Skip to main content

Advertisement

Log in

Chitosan-Based Drug Delivery Systems for Optimization of Photodynamic Therapy: a Review

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Drug delivery systems (DDS) can be designed to enrich the pharmacological and therapeutic properties of several drugs. Many of the initial obstacles that impeded the clinical applications of conventional DDS have been overcome with nanotechnology-based DDS, especially those formed by chitosan (CS). CS is a linear polysaccharide obtained by the deacetylation of chitin, which has potential properties such as biocompatibility, hydrophilicity, biodegradability, non-toxicity, high bioavailability, simplicity of modification, aqueous solubility, and excellent chemical resistance. Furthermore, CS can prepare several DDS as films, gels, nanoparticles, and microparticles to improve delivery of drugs, such as photosensitizers (PS). Thus, CS-based DDS are broadly investigated for photodynamic therapy (PDT) of cancer and fungal and bacterial diseases. In PDT, a PS is activated by light of a specific wavelength, which provokes selective damage to the target tissue and its surrounding vasculature, but most PS have low water solubility and cutaneous photosensitivity impairing the clinical use of PDT. Based on this, the application of nanotechnology using chitosan-based DDS in PDT may offer great possibilities in the treatment of diseases. Therefore, this review presents numerous applications of chitosan-based DDS in order to improve the PDT for cancer and fungal and bacterial diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. I

Similar content being viewed by others

References

  1. Safari J, Zarnegar Z. Advanced drug delivery systems: nanotechnology of health design a review. J Saudi Chem Soc. 2014;18:85–99.

    CAS  Google Scholar 

  2. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303:1818–22.

    CAS  PubMed  Google Scholar 

  3. Ita K. Transdermal delivery of drugs with microneedles—potential and challenges. Pharmaceutics. 2015;7:90–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Suri S, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol. 2007;2:16–22.

    PubMed  PubMed Central  Google Scholar 

  5. Tiwari G, Tiwari R, SriwastawavB BL, Pandey S, Pandey P, Bannerjee SK. Drug delivery systems: an updated review. Int J Pharm Investig. 2012;2:2–11.

    PubMed  PubMed Central  Google Scholar 

  6. Gelperina S, Kisich K, Iseman MD, Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med. 2005;172:1487–90.

    PubMed  PubMed Central  Google Scholar 

  7. Bhagwat RR, Vaidhya IS. Novel drug delivery systems: an overview. Int J Pharm Sci Rev Res. 2013;4:970–82.

    CAS  Google Scholar 

  8. Calixto G, Duque C, Aida KL, Santos VR, Massunari L, Chorilli M. Development and characterization of p1025-loaded bioadhesive liquid-crystalline system for the prevention of Streptococcus mutans biofilms. Int J Nanomedicine. 2018;13:31–41.

    CAS  PubMed  Google Scholar 

  9. Victorelli F, Calixto G, Ramos MAS, Bauab TM, Chorilli M. Metronidazole-loaded polyethyleneimine and chitosan-based liquid crystalline system for treatment of staphylococcal skin infections. J Biomed Nanotechnol. 2018;14:227–38.

    CAS  PubMed  Google Scholar 

  10. Calixto G, Victorelli F, Dovigo L, Chorilli M. Polyethyleneimine and chitosan polymer-based mucoadhesive liquid crystalline systems intended for buccal drug delivery. AAPS PharmSciTech. 2018;19:820–36.

    CAS  PubMed  Google Scholar 

  11. Frade ML, Annunzio SR, Calixto G, Victorelli F, Chorilli M, Fontana CR. Assessment of chitosan-based hydrogel and photodynamic inactivation against Propionibacterium acnes. Molecules. 2018;23:473.

    PubMed Central  Google Scholar 

  12. Aida KL, Kreling PF, Caiaffa KS, Calixto G, Chorilli M, Spolidorio DMP, et al. Antimicrobial peptide-loaded liquid crystalline precursor bioadhesive system for the prevention of dental caries. Int J Nanomedicine. 2018;13:3081–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rodero CF, Calixto G, Santos KC, Sato MR, Ramos MAS, Miro MS, et al. Curcumin-loaded liquid-crystalline systems for controlled drug release and improved treatment of vulvovaginal candidiasis. Mol Pharm. 2018;15:4491–504.

    CAS  PubMed  Google Scholar 

  14. Ramos MAS, Calixto G, Toledo LG, Bonifacio BV, Santos LC, Chorilli M, et al. Liquid crystal precursor mucoadhesive system as a strategy to improve the prophylactic action of Syngonanthus nitens (Bong.) Ruhland against infection by Candida krusei. Int J Nanomedicine. 2015;10:7455–66.

    CAS  Google Scholar 

  15. Salmazi R, Calixto G, Bernegossi J, Ramos MAS, Bauab TM, Chorilli M. A curcumin-loaded liquid crystal precursor mucoadhesive system for the treatment of vaginal candidiasis. Int J Nanomedicine. 2015;10:4815–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ramos MAS, Toledo LG, Calixto G, Bonifacio BV, Araujo MGF, Santos LC, et al. Syngonanthus nitens Bong. (Rhul.)-loaded nanostructured system for vulvovaginal candidiasis treatment. Int J Mol Sci. 2016;17:1.

