Skip to main content

Advertisement

Log in

Budesonide-Loaded Eudragit S 100 Nanocapsules for the Treatment of Acetic Acid-Induced Colitis in Animal Model

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Nanoparticles for colon-drug delivery were designed and evaluated to solve many discrepancy issues as insufficient drug amount at diseased regions, high adverse effects of released drugs, and unintentionally premature drug release to noninflamed gastrointestinal regions. Herein, the prepared budesonide-loaded Eudragit S 100/Capryol 90 nanocapsules for the treatment of inflammatory bowel disease. Nanocapsules were prepared efficiently by nanoprecipitation technique and composed mainly of the pH-sensitive Eudragit S 100 polymeric coat with a semisynthetic Capryol 90 oily core. Full 31 × 21 factorial design was applied to obtain optimized nanocapsules. Optimal nanocapsules showed mean particle size of 171 nm with lower polydispersity index indicating the production of monodispersed system and negative zeta-potential of − 37.6 mV. Optimized nanocapsules showed high encapsulation efficiency of 83.4% with lower initial rapid release of 10% for first 2 h and higher rapid cumulative release of 72% after 6 h. The therapeutic activity of the prepared budesonide-loaded nanocapsules was evaluated using a rat colitis model. Disease activity score, macroscopical examination, blood glucose level, and histopathological assessment showed marked improvements over that free drug suspension. Obtained results demonstrate that the budesonide-loaded Eudragit S 100 nanocapsules are an effective colon-targeting nanosystem for the treatment of inflammatory bowel disease. Capryol 90 was found to be a successful, and even preferred, alternative to benzyl benzoate, which is commonly employed as the oil core of such nanocapsules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rathbone MJ. In: Rathbone MJ, editor. Controlled release in Oral drug delivery, vol. 2011. New York: Springer; 2013. p. 415.

    Google Scholar 

  2. Philip AK, Philip B. Colon targeted drug delivery systems: a review on primary and novel approaches. Oman Med J. 2010;25(2):79–87.

    PubMed  PubMed Central  Google Scholar 

  3. Coco R, Plapied L, Pourcelle V, Jerome C, Brayden DJ, Schneider YJ, et al. Drug delivery to inflamed colon by nanoparticles: comparison of different strategies. Int J Pharm. 2013;440(1):3–12.

    CAS  PubMed  Google Scholar 

  4. Carter MJ, Lobo AJ, Travis SP. Guidelines for the management of inflammatory bowel disease in adults. Gut. 2004;53(suppl 5):v1–v16.

    PubMed  PubMed Central  Google Scholar 

  5. Hanauer SB, Robinson M, Pruitt R, Lazenby AJ, Persson T, Nilsson LG, et al. Budesonide enema for the treatment of active, distal ulcerative colitis and proctitis: a dose-ranging study. Gastroenterology. 1998;115(3):525–32.

    CAS  PubMed  Google Scholar 

  6. Hua S, Marks E, Schneider JJ, Keely S. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomed : Nanotechnol Biol Med. 2015;11(5):1117–32.

    CAS  Google Scholar 

  7. Walker BR, Colledge NR. Davidson's principles and practice of medicine e-book: With STUDENT CONSULT Online Access, 22th edition. Elsevier Health Sciences; 2013 Dec 6.

  8. Wiener C, Fauci AS, Braunwald E, Kasper DL, Hauser SL, Longo DL, Jameson JL, Loscalzo J. Harrison's principles of internal medicine, selfassessment and board review. McGraw Hill Professional; 2008 Jul 20.

  9. Klotz U, Schwab M. Topical delivery of therapeutic agents in the treatment of inflammatory bowel disease. Adv Drug Deliv Rev. 2005;57(2):267–79.

    CAS  PubMed  Google Scholar 

  10. Kornbluth A, Sachar DB. Ulcerative colitis practice guidelines in adults (update): American College of Gastroenterology, practice parameters committee. Am J Gastroenterol. 2004;99(7):1371–85.

    PubMed  Google Scholar 

  11. Basit AW, McConnell EL. Drug delivery to the Colon. In: Wilson CG, Crowley PJ, editors. Controlled release in Oral drug delivery. Boston: Springer US; 2011. p. 385–99.

    Google Scholar 

  12. Sweetman SC. Martindale: the complete drug reference, 36th edition. London: Pharmaceutical press; 2009 Jun 29.

  13. Ulbrich W, Lamprecht A. Targeted drug-delivery approaches by nanoparticulate carriers in the therapy of inflammatory diseases. J R Soc Interface. 2009 Nov 25;7(suppl_1):S55-66.

