

    Article  CAS  Google Scholar 

  6. Yu X-B, Zhang H-N, Dai Y, Zhou Z-Y, Xu R, Hu L-F, et al. Simvastatin prevents and ameliorates depressive behaviors via neuroinflammatory regulation in mice. J Affect Disord. 2019;245:939–49. https://doi.org/10.1016/j.jad.2018.11.086.

    Article  CAS  Google Scholar 

  7. Fathi HA, Allam A, Elsabahy M, Fetih G, El-Badry M. Nanostructured lipid carriers for improved oral delivery and prolonged antihyperlipidemic effect of simvastatin. Colloids Surf B: Biointerfaces. 2018;162:236–45. https://doi.org/10.1016/j.colsurfb.2017.11.064.

    Article  CAS  PubMed  Google Scholar 

  8. Kong R, Zhu X, Meteleva ES, Chistyachenko YS, Suntsova LP, Polyakov NE, et al. Enhanced solubility and bioavailability of simvastatin by mechanochemically obtained complexes. Int J Pharm. 2017;534:108–18. https://doi.org/10.1016/j.ijpharm.2017.10.011.

    Article  CAS  Google Scholar 

  9. Jiang T, Han N, Zhao B, Xie Y, Wang S. Enhanced dissolution rate and oral bioavailability of simvastatin nanocrystal prepared by sonoprecipitation. Drug Dev Ind Pharm. 2012;38:1230–9. https://doi.org/10.3109/03639045.2011.645830.

    Article  CAS  PubMed  Google Scholar 

  10. Löbenberg R, Amidon GL. Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Eur J Pharm Biopharm. 2000;50:3–12.

    Article  Google Scholar 

  11. Wang X, Jia Z, Almoshari Y, Lele SM, Reinhardt RA, Wang D. Local application of pyrophosphorylated simvastatin prevents experimental periodontitis. Pharm Res. 2018;35:164. https://doi.org/10.1007/s11095-018-2444-z.

    Article  CAS  PubMed  Google Scholar 

  12. Górniak A, Karolewicz B, Żurawska-Płaksej E, Pluta J. Thermal, spectroscopic, and dissolution studies of the simvastatin–acetylsalicylic acid mixtures. J Therm Anal Calorim. 2013;111:2125–32. https://doi.org/10.1007/s10973-012-2641-7.

    Article  CAS  Google Scholar 

  13. Kong R, Zhu X, Meteleva ES, Dushkin AV, Su W. Physicochemical characteristics of the complexes of simvastatin and atorvastatin calcium with hydroxypropyl-β-cyclodextrin produced by mechanochemical activation. J Drug Deliv Sci Tec. 2018;46:436–45. https://doi.org/10.1016/j.jddst.2018.05.018.

    Article  CAS  Google Scholar 

  14. Pohlen M, Pirker L, Luštrik M, Dreu R. A redispersible dry emulsion system with simvastatin prepared via fluid bed layering as a means of dissolution enhancement of a lipophilic drug. Int J Pharm. 2018;549:325–34. https://doi.org/10.1016/j.ijpharm.2018.07.064.

    Article  CAS  PubMed  Google Scholar 

  15. Sharma P, Singh SK, Pandey NK, Rajesh SY, Bawa P, Kumar B, et al. Impact of solid carriers and spray drying on pre/post-compression properties, dissolution rate and bioavailability of solid self-nanoemulsifying drug delivery system loaded with simvastatin. Powder Technol. 2018;338:836–46. https://doi.org/10.1016/j.powtec.2018.07.092.

    Article  CAS  Google Scholar 

  16. Silva TD, Arantes VT, Resende JALC, Speziali NL, de Oliveira RB, Vianna-Soares CD. Preparation and characterization of solid dispersion of simvastatin. Drug Dev Ind Pharm. 2010;36:1348–55. https://doi.org/10.3109/03639041003801901.

    Article  CAS  PubMed  Google Scholar 

  17. Dening TJ, Rao S, Thomas N, Prestidge CA. Novel nanostructured solid materials for modulating oral drug delivery from solid-state lipid-based drug delivery systems. AAPS J. 2016;18:23–40. https://doi.org/10.1208/s12248-015-9824-7.