    Google Scholar 

  17. Chytil P, Koziolová E, Etrych T, Ulbrich K. HPMA copolymer–drug conjugates with controlled tumor-specific drug release. Macromol Biosci. 2018;18:1–15.

    Google Scholar 

  18. Abdelaziz HM, Gaber M, Abd-Elwakil MM, Mabrouk MT, Elgohary MM, Kamel NM, et al. Inhalable particulate drug delivery systems for lung cancer therapy: nanoparticles, microparticles, nanocomposites and nanoaggregates. J Control Release. 2018;269:374–92.

    CAS  PubMed  Google Scholar 

  19. Gupta S, Kesarla R, Omri A. Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. ISRN Pharm. 2013;2013:1–16.

    Google Scholar 

  20. Coelho JF, Ferreira PC, Alves P, Cordeiro R, Fonseca AC, Góis JR, et al. Drug delivery systems: advanced technologies potentially applicable in personalized treatments. EPMA J. 2010;1:164–209.

    PubMed  PubMed Central  Google Scholar 

  21. Peng H, Huang Q, Yue H, Li Y, Wu M, Liu W, et al. The antitumor effect of cisplatin-loaded thermosensitive chitosan hydrogel combined with radiotherapy on nasopharyngeal carcinoma. Int J Pharm. 2019;556:97–105.

    CAS  PubMed  Google Scholar 

  22. Martínez-Martínez M, Rodríguez-Berna G, Bermejo M, Gonzalez-Alvarez I, Gonzalez-Alvarez M, Merino V. Covalently crosslinked organophosphorous derivatives-chitosan hydrogel as a drug delivery system for oral administration of camptothecin. Eur J Pharm Biopharm. 2019. https://doi.org/10.1016/j.ejpb.2019.01.009.

    PubMed  Google Scholar 

  23. Riaz Rajoka MS, Zhao L, Mehwish HM, Wu Y, Mahmood S. Chitosan and its derivatives: synthesis, biotechnological applications, and future challenges. Appl Microbiol Biotechnol. 2019. https://doi.org/10.1007/s00253-018-9550-z.

    CAS  PubMed  Google Scholar 

  24. TiyaboonchaI W. Chitosan nanoparticles: a promising system for drug delivery. NUJS. 2013;11:51–66.

    Google Scholar 

  25. Ueno H, Mori T, Fujinaga T. Topical formulations and wound healing applications of chitosan. Adv Drug Deliv Rev. 2001;52:105–15.

    CAS  PubMed  Google Scholar 

  26. Wang XH, Li DP, Wang WJ, Feng QL, Cui FZ, Xu YX, et al. Crosslinked collagen/chitosan matrix for artificial livers. Biomaterials. 2003;24:3213–20.

    CAS  PubMed  Google Scholar 

  27. Tsai M, Chen R, Bai S, Chen W. The storage stability of chitosan/tripolyphosphate nanoparticles in a phosphate buffer. Carbohydr Polym. 2011;84:756–61.

    CAS  Google Scholar 

  28. Shimono N, Takatori T, Ueda M, Mori M, Higashi Y, Nakamura Y. Chitosan dispersed system for colon-specific drug delivery. Int J Pharm. 2002;245:45–54.

    CAS  PubMed  Google Scholar 

  29. Agnihotri AS, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J Control Release. 2004;100:5–28.

    CAS  PubMed  Google Scholar 

  30. Bernkop-Schnürch A, Dünnhaupt S. Chitosan-based drug delivery systems. Eur J Pharm Biopharm. 2012;81:463–9.

    PubMed  Google Scholar 

  31. Dasha M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci. 2011;36:981–1014.

    Google Scholar 

  32. Schipper NG, Olsson S, Hoogstraate JA, deBoer AG, Vårum KM, Artursson P. Chitosans as absorption enhancers for poorly absorbable drugs 2: mechanism of absorption enhancement. Pharm Res. 1997;14:923–9.

    CAS  PubMed  Google Scholar 

  33. Illum L, Jabbal-Gill I, Hinchcliffe M, Fisher AN, Davis SS. Chitosan as a novel nasal delivery system for vaccines. Adv Drug Deliv Rev. 2001;51:81–96.

    CAS  PubMed  Google Scholar 

  34. Prabaharan M. Chitosan derivatives as promising materials for controlled drug delivery. J Biomater Appl. 2008;23:5–36.

    CAS  PubMed  Google Scholar 

  35. Prabaharan M, Mano JF. Hydroxypropyl chitosan bearing β-cyclodextrin cavities: synthesis and slow release of its inclusion complex with a model hydrophobic drug. Macromol Biosci. 2005;5:965–73.