  14. Mahajan N, Sakarkar D, Manmode A, Pathak V, Ingole R, Dewade D. Biodegradable nanoparticles for targeted delivery in treatment of ulcerative colitis. Adv Sci Lett. 2011;4(2):349–56.

    CAS  Google Scholar 

  15. Xiao B, Merlin D. Oral colon-specific therapeutic approaches toward treatment of inflammatory bowel disease. Expert Opin Drug Deliv. 2012;9(11):1393–407.

    CAS  PubMed  Google Scholar 

  16. Collnot E-M, Ali H, Lehr C-M. Nano-and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. J Control Release. 2012;161(2):235–46.

    CAS  PubMed  Google Scholar 

  17. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55(1):R1–4.

    CAS  Google Scholar 

  18. Ahmed N, Mora-Huertas C, Jaafar-Maalej C, Fessi H, Elaissari A. Polymeric drug delivery systems for encapsulating hydrophobic drugs. Drug delivery strategies for poorly water-soluble drugs. West Sussex: Wiley; 2012. p. 151–97.

    Google Scholar 

  19. Asfour MH, Mohsen AM. Formulation and evaluation of pH-sensitive rutin nanospheres against colon carcinoma using HCT-116 cell line. J Adv Res. 2018;9:17–26.

    CAS  PubMed  Google Scholar 

  20. Couvreur P, Barratt G, Fattal E, Vauthier C. Nanocapsule technology: a review. Crit Rev Ther Drug Carrier Syst. 2002;19(2):99–134.

    CAS  PubMed  Google Scholar 

  21. Blouza IL, Charcosset C, Sfar S, Fessi H. Preparation and characterization of spironolactone-loaded nanocapsules for paediatric use. Int J Pharm. 2006;325(1):124–31.

    Google Scholar 

  22. Katzer TCP, Bernardi A, Pohlmann A, Guterres SS, Ruver Beck RC. Prednisolone-loaded nanocapsules as ocular drug delivery system: development, in vitro drug release and eye toxicity. J Microencapsul. 2014;31(6):519–28.

    CAS  PubMed  Google Scholar 

  23. Kshirsagar SJ, Bhalekar MR, Patel JN, Mohapatra SK, Shewale NS. Preparation and characterization of nanocapsules for colon-targeted drug delivery system. Pharm Dev Technol. 2012;17(5):607–13.

    CAS  PubMed  Google Scholar 

  24. Cruz L, Soares LU, Dalla Costa T, Mezzalira G, da Silveira NP, Guterres SS, et al. Diffusion and mathematical modeling of release profiles from nanocarriers. Int J Pharm. 2006;313(1):198–205.

    CAS  PubMed  Google Scholar 

  25. Yallapu MM, Gupta BK, Jaggi M, Chauhan SC. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci. 2010;351(1):19–29.

    CAS  PubMed  Google Scholar 

  26. Mora-Huertas C, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm. 2010;385(1):113–42.

    CAS  PubMed  Google Scholar 

  27. Makhlof A, Tozuka Y, Takeuchi H. pH-sensitive nanospheres for colon-specific drug delivery in experimentally induced colitis rat model. Eur J Pharm Biopharm. 2009;72(1):1–8.

    CAS  PubMed  Google Scholar 

  28. Naeem M, Choi M, Cao J, Lee Y, Ikram M, Yoon S, et al. Colon-targeted delivery of budesonide using dual pH-and time-dependent polymeric nanoparticles for colitis therapy. Drug Des Devel Ther. 2015;9:3789.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Vandamme TF, Lenourry A, Charrueau C, Chaumeil JC. The use of polysaccharides to target drugs to the colon. Carbohydr Polym. 2002;48(3):219–31.

    CAS  Google Scholar 

  30. Akl MA, Kartal-Hodzic A, Oksanen T, Ismael HR, Afouna MM, Yliperttula M, et al. Factorial design formulation optimization and in vitro characterization of curcumin-loaded PLGA nanoparticles for colon delivery. J Drug Deliv Sci Technol. 2016;32(Part A):10–20.

    CAS  Google Scholar 

  31. Santos SS, Lorenzoni A, Ferreira LM, Mattiazzi J, Adams AI, Denardi LB, et al. Clotrimazole-loaded Eudragit® RS100 nanocapsules: preparation, characterization and in vitro evaluation of antifungal activity against Candida species. J Mater Sci. 2013;33(3):1389–94.