    Article  CAS  PubMed  Google Scholar 

  18. Tan A, Rao S, Prestidge CA. Transforming lipid-based oral drug delivery systems into solid dosage forms: an overview of solid carriers, physicochemical properties, and biopharmaceutical performance. Pharm Res. 2013;30:2993–3017. https://doi.org/10.1007/s11095-013-1107-3.

    Article  CAS  PubMed  Google Scholar 

  19. Joyce P, Dening TJ, Meola TR, Schultz HB, Holm R, Thomas N, et al. Solidification to improve the biopharmaceutical performance of SEDDS: opportunities and challenges. Adv Drug Deliv Rev. 2018a. https://doi.org/10.1016/j.addr.2018.11.006.

    Article  CAS  Google Scholar 

  20. Iyer V, Cayatte C, Marshall JD, Sun J, Schneider-Ohrum K, Maynard SK, et al. Feasibility of freeze-drying oil-in-water emulsion adjuvants and subunit proteins to enable single-vial vaccine drug products. J Pharm Sci. 2017;106:1490–8. https://doi.org/10.1016/j.xphs.2017.02.024.

    Article  CAS  Google Scholar 

  21. Mehanna MM, Alwattar JK, Elmaradny HA. Optimization, physicochemical characterization and in vivo assessment of spray dried emulsion: a step toward bioavailability augmentation and gastric toxicity minimization. Int J Pharm. 2015;496:766–79. https://doi.org/10.1016/j.ijpharm.2015.11.009.

    Article  CAS  PubMed  Google Scholar 

  22. Pongsamart K, Kleinebudde P, Puttipipatkhachorn S. Preparation of fenofibrate dry emulsion and dry suspension using octenyl succinic anhydride starch as emulsifying agent and solid carrier. Int J Pharm. 2016;498:347–54. https://doi.org/10.1016/j.ijpharm.2015.12.041.

    Article  CAS  PubMed  Google Scholar 

  23. Morais, AR, Alencar Édo N., Xavier Júnior, F.H., de Oliveira, C.M., Marcelino, H.R., Barratt, G., Fessi, H., do Egito, E.S., Elaissari, A., 2016. Freeze-drying of emulsified systems: a review. Int J Pharm 503, 102–114. https://doi.org/10.1016/j.ijpharm.2016.02.047.

    Article  CAS  Google Scholar 

  24. Šibanc, R., Kitak, T., Govedarica, B., Srčič, S., Dreu, R., 2013. Physical properties of pharmaceutical pellets. Chemical Engineering Science, 5th International Granulation Workshop 86, 50–60. https://doi.org/10.1016/j.ces.2012.04.037.

    Article  Google Scholar 

  25. Ziaee A, Albadarin AB, Padrela L, Femmer T, O’Reilly E, Walker G. Spray drying of pharmaceuticals and biopharmaceuticals: critical parameters and experimental process optimization approaches. Eur J Pharm Sci. 2019;127:300–18. https://doi.org/10.1016/j.ejps.2018.10.026.

    Article  CAS  PubMed  Google Scholar 

  26. Chavan RB, Rathi S, Jyothi VGSS, Shastri NR. Cellulose based polymers in development of amorphous solid dispersions. Asian J Pharm Sci. 2018. https://doi.org/10.1016/j.ajps.2018.09.003.

    Article  Google Scholar 

  27. Saluja V, Amorij J-P, Kapteyn JC, de Boer AH, Frijlink HW, Hinrichs WLJ. A comparison between spray drying and spray freeze drying to produce an influenza subunit vaccine powder for inhalation. J Control Release. 2010;144:127–33. https://doi.org/10.1016/j.jconrel.2010.02.025.

    Article  CAS  PubMed  Google Scholar 

  28. Van den Mooter G. The use of amorphous solid dispersions: a formulation strategy to overcome poor solubility and dissolution rate. Drug Discov Today Technol. 2012;9:e79–85. https://doi.org/10.1016/j.ddtec.2011.10.002.

    Article  CAS  Google Scholar 

  29. Whitby CP, Scarborough H, Ngothai Y. Drying oil-in-water Pickering emulsions to make redispersible powders. Adv Powder Technol. 2017;28:2940–6. https://doi.org/10.1016/j.apt.2017.09.001.