    CAS  PubMed  Google Scholar 

  36. Nagpal K, Singh SK, Mishra DN. Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull. 2010;58:1423–30.

    CAS  PubMed  Google Scholar 

  37. Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev. 2010;62:3–11.

    CAS  PubMed  Google Scholar 

  38. Park JH, Saravanakumar G, Kim K, Kwon IC. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Deliv Rev. 2010;62:28–41.

    CAS  PubMed  Google Scholar 

  39. Chatelet C, Damour O, Domard A. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials. 2001;22:261–8.

    CAS  PubMed  Google Scholar 

  40. Kumar MNVR. A review of chitin and chitosan applications. React Funct Polym. 2000;46:1–27.

    CAS  Google Scholar 

  41. Kumar MNVR, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ. Chitosan chemistry and pharmaceutical perspectives. Chem Rev. 2004;104:6017–84.

    PubMed  Google Scholar 

  42. Koide SS. Chitin-chitosan: properties, benefits and risks. Nutr Res. 1998;18:1091–101.

    CAS  Google Scholar 

  43. Fontana CR, dos Santos Junior DS, Bosco JM, Spolidorio DM, Rosemary ACM. Evaluation of chitosan gel as antibiotic and photosensitizer delivery. Drug Deliv. 2008;15:417–22.

    CAS  PubMed  Google Scholar 

  44. de Freitas LM, Soares CP, Fontana CR. Synergistic effect of photodynamic therapy and cisplatin: a novel approach for cervical cancer. J Photochem Photobiol B. 2014;140:365–73.

    PubMed  Google Scholar 

  45. Fernandes SRG, Fernandes R, Sarmento B, Pereira PMR, Tomé JPC. Photoimmunoconjugates: novel synthetic strategies to target and treat cancer by photodynamic therapy. Org Biomol Chem. 2019. https://doi.org/10.1039/c8ob02902d.

    CAS  Google Scholar 

  46. Ronqui MR, Coletti FA, Starck TM, de Freitas LM, Miranda ET, Fontana CR. Synergistic antimicrobial effect of photodynamic therapy and ciprofloxacin. J Photochem Photobiol B. 2016;158:122–9.

    CAS  PubMed  Google Scholar 

  47. Sharma M, Dev SK, Kumar M, Shukla AK. Microspheres as suitable drug carrier in sustained release drug delivery: an overview. Asian J Pharm Pharmacol. 2018;4:102–8.

    CAS  Google Scholar 

  48. Kumar MNVR. Nano and microparticles as controlled drug delivery devices. J Pharm Pharm Sci. 2000;3:234–58.

    Google Scholar 

  49. Vasir JK, Tambwekar K, Garg S. Bioadhesive microspheres as a controlled drug delivery system. Int J Pharm. 2003;255:13–32.

    CAS  PubMed  Google Scholar 

  50. Min Q, Liu J, Li J, Wan Y, Wu J. Chitosan-polylactide/hyaluronic acid complex microspheres as carriers for controlled release of bioactive transforming growth factor-β1. Pharmaceutics. 2018;10:239.

    PubMed Central  Google Scholar 

  51. dos Santos B, Maciel M, Tavares AA, de Araújo Fernandes CQB, de Sousa WB, Lia Fook M, et al. Synthesis and preparation of chitosan/clay microspheres: effect of process parameters and clay type. Materials. 2018;11:2523.

    Google Scholar 

  52. Galindo-Rodríguez SA, Puel F, Briançon S, Allémann E, Doelker E, Fessi H. Comparative scale-up of three methods for producing ibuprofen-loaded nanoparticles. Eur J Pharm Sci. 2005;25:357–67.

    PubMed  Google Scholar 

  53. Huynh NT, Passirani C, Saulnier P, Benoit JP. Lipid nanocapsules: a new platform for nanomedicine. Int J Pharm. 2009;379:201–9.

    CAS  Google Scholar 

  54. de Freitas LM, Calixto GMF, Chorilli M, Giusti JSM, Bagnato VS, Soukos NS, et al. Polymeric nanoparticle-based photodynamic therapy for chronic periodontitis in vivo. Int J Mol Sci. 2016;17:769.

    PubMed Central  Google Scholar 

  55. Wu J, Wang Y, Yang H, Liu X, Lu Z. Preparation and biological activity studies of resveratrol loaded ionically cross-linked chitosan-TPP nanoparticles. Carbohydr Polym. 2017;175:170–7.

    CAS  PubMed  Google Scholar 

  56. Cerchiara T, Abruzzo A, di Cagno M, Bigucci F, Bauer-Brandl A, Parolin C, et al. Chitosan based micro-and nanoparticles for colon-targeted delivery of vancomycin prepared by alternative processing methods. Eur J Pharm Biopharm. 2015;92:112–9.

    CAS  PubMed  Google Scholar 

  57. Karki S, Kim H, Na SJ, Shin D, Jo K, Lee J. Thin films as an emerging platform for drug delivery. Asian J Pharm Sci. 2016;11:559–74.