    CAS  Google Scholar 

  32. Varshosaz J, Emami J, Fassihi A, Tavakoli N, Minaiyan M, Ahmadi F, et al. Effectiveness of budesonide-succinate-dextran conjugate as a novel prodrug of budesonide against acetic acid-induced colitis in rats. Int J Color Dis. 2010;25(10):1159–65.

    Google Scholar 

  33. Lamprecht A, Schäfer U, Lehr C-M. Size-dependent bioadhesion of micro-and nanoparticulate carriers to the inflamed colonic mucosa. Pharm Res. 2001;18(6):788–93.

    CAS  PubMed  Google Scholar 

  34. Beloqui A, Coco R, Alhouayek M, Solinís MÁ, Rodríguez-Gascón A, Muccioli GG, et al. Budesonide-loaded nanostructured lipid carriers reduce inflammation in murine DSS-induced colitis. Int J Pharm. 2013;454(2):775–83.

    CAS  PubMed  Google Scholar 

  35. Aslan A, Temiz M, Atik E, Polat G, Sahinler N, Besirov E, et al. Effectiveness of mesalamine and propolis in experimental colitis. Adv Ther. 2007;24(5):1085–97.

    PubMed  Google Scholar 

  36. Gorgulu S, Yagci G, Kaymakcioglu N, Özkara M, Kurt B, Ozcan A, et al. Hyperbaric oxygen enhances the efficiency of 5-aminosalicylic acid in acetic acid–induced colitis in rats. Dig Dis Sci. 2006;51(3):480–7.

    CAS  PubMed  Google Scholar 

  37. Dai C, Zheng C-Q, Meng F-j, Zhou Z, Sang L-x, Jiang M. VSL# 3 probiotics exerts the anti-inflammatory activity via PI3k/Akt and NF-κB pathway in rat model of DSS-induced colitis. Mol Cell Biochem. 2013;374(1–2):1–11.

    CAS  PubMed  Google Scholar 

  38. Yue G, Sun FF, Dunn C, Yin K, Wong P. The 21-aminosteroid tirilazad mesylate can ameliorate inflammatory bowel disease in rats. J Pharmacol Exp Ther. 1996;276(1):265–70.

    CAS  PubMed  Google Scholar 

  39. Thiesen A, Wild G, Tappenden K, Drozdowski L, Keelan M, Thomson B, et al. The locally acting glucocorticosteroid budesonide enhances intestinal sugar uptake following intestinal resection in rats. Gut. 2003;52(2):252–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. De Lima LS, Araujo MDM, Quináia SP, Migliorine DW, Garcia JR. Adsorption modeling of Cr, cd and cu on activated carbon of different origins by using fractional factorial design. J Chem Eng J. 2011;166(3):881–9.

    Google Scholar 

  41. Chauhan B, Gupta R. Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp. RGR-14. J Process Biochem. 2004;39(12):2115–22.

    CAS  Google Scholar 

  42. Kaushik R, Saran S, Isar J, Saxena R. Statistical optimization of medium components and growth conditions by response surface methodology to enhance lipase production by Aspergillus carneus. J Mol Catal B Enzym. 2006;40(3–4):121–6.

    CAS  Google Scholar 

  43. Annadurai G, Ling LY, Lee J-F. Statistical optimization of medium components and growth conditions by response surface methodology to enhance phenol degradation by Pseudomonas putida. J Hazard Mater. 2008;151(1):171–8.

    CAS  PubMed  Google Scholar 

  44. Bendas ER, Abdelbary AA. Instantaneous enteric nano-encapsulation of omeprazole: pharmaceutical and pharmacological evaluation. Int J Pharm. 2014;468(1–2):97–104.

    CAS  PubMed  Google Scholar 

  45. Singh G, Pai RS, Devi VK. Optimization of pellets containing solid dispersion prepared by extrusion/spheronization using central composite design and desirability function. J Young Pharm. 2012;4(3):146–56.

    PubMed  PubMed Central  Google Scholar 

  46. Barzegar-Jalali M, Adibkia K, Valizadeh H, Shadbad MRS, Nokhodchi A, Omidi Y, et al. Kinetic analysis of drug release from nanoparticles. J Pharm Pharm Sci. 2008;11(1):167–77.