    Article  CAS  Google Scholar 

  30. Kumar S, Xu X, Gokhale R, Burgess DJ. Formulation parameters of crystalline nanosuspensions on spray drying processing: a DoE approach. Int J Pharm. 2014;464:34–45. https://doi.org/10.1016/j.ijpharm.2014.01.013.

    Article  CAS  PubMed  Google Scholar 

  31. Lionberger RA, Lee SL, Lee L, Raw A, Yu LX. Quality by design: concepts for ANDAs. AAPS J. 2008;10:268–76. https://doi.org/10.1208/s12248-008-9026-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nair A, Khunt D, Misra M. Application of quality by design for optimization of spray drying process used in drying of risperidone nanosuspension. Powder Technol. 2019;342:156–65. https://doi.org/10.1016/j.powtec.2018.09.096.

    Article  CAS  Google Scholar 

  33. Ziaee A, Albadarin AB, Padrela L, Faucher A, O’Reilly E, Walker G. Spray drying ternary amorphous solid dispersions of ibuprofen—an investigation into critical formulation and processing parameters. Eur J Pharm Biopharm. 2017;120:43–51. https://doi.org/10.1016/j.ejpb.2017.08.005.

    Article  CAS  PubMed  Google Scholar 

  34. Floury J, Desrumaux A, Axelos MAV, Legrand J. Degradation of methylcellulose during ultra-high pressure homogenisation. Food Hydrocoll. 2002;16:47–53. https://doi.org/10.1016/S0268-005X(01)00039-X.

    Article  CAS  Google Scholar 

  35. Yu JFS, Zakin JL, Patterson GK. Mechanical degradation of high molecular weight polymers in dilute solution. J Appl Polym Sci. 1979;23:2493–512. https://doi.org/10.1002/app.1979.070230826.

    Article  CAS  Google Scholar 

  36. Carr RL. Evaluating flow properties of solids. Chem Eng. 1965;18:163–8.

    Google Scholar 

  37. Jallo LJ, Ghoroi C, Gurumurthy L, Patel U, Davé RN. Improvement of flow and bulk density of pharmaceutical powders using surface modification. Int J Pharm. 2012;423:213–25. https://doi.org/10.1016/j.ijpharm.2011.12.012.

    Article  CAS  PubMed  Google Scholar 

  38. Stranzinger S, Faulhammer E, Calzolari V, Biserni S, Dreu R, Šibanc R, et al. The effect of material attributes and process parameters on the powder bed uniformity during a low-dose dosator capsule filling process. Int J Pharm. 2017;516:9–20. https://doi.org/10.1016/j.ijpharm.2016.11.010.

    Article  CAS  Google Scholar 

  39. Joyce P, Barnes TJ, Boyd BJ, Prestidge CA. Porous nanostructure controls kinetics, disposition and self-assembly structure of lipid digestion products. RSC Adv. 2016;6:78385–95. https://doi.org/10.1039/C6RA16028J.

    Article  CAS  Google Scholar 

  40. Joyce P, Gustafsson H, Prestidge CA. Enhancing the lipase-mediated bioaccessibility of omega-3 fatty acids by microencapsulation of fish oil droplets within porous silica particles. J Funct Foods. 2018b;47:491–502. https://doi.org/10.1016/j.jff.2018.06.015.

    Article  CAS  Google Scholar 

  41. Nieva-Echevarría B, Goicoechea E, Manzanos MJ, Guillén MD. A method based on 1H NMR spectral data useful to evaluate the hydrolysis level in complex lipid mixtures. Food Res Int. 2014;66:379–87. https://doi.org/10.1016/j.foodres.2014.09.031.

    Article  CAS  Google Scholar 

  42. Liu F, Ranmal S, Batchelor HK, Orlu-Gul M, Ernest TB, Thomas IW, et al. Patient-centred pharmaceutical design to improve acceptability of medicines: similarities and differences in paediatric and geriatric populations. Drugs. 2014;74:1871–89. https://doi.org/10.1007/s40265-014-0297-2.