    Google Scholar 

  58. Devi N, Dutta J. Preparation and characterization of chitosan-bentonite nanocomposite films for wound healing application. Int J Biol Macromol. 2017;104:1897–904.

    CAS  PubMed  Google Scholar 

  59. Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K. The development of microgels/nanogels for drug delivery applications. Prog Polym Sci. 2008;33:448–77.

    CAS  Google Scholar 

  60. Zha L, Banik B, Alexis F. Stimulus responsive nanogels for drug delivery. Soft Matter. 2011;7:5908–16.

    CAS  Google Scholar 

  61. García MC, Cuggino JC. Stimulus-responsive nanogels for drug delivery. In Stimuli responsive polymeric Nanocarriers for drug delivery applications. 2018;l:321–341.

    Google Scholar 

  62. WU S-W, et al. Strengthening injectable thermo-sensitive NIPAAm-g-chitosan hydrogels using chemical cross-linking of disulfide bonds as scaffolds for tissue engineering. Carbohydr Polym. 2018;192:308–16.

    CAS  PubMed  Google Scholar 

  63. CHEN Y, et al. Preparation of the chitosan/poly (glutamic acid)/alginate polyelectrolyte complexing hydrogel and study on its drug releasing property. Carbohydr Polym. 2018;191:8–16.

    CAS  PubMed  Google Scholar 

  64. Raab O. Uber die Wirkung fluorescierender Stoffe auf Infusoria. Z Biol. 1900;39:524 26.

    Google Scholar 

  65. Jesionek A, Tcppeiner v H. Dtsch Arch Klin Med. 1905;85:223–39.

    Google Scholar 

  66. Jodlbauer A, Tappeiner von H, Munch Med Wochenschr. Uber die Wirkung photodynamischer (fluoreszierender) Stoffe auf Bakterien. 1904;51:1096–7.

  67. Santezi C, Reina BR, Dovigo LN. Curcumin-mediated photodynamic therapy for the treatment of oral infections—a review. Photodiagn Photodyn Ther. 2018;21:409–15.

    CAS  Google Scholar 

  68. Wainwright M, Maisch T, Nonell S, Plaetzer K, Almeida A, Tegos GP, et al. Photoantimicrobials-are we afraid of the light? Lancet Infect Dis. 2017;17:1–14.

    CAS  Google Scholar 

  69. Kharkwal GB, Sharma SK, Huang YY, Dai T, Hamblin MR. Photodynamic therapy for infections: clinical applications. Lasers Surg Med. 2011;43:755–67.

    PubMed  PubMed Central  Google Scholar 

  70. Allison RR, Moghissi K. Photodynamic therapy (pdt): pdt mechanisms. Clin Endosc. 2013;46:24–9.

    PubMed  PubMed Central  Google Scholar 

  71. Scherer KM, Bisby RH, Botchway SW, Parker AW. New approaches to photodynamic therapy from types I, II and III to type IV using one or more photons. Anti Cancer Agents Med Chem. 2017;17:171–89.

    CAS  Google Scholar 

  72. Chen C, Wang J, Li X, Liu X, Han X. Recent advances in developing photosensitizers for photodynamic cancer therapy. Comb Chem High Throughput Screen. 2017;20:414–22.

    CAS  PubMed  Google Scholar 

  73. Sibata CH, Colussi VC, Oleinick NL, Kinsella TJ. Photodynamic therapy: a new concept in medical treatment. Braz J Med Biol Res. 2000;33:869–880, 2000.

    CAS  PubMed  Google Scholar 

  74. Machado AEH. Photodynamic therapy: principles, application potential and perspectives. Quim Nova. 2000;23:237–43.

    Google Scholar 

  75. Allison RR, Downie GH, Cuenca R, Hu X, Carter JHC, Sibata CH. Photosensitizers in clinical PDT. Photodiagnosis Photodyn Ther. 2004;1:27–42.

    CAS  PubMed  Google Scholar 

  76. Nagata JY, Hioka N, Kimura E, Batistela VR, Terada RS, Graciano AX, et al. Antibacterial photodynamic therapy for dental caries: evaluation of the photosensitizers used and light source properties. Photodiagnosis Photodyn Ther. 2012;9:122–31.

    CAS  PubMed  Google Scholar 

  77. Yin R, Hamblin MR. Antimicrobial photosensitizers: drug discovery under the spotlight. Curr Med Chem. 2015;22(18):2159–85.

    CAS  PubMed  Google Scholar 

  78. Baskaran R, Junghan L, Yang S. Clinical development of photodynamic agents and therapeutic applications. Biomater Res. 2018;22:3–8.

    Google Scholar 

  79. Simplicio FI, Maionchi F, Hioka N. Photodynamic therapy: pharmacological aspects, applications, and recent developments in drug development. Quim Nova. 2002;25:801–7.

    CAS  Google Scholar 

  80. Triesscheijn M, Baas P, Schellens JHM, Stewart FA. Photodynamic therapy in oncology. Oncologist. 2006;11:1034–44.

    CAS  PubMed  Google Scholar 

  81. Zheng Huang MD. An update on the regulatory status of PDT photosensitizers in China. Photodiagn Photodyn Ther. 2008;5:285–7.