    CAS  PubMed  Google Scholar 

  47. Azeem A, Rizwan M, Ahmad FJ, Iqbal Z, Khar RK, Aqil M, et al. Nanoemulsion components screening and selection: a technical note. AAPS PharmSciTech. 2009;10(1):69–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Dumanli I. Mechanistic studies to elucidate the role of lipid vehicles on solubility, formulation and bioavailability of poorly soluble compounds. [PhD]. USA: University of Rhode Island; 2002.

    Google Scholar 

  49. Bandyopadhyay S, Katare O, Singh B. Optimized self nano-emulsifying systems of ezetimibe with enhanced bioavailability potential using long chain and medium chain triglycerides. Colloids Surf B: Biointerfaces. 2012;100:50–61.

    CAS  PubMed  Google Scholar 

  50. Flores FC, Ribeiro RF, Ourique AF, Rolim CMB, Silva CB, Pohlmann AR, et al. Nanostructured systems containing an essential oil: protection against volatilization. Química Nova. 2011;34(6):968–72.

    CAS  Google Scholar 

  51. Dalençon F, Amjaud Y, Lafforgue C, Derouin F, Fessi H. Atovaquone and rifabutine-loaded nanocapsules: formulation studies. Int J Pharm. 1997;153(1):127–30.

    Google Scholar 

  52. Guterres S, Fessi H, Barratt G, Devissaguet J-P, Puisieux F. Poly (DL-lactide) nanocapsules containing diclofenac: I. formulation and stability study. Int J Pharm. 1995;113(1):57–63.

    CAS  Google Scholar 

  53. Dwivedi P, Karumbaiah KM, Das R. Nano-size polymers via precipitation of polymer solutions. In: Fakirov S, editor. Nano-size polymers: preparation, properties, applications. Cham: Springer International Publishing; 2016. p. 251–82.

    Google Scholar 

  54. Sharma N, Madan P, Lin S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: a co-surfactant study. Asian J Pharm Sci. 2016;11(3):404–16.

    Google Scholar 

  55. Mora-Huertas CE, Garrigues O, Fessi H, Elaissari A. Nanocapsules prepared via nanoprecipitation and emulsification–diffusion methods: comparative study. Eur J Pharm Biopharm. 2012;80(1):235–9.

    CAS  PubMed  Google Scholar 

  56. El-Kamel A, Sokar M, Al Gamal S, Naggar V. Preparation and evaluation of ketoprofen floating oral delivery system1. Int J Pharm. 2001;220(1–2):13–21.

    CAS  PubMed  Google Scholar 

  57. Calvo P, Vila-Jato JL, Alonso MJ. Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers. Int J Pharm. 1997;153(1):41–50.

    CAS  Google Scholar 

  58. Calvo P, Vila-Jato JL, Alonso MJ. Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules, and nanoemulsions, as ocular drug carriers. J Pharm Sci. 1996;85(5):530–6.

    CAS  PubMed  Google Scholar 

  59. Schaffazick SR, Pohlmann AR, Dalla-Costa T, Guterres SIS. Freeze-drying polymeric colloidal suspensions: nanocapsules, nanospheres and nanodispersion. A comparative study. Eur J Pharm Biopharm. 2003;56(3):501–5.

    CAS  PubMed  Google Scholar 

  60. Asghar LFA, Chandran S. Design and evaluation of matrix base with sigmoidal release profile for colon-specific delivery using a combination of Eudragit and non-ionic cellulose ether polymers. J Drug Deliv Transl Res. 2011;1(2):132–46.

    CAS  Google Scholar 

  61. Ran ZH, Chen C, Xiao SD. Epigallocatechin-3-gallate ameliorates rats colitis induced by acetic acid. J Biomed Pharmacother. 2008;62(3):189–96.

    CAS  Google Scholar 

Download references

Acknowledgments

Authors thank MUP (Egypt), Gattefosé (France), Cremer Oleo division (Germany), and Evonik (Germany) for generously providing gift samples. We would to greatly thank DR. Mina Ezzat for his help in the part of histopathological examination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milad Reda Qelliny.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qelliny, M.R., Aly, U.F., Elgarhy, O.H. et al. Budesonide-Loaded Eudragit S 100 Nanocapsules for the Treatment of Acetic Acid-Induced Colitis in Animal Model. AAPS PharmSciTech 20, 237 (2019). https://doi.org/10.1208/s12249-019-1453-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1453-5

KEY WORDS

Navigation