    Article  CAS  Google Scholar 

  43. Nunn T, Williams J. Formulation of medicines for children. Br J Clin Pharmacol. 2005;59:674–6. https://doi.org/10.1111/j.1365-2125.2005.02410.x.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hosseini SF, Zandi M, Rezaei M, Farahmandghavi F. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydr Polym. 2013;95:50–6. https://doi.org/10.1016/j.carbpol.2013.02.031.

    Article  CAS  PubMed  Google Scholar 

  45. Jafari SM, Assadpoor E, He Y, Bhandari B. Encapsulation efficiency of food flavours and oils during spray drying. Dry Technol. 2008;26:816–35. https://doi.org/10.1080/07373930802135972.

    Article  Google Scholar 

  46. Pedersen TR, Faergeman O, Kastelein JJP, Olsson AG, Tikkanen MJ, Holme I, et al. High-dose atorvastatin vs usual-dose simvastatin for secondary prevention after myocardial infarction: the IDEAL study: a randomized controlled trial. JAMA. 2005;294:2437–45. https://doi.org/10.1001/jama.294.19.2437.

  47. Tarantino N, Santoro F, De Gennaro L, Correale M, Guastafierro F, Gaglione A, et al. Fenofibrate/simvastatin fixed-dose combination in the treatment of mixed dyslipidemia: safety, efficacy, and place in therapy. Vasc Health Risk Manag. 2017;13:29–41. https://doi.org/10.2147/VHRM.S95044.

    Article  Google Scholar 

  48. Dollo G, Le Corre P, Guérin A, Chevanne F, Burgot JL, Leverge R. Spray-dried redispersible oil-in-water emulsion to improve oral bioavailability of poorly soluble drugs. Eur J Pharm Sci. 2003;19:273–80. https://doi.org/10.1016/S0928-0987(03)00134-9.

    Article  CAS  PubMed  Google Scholar 

  49. Ge Z, Zhang X, Gan L, Gan Y. Redispersible, dry emulsion of lovastatin protects against intestinal metabolism and improves bioavailability. Acta Pharmacol Sin. 2008;29:990–7. https://doi.org/10.1111/j.1745-7254.2008.00825.x.

    Article  CAS  PubMed  Google Scholar 

  50. Jang D-J, Jeong EJ, Lee H-M, Kim B-C, Lim S-J, Kim C-K. Improvement of bioavailability and photostability of amlodipine using redispersible dry emulsion. Eur J Pharm Sci. 2006;28:405–11. https://doi.org/10.1016/j.ejps.2006.04.013.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang L, Xu C, Mao J, Wang W, Han H, Pu Y, et al. Formulation and characterization of novel dry suspension and dry emulsion of 20(S)-protopanaxadiol. AAPS PharmSciTech. 2019;20:275. https://doi.org/10.1208/s12249-019-1487-8.

  52. Crouter A, Briens L. The effect of moisture on the flowability of pharmaceutical excipients. AAPS PharmSciTech. 2013;15:65–74. https://doi.org/10.1208/s12249-013-0036-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mitra H, Pushpadass HA, Franklin MEE, Ambrose RPK, Ghoroi C, Battula SN. Influence of moisture content on the flow properties of basundi mix. Powder Technol. 2017;312:133–43. https://doi.org/10.1016/j.powtec.2017.02.039.

    Article  CAS  Google Scholar 

  54. Sun CC. Quantifying effects of moisture content on flow properties of microcrystalline cellulose using a ring shear tester. Powder Technol. 2016;289:104–8. https://doi.org/10.1016/j.powtec.2015.11.044.

    Article  CAS  Google Scholar 

  55. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25:999–1022. https://doi.org/10.1007/s11095-007-9475-1.

    Article  CAS  PubMed  Google Scholar 

  56. Fu X, Huck D, Makein L, Armstrong B, Willen U, Freeman T. Effect of particle shape and size on flow properties of lactose powders. Particuology 2012;10:203–8. https://doi.org/10.1016/j.partic.2011.11.003.

    Article  CAS  Google Scholar 

  57. Lu, H., Guo, X., Liu, Y., Gong, X., 2015. Effect of particle size on flow mode and flow characteristics of pulverized coal. KONA 32, 143–153. https://doi.org/10.14356/kona.2015002.