    Google Scholar 

  82. Allison RR, Sibata CH. Oncologic photodynamic therapy photosensitizers: a clinical review. Photodiagn Photodyn Ther. 2010;7:61–75.

    CAS  Google Scholar 

  83. Sekkat N, van den Bergh H, Nyokong T, Lange N. Like a bolt in the blue: phthalocyanines in biomedical optics. Molecules. 2012;17:98–144.

    CAS  Google Scholar 

  84. Ormond AB, Freeman HS. Dye sensitizers for photodynamic therapy. Materials. 2013;6:817–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. De Oliveira KT, de Souza JM, Gobo NRS, de Assis FF, Brocks TJ. Fundamental concepts and applications of porphyrins, chlorines and Phthalocyanines photosensitizers in photonic therapies. Rev Virtual Quim. 2015;7:310–35.

    Google Scholar 

  86. De Oliveira KT, Momo PB, de Assis FF, Ferreira MAB, Brocksom TJ. Chlorins: natural sources, synthetic developments and main applications. Curr Org Synth. 2014;11:42.

    Google Scholar 

  87. Kawczyk-Krupka A, Wawrzyniec K, Musiol SK, Potempa M, Bugaj AM, Sieron A. Treatment of localized prostate cancer using WST-09 and WST-11 mediated vascular targeted photodynamic therapy-a review. Photodiagn Photodyn Ther. 2015;12:567–74.

    CAS  Google Scholar 

  88. Azzouzi AR, Vincendeau S, Barret E, Cicco A, Kleinclauss F, van der Poel HG, et al. Padeliporfin vascular-targeted photodynamic therapy versus active surveillance in men with low-risk prostate cancer (CLIN1001 PCM301): an open-label, phase 3, randomised controlled trial. Lancet Oncol. 2017;18:181–91.

    CAS  PubMed  Google Scholar 

  89. Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3:380–7.

    CAS  PubMed  Google Scholar 

  90. Mroz P, Yaroslavsky A, Kharkwal GB, Hamblin MR. Cell death pathways in photodynamic therapy of cancer. Cancers. 2011;3:2516–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Brown SB, Brown EA, Walker I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol. 2004;5:497–8.

    CAS  PubMed  Google Scholar 

  92. Abrahamse H, Hamblin MR. New photosensitizers for photodynamic therapy. Biochem J. 2016;473:347–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hamblin MR. Potentiation of antimicrobial photodynamic inactivation by inorganic salts. Expert Rev Anti-Infect Ther. 2017;15:1059–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hamblin MR. Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr Opin Microbiol. 2016;33:67–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Baltazar LM, Krausz AE, Souza AC, Adler BL, Landriscina A, Musaev T, et al. Trichophyton rubrum is inhibited by free and nanoparticle encapsulated curcumin by induction of nitrosative stress after photodynamic activation. PLoS One. 2015;10:1–14.

    Google Scholar 

  96. Havlickova B, Czaika VA, Friedrich M. Epidemiological trends in skin mycoses worldwide. Mycoses. 2008;51:2–15.

    PubMed  Google Scholar 

  97. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci Transl Med. 2012;19:1–10.

    Google Scholar 

  98. Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med. 2015;5:1–22.

    CAS  Google Scholar 

  99. Kathiravan MK, Salake AB, Chothe AS, Dudhe PB, Watode RP, Mukta MS, et al. The biology and chemistry of antifungal agents: a review. Bioorg Med Chem. 2012;20:5678–98.

    CAS  PubMed  Google Scholar 

  100. Cowen LE. The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat Rev Microbiol. 2008;6:187–98.

    CAS  PubMed  Google Scholar 

  101. Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect Dis. 2017;17:1–10.

    Google Scholar 

  102. Morschhauser J, Barker K, Liu T, Bla B, Homayouni R, Rogers P. The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog. 2007;3:1603–16.

    Google Scholar 

  103. Vale-Silva LA, Coste AT, Ischer F, et al. Azole resistance by loss of function of the sterol Δ(5),(6)-desaturase gene (ERG3) in Candida albicans does not necessarily decrease virulence. Antimicrob Agents Chemother. 2012;56:1960–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Bonhomme J, d’Enfert C. Candida albicans biofilms: building a heterogeneous, drug-tolerant environment. Curr Opin Microbiol. 2013;16:398–3.

    CAS  PubMed  Google Scholar 

  105. Andrade MC, Ribeiro APD, Dovigo LN, Brunetti IL, Giampaolo ET, Bagnato VS, et al. Effect of different pre-irradiation times on curcumin-mediated photodynamic therapy against planktonic cultures and biofilms of Candida spp. Arch Oral Biol. 2013;58:200–10.