    Article  CAS  Google Scholar 

  58. Mills LA, Sinka IC. Effect of particle size and density on the die fill of powders. Eur J Pharm Biopharm. 2013;84:642–52. https://doi.org/10.1016/j.ejpb.2013.01.012.

    Article  CAS  PubMed  Google Scholar 

  59. Gaspar F, Vicente J, Neves F, Authelin J-R. Spray drying: scale-up and manufacturing. In: Shah N, Sandhu H, Choi DS, Chokshi H, Malick AW, editors. Amorphous solid dispersions: theory and practice, advances in delivery science and technology. New York, NY: Springer; 2014. p. 261–302. https://doi.org/10.1007/978-1-4939-1598-9_8.

    Chapter  Google Scholar 

  60. Lallbeeharry P, Tian Y, Fu N, Wu WD, Woo MW, Selomulya C, et al. Effects of ionic and nonionic surfactants on milk shell wettability during co-spray-drying of whole milk particles. J Dairy Sci. 2014;97:5303–14. https://doi.org/10.3168/jds.2013-7772.

    Article  CAS  Google Scholar 

  61. Kauppinen A, Broekhuis J, Grasmeijer N, Tonnis W, Ketolainen J, Frijlink HW, et al. Efficient production of solid dispersions by spray drying solutions of high solid content using a 3-fluid nozzle. Eur J Pharm Biopharm. 2018;123:50–8. https://doi.org/10.1016/j.ejpb.2017.11.009.

    Article  CAS  Google Scholar 

  62. Vinjamuri BP, Haware RV, Stagner WC. Inhalable ipratropium bromide particle engineering with multicriteria optimization. AAPS PharmSciTech. 2017;18:1925–35. https://doi.org/10.1208/s12249-016-0668-y.

    Article  CAS  PubMed  Google Scholar 

  63. Davis MT, Potter CB, Walker GM. Downstream processing of a ternary amorphous solid dispersion: the impacts of spray drying and hot melt extrusion on powder flow, compression and dissolution. Int J Pharm. 2018;544:242–53. https://doi.org/10.1016/j.ijpharm.2018.04.038.

    Article  CAS  PubMed  Google Scholar 

  64. Larsen AT, Ohlsson AG, Polentarutti B, Barker RA, Phillips AR, Abu-Rmaileh R, et al. Oral bioavailability of cinnarizine in dogs: relation to SNEDDS droplet size, drug solubility and in vitro precipitation. Eur J Pharm Sci. 2013;48:339–50. https://doi.org/10.1016/j.ejps.2012.11.004.

    Article  CAS  Google Scholar 

  65. Parthasarathi S, Muthukumar SP, Anandharamakrishnan C. The influence of droplet size on the stability, in vivo digestion, and oral bioavailability of vitamin E emulsions. Food Funct. 2016;7:2294–302. https://doi.org/10.1039/C5FO01517K.

    Article  CAS  PubMed  Google Scholar 

  66. Collier JW, Shah RB, Gupta A, Sayeed V, Habib MJ, Khan MA. Influence of formulation and processing factors on stability of levothyroxine sodium pentahydrate. AAPS PharmSciTech. 2010;11:818–25. https://doi.org/10.1208/s12249-010-9434-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Puschmann J, Herbig ME, Müller-Goymann CC. Influence of emulsifier concentration on partition behavior and chemical stability of betamethasone dipropionate in emulsion gels. Int J Pharm. 2019;562:105–12. https://doi.org/10.1016/j.ijpharm.2019.02.044.

    Article  CAS  PubMed  Google Scholar 

  68. Malenović A, Jančić-Stojanović B, Ivanović D, Medenica M. Forced degradation studies of simvastatin using microemulsion liquid chromatography. J Liq Chromatogr Relat Technol. 2010;33:536–47. https://doi.org/10.1080/10826070903574576.

    Article  CAS  Google Scholar 

  69. Hušák M, Kratochvíl B, Jegorov A, Brus J, Maixner J, Rohlíček J. Simvastatin: structure solution of two new low-temperature phases from synchrotron powder diffraction and ss-NMR. Struct Chem. 2010;21:511–8. https://doi.org/10.1007/s11224-009-9579-9.

    Article  CAS  Google Scholar 

  70. Simões RG, Bernardes CES, Joseph AM, Piedade MF, Kraus W, Emmerling F, et al. Polymorphism in simvastatin: twinning, disorder, and enantiotropic phase transitions. Mol Pharm. 2018;15:5349–60. https://doi.org/10.1021/acs.molpharmaceut.8b00818.

    Article  Google Scholar 

  71. Bolko Seljak K, Ilić IG, Gašperlin M, Zvonar Pobirk A. Self-microemulsifying tablets prepared by direct compression for improved resveratrol delivery. Int J Pharm. 2018;548:263–75. https://doi.org/10.1016/j.ijpharm.2018.06.065.

    Article  CAS  PubMed  Google Scholar 

  72. Vinarov Z, Tcholakova S, Damyanova B, Atanasov Y, Denkov ND, Stoyanov SD, et al. Effects of emulsifier charge and concentration on pancreatic lipolysis: 2. Interplay of emulsifiers and biles. Langmuir. 2012;28:12140–50. https://doi.org/10.1021/la301820w.

    Article  CAS  Google Scholar 

  73. Kalepu S, Manthina M, Padavala V. Oral lipid-based drug delivery systems—an overview. Acta Pharm Sin B. 2013;3:361–72. https://doi.org/10.1016/j.apsb.2013.10.001.

    Article  Google Scholar 

  74. Salentinig S, Yepuri NR, Hawley A, Boyd BJ, Gilbert E, Darwish TA. Selective deuteration for molecular insights into the digestion of medium chain triglycerides. Chem Phys Lipids. 2015;190:43–50. https://doi.org/10.1016/j.chemphyslip.2015.06.007.

    Article  CAS  PubMed  Google Scholar 

  75. Ilbäck N-G, Nyblom M, Carlfors J, Fagerlund-Aspenström B, Tavelin S, Glynn AW. Do surface-active lipids in food increase the intestinal permeability to toxic substances and allergenic agents? Med Hypotheses. 2004;63:724–30. https://doi.org/10.1016/j.mehy.2003.10.037.

    Article  CAS  PubMed  Google Scholar 

  76. Onuki Y, Morishita M, Takayama K, Tokiwa S, Chiba Y, Isowa K, et al. In vivo effects of highly purified docosahexaenoic acid on rectal insulin absorption. Int J Pharm. 2000;198:147–56.

    Article  CAS  Google Scholar 

  77. Bolhuis GK, Zuurman K, te Wierik GHP. Improvement of dissolution of poorly soluble drugs by solid deposition on a super disintegrant. II The choice of super disintegrants and effect of granulation. Eur J Pharm Sci. 1997;5:63–9. https://doi.org/10.1016/S0928-0987(96)00256-4.

    Article  CAS  Google Scholar 

  78. Margulis-Goshen K, Magdassi S. Formation of simvastatin nanoparticles from microemulsion. Nanomedicine. 2009;5:274–81. https://doi.org/10.1016/j.nano.2008.11.004.

    Article  PubMed  Google Scholar 

  79. Fu XC, Wang GP, Liang WQ, Chow MSS. Prediction of drug release from HPMC matrices: effect of physicochemical properties of drug and polymer concentration. J Control Release. 2004;95:209–16. https://doi.org/10.1016/j.jconrel.2003.11.007.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Faculty of Pharmacy, University of Ljubljana (UL), Slovenia, for supporting this study and the University of South Australia (UNISA) for accepting the PhD student and for the possibility to conduct lipolysis studies.

Funding

Financial support for the research project was provided by the Slovenian Research Agency under contract number P1-0189.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rok Dreu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pohlen, M., Lavrič, Z., Prestidge, C. et al. Preparation, Physicochemical Characterisation and DoE Optimisation of a Spray-Dried Dry Emulsion Platform for Delivery of a Poorly Soluble Drug, Simvastatin. AAPS PharmSciTech 21, 119 (2020). https://doi.org/10.1208/s12249-020-01651-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-01651-x

KEY WORDS

Navigation