    CAS  PubMed  Google Scholar 

  106. Dovigo LN, Carmello JC, De Sousa CCA, Vergani CE, Brunetti IL, Bagnato VS, et al. Curcumin-mediated photodynamic inactivation of Candida albicans in a murine model of oral candidiasis. Med Mycol. 2013;51:243–51.

    CAS  PubMed  Google Scholar 

  107. Sanitá PV, Pavarina AC, Dovigo LN, Ribeiro APD, Carvalho M, Mima EGDO. Curcumin-mediated anti-microbial photodynamic therapy against Candida dubliniensis biofilms. Lasers Med Sci. 2017;33:709–17.

    PubMed  Google Scholar 

  108. Dovigo LN, Carmello JC, Carvalho MT, Mima EG, Vergani CE, Bagnato VS, et al. Photodynamic inactivation of clinical isolates of Candida using Photodithazine ®. Biofouling. 2013;29:1–11.

    Google Scholar 

  109. Carmello JC, Dovigo LN, Mima EG, Jorge JH, De Souza CAC, Bagnato VS, et al. In vivo evaluation of photodynamic inactivation using Photodithazine® against Candida albicans. Photochem Photobiol Sci. 2015;14:1319–28.

    CAS  PubMed  Google Scholar 

  110. Carmello JC, Alves F, Basso F, De Souza CAC, Bagnato VS, Mima EGO, et al. Treatment of oral candidiasis using Photodithazine®- mediated photodynamic therapy in vivo. Plosone. 2016;11:1–18.

    Google Scholar 

  111. Alves F, Alonso GC, Carmello JC, Mima EGO, Bagnato VS, Pavarina AC. Antimicrobial photodynamic therapy mediated by Photodithazine® in the treatment of denture stomatitis: a case report. Photodiagn Photodyn Ther. 2018;21:168–71.

    Google Scholar 

  112. Alves F, Mima EGO, Passador RCP, Bagnato VS, JORGE JH, Pavarina AC. Virulence factors of fluconazole-susceptible and fluconazole-resistant Candida albicans after antimicrobial photodynamic therapy. Lasers Med Sci. 2017;32:815–26.

    PubMed  Google Scholar 

  113. Machado-de-Sena RM, Corrêa L, Kato IT, Prates RA, Senna AM, Santos CC, et al. Photodynamic therapy has antifungal effect and reduces inflammatory signals in Candida albicans-induced murine vaginitis. Photodiagn Photodyn Ther. 2014;11:275–82.

    CAS  Google Scholar 

  114. Alves F, Mima EG, Dovigo LN, Bagnato VS, Jorge JH, DE Sousa CAC, et al. The influence of photodynamic therapy parameters on the inactivation of Candida spp: in vitro and in vivo studies. Laser Phys. 2014;24:1–8.

    Google Scholar 

  115. Černáková L, Chupáčová J, Židlíková K, Bujdáková H. Effectiveness of the photoactive dye Methylene Blue versus Caspofungin on the Candida parapsilosis biofilm in vitro and ex vivo. Photochem Photobiol. 2015;91:1181–90.

    PubMed  Google Scholar 

  116. Cernáková L, Dižová S, Bujdáková H. Employment of methylene blue irradiated with laser light source in photodynamic inactivation of biofilm formed by Candida albicans strain resistant to fluconazole. Med Mycol. 2017;55:748–53.

    PubMed  Google Scholar 

  117. Pinto AP, Rosseti IB, Carvalho ML, Da Silva BGM, Alberto-Silva C, Costa MS. Photodynamic antimicrobial chemotherapy (PACT), using Toluidine blue O inhibits the viability of biofilm produced by Candida albicans at different stages of development. Photodiagn Photodyn Ther. 2018;21:182–9.

    CAS  Google Scholar 

  118. Da Silva BGM, Carvalho ML, Rosseti IB, Zamuner S, Costa MS. Photodynamic antimicrobial chemotherapy (PACT) using toluidine blue inhibits both growth and biofilm formation by Candida krusei. Lasers Med Sci. 2018;33:983–90.

    PubMed  Google Scholar 

  119. Carpenter BL, Situ X, Scholle F, Bartelmess J, Weare WW, Ghiladi RA. Antiviral, antifungal and antibacterial activities of a BODIPY-based photosensitizer. Molecules. 2015;20:10604–21.

    CAS  PubMed  Google Scholar 

  120. Soares BM, Alves OA, Ferreira MV, Amorim JC, Sousa GR, Silveira Lde B, et al. Cryptococcus gattii: in vitro susceptibility to photodynamic inactivation. Photochem Photobiol. 2011;87:357–64.

    CAS  PubMed  Google Scholar 

  121. Srikanta D, Santiago-Tirado FH, Doering TL. Cryptococcus neoformans: historical curiosity to modern pathogen. Yeast. 2014;31:47–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Smijs TG, Pavel S. The susceptibility of dermatophytes to photodynamic treatment with special focus on Trichophyton rubrum. Photochem Photobiol. 2011;87:2–13.

    CAS  PubMed  Google Scholar 

  123. Baltazar LM, Soares BM, Carneiro HC, Avila TV, Gouveia LF, Souza DG, et al. Photodynamic inhibition of Trichophyton rubrum: in vitro activity and the role of oxidative and nitrosative bursts in fungal death. J Antimicrob Chemother. 2013;68:354–61.

    CAS  Google Scholar 

  124. Paz-Cristobal MP, Gilaberte Y, Alejandre C, Pardo J, Revillo MJ, Rezusta A. In vitro fungicidal photodynamic effect of hypericin on Trichophyton spp. Mycopathologia. 2014;178:221–5.

    CAS  PubMed  Google Scholar 

  125. Souza LW, Souza SV, Botelho AC. Distal and lateral toenail onychomycosis caused by Trichophyton rubrum: treatment with photodynamic therapy based on methylene blue dye. An Bras Dermatol. 2014;89:184–6.

    PubMed  Google Scholar 

  126. Shamali N, Preuß A, Saltsman I, Mahammed A, Gross Z, Däschlein G, et al. In vitro photodynamic inactivation (PDI) of pathogenic germs inducing onychomycosis. Photodiagn Photodyn Ther. 2018;24:358–65.

    CAS  Google Scholar 

  127. Kim JR, Michielsen S. Photodynamic activity of nanostructured fabrics grafted with xanthene and thiazine dyes against opportunistic fungi. J Photochem Photobiol B. 2015;150:50–9.

    CAS  PubMed  Google Scholar 

  128. Arboleda A, Miller D, Cabot F, Taneja M, Aguilar MC, Alawa K, et al. Assessment of rose bengal versus riboflavin photodynamic therapy for inhibition of fungal keratitis isolates. Am J Ophthalmol. 2014;158:64–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Gaitanis G, Velegraki A, Mayser P, Bassukas ID. Skin diseases associated with Malassezia yeasts: facts and controversies. Clin Dermatol. 2013;31:455–63.

    PubMed  Google Scholar 

  130. Takahashi H, Nakajima S, Sakata I, Iizuka H. Antifungal effect of TONS504-photodynamic therapy on Malassezia furfur. J Dermatol. 2014;41:895–7.

    CAS  PubMed  Google Scholar 

  131. Sueoka K, Chikama T, Pertiwi YD, Ko JA, Kiuchi Y, Sakaguchi T, et al. Antifungal efficacy of photodynamic therapy with TONS 504 for pathogenic filamentous fungi. Lasers Med Sci. 2018. https://doi.org/10.1007/s10103-018-2654-y.

    PubMed  Google Scholar 

  132. Verlee A, Mincke S, Stevens CV. Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr Polym. 2017;16:268–83.

    Google Scholar 

  133. Palma-Guerrero J, Lopez-Jimenez J, Pérez-Berná AJ, Huang IC, Jansson HB, Salinas J, et al. Membrane fluidity determines sensitivity of filamentous fungi to chitosan. Mol Microbiol. 2010;75:1021–32.

    CAS  PubMed  Google Scholar 

  134. Dovigo LN, Pavarina AC, Mima EG, Giampaolo ET, Vergani CE, Bagnato VS. Fungicidal effect of photodynamic therapy against fluconazole-resistant Candida albicans and Candida glabrata. Mycoses. 2011;54:123–30.

    CAS  PubMed  Google Scholar 

  135. Baltazar LM, Ray A, Santos DA, Cisalpino PS, Friedman AJ, Nosanchuk JD. Antimicrobial photodynamic therapy: an effective alternative approach to control fungal infections. Front Microbiol. 2015;6:1–11.

    Google Scholar 

  136. Chen CP, Chen CT, Tsai T. Chitosan nanoparticles for antimicrobial photodynamic inactivation: characterization and in vitro investigation. Photochem Photobiol. 2012;88:570–6.

    CAS  PubMed  Google Scholar 

  137. Chien HF, Chen CP, Chen YC, Chang PH, Tsai T, Chen CT. The use of Chitosan to enhance photodynamic inactivation against Candida albicans and its drug-resistant clinical isolates. Int J Mol Sci. 2013;14:7445–56.

    CAS  PubMed  Google Scholar 

  138. Fabio CA, Yolanda MB, Carmen GM, Francisco C, Antonio Julián B, Leonor PL, et al.Use of photodynamic therapy and chitosan for inactivacion of Candida albicans in a murine model. 2016; 45:627–33.

  139. Zeina B, Greenman J, Purcell WM, Das B. Killing of cutaneous microbial species by photodynamic therapy. Br J Dermatol. 2001;144:274–8.

    CAS  PubMed  Google Scholar 

  140. Woolhouse M, Gaunt E. Ecological origins of novel human pathogens. Crit Rev Microbiol. 2007;33:1–12.

    Google Scholar 

  141. Smith KF, Guégan JF. Changing geographic distributions of human pathogens. Annu Rev Ecol Evol Syst. 2010;41:231–50.

    Google Scholar 

  142. Kashef N, Hamblin MR. Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation. Drug Resist Updat. 2017;31:31–42.

    PubMed  Google Scholar 

  143. WHO, World Health Organization. Available from: Antimicrobial resistance Fact Sheet: http://www.who.int/mediacentre/factsheets/fs194/en/. Accessed 15 Jan 2018.

  144. Dai T, Gupta A, Murray CK, Vrahas MS, Tegos GP, Hamblin MR. Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond? Drug Resist Updat. 2012;15:223–36.

    PubMed  Google Scholar 

  145. Casas A, Di Venosa G, Hasan T, Batlle A. Mechanisms of resistance to photodynamic therapy. Curr Med Chem. 2011;18:2486–515.

    CAS  PubMed  Google Scholar 

  146. Weiss K, Tillotson GS. The controversy of combination vs monotherapy in the treatment of hospitalized community-acquired pneumonia. Chest. 2005;128:940–6.

    PubMed  Google Scholar 

  147. Cole ST. Who will develop new antibacterial agents? Philos Trans R Soc B. 2014;369:20130430.

    Google Scholar 

  148. Meimandi M, Talebi Ardakani MR, Esmaeil Nejad A, Yousefnejad P, Saebi K, Tayeed MH. The effect of photodynamic therapy in the treatment of chronic periodontitis: a review of literature. J Lasers Med Sci. 2017;8:S7–11.

    PubMed  Google Scholar 

  149. Yuan Y, Liu ZQ, Jin H, Sun S, Liu TJ, Wang X, et al. Photodynamic antimicrobial chemotherapy with the novel amino acid-porphyrin conjugate 4I: in vitro and in vivo studies. PLoS One. 2017;12:E0176529.

    PubMed  Google Scholar 

  150. Maisch T, Hackbarth S, Regensburger J, Felgenträger A, Bäumler W, Landthaler M, et al. Photodynamic inactivation of multi-resistant bacteria (PIB)–a new approach to treat superficial infections in the 21st century. J Dtsch Dermatol Ges. 2011;9:360–6.

    PubMed  Google Scholar 

  151. Tim M. Strategies to optimize photosensitizers for photodynamic inactivation of bacteria. J Photochem Photobiol B. 2015;150:2–10.

    CAS  PubMed  Google Scholar 

  152. Branco TM, Valério NC, Jesus VIR, Dias CJ, Neves MG, Faustino MA, et al. Single and combined effects of photodynamic therapy and antibiotics to inactivate Staphylococcus aureus on skin. Photodiagn Photodyn Ther. 2018;21:285–93.

    CAS  Google Scholar 

  153. Gao Y, Mai B, Wang A, Li M, Wang X, Zhang K, et al. Antimicrobial properties of a new type of photosensitizer derived from phthalocyanine against planktonic and biofilm forms of Staphylococcus aureus. Photodiagn Photodyn Ther. 2018;21:316–26.

    CAS  Google Scholar 

  154. Zhang QZ, Zhao KQ, Wu Y, Li XH, Yang C, Guo LM, et al. 5-Aminolevulinic acid-mediated photodynamic therapy and its strain-dependent combined effect with antibiotics on Staphylococcus aureus biofilm. PLoS One. 2017;12:E0174627.

    PubMed  PubMed Central  Google Scholar 

  155. Deleo FR, Otto M, Kreiswirth BN, Chambers HF. Community-associated meticillin-resistant Staphylococcus aureus. Lancet. 2010;375:1557–68.

    PubMed  PubMed Central  Google Scholar 

  156. Gould IM. VRSA—doomsday superbug or damp squib? Lancet Infect Dis. 2010;10:816–8.

    PubMed  Google Scholar 

  157. St. Denis T, Dai T, Izikson L, Astrakas C, Anderson RR, Hamblin MR, et al. All you need is light: antimicrobial photoinactivation as na evolving and emerging discovery strategy against infectious disease. Virulence. 2011;2:6.

    Google Scholar 

  158. Iluz N, Maor Y, Keller N, Malik Z. The synergistic effect of PDT and oxacillin on clinical isolates of Staphylococcus aureus. Lasers Surg Med. 2018;50:535–51.

    PubMed  Google Scholar 

  159. Park JH, Ahn MY, Kim YC, Kim SA, Moon YH, Ahn SG, et al. In vitro and in vivo antimicrobial effect of photodynamic therapy using a highly pure chlorin e6 against Staphylococcus aureus Xen29. Biol Pharm Bull. 2012;35:509–14.

    CAS  PubMed  Google Scholar 

  160. Uliana MP, Pires L, Pratavieira S, Brocksom TJ, de Oliveira KT, Bagnato VS, et al. Photobiological characteristics of chlorophyll a derivatives as microbial PDT agents. Photochem Photobiol Sci. 2014;13:1137–45.

    CAS  PubMed  Google Scholar 

  161. Mai B, Wang X, Liu Q, Leung AW, Wang X, Xu C, et al. The antibacterial effect of sinoporphyrin sodium photodynamic therapy on Staphylococcus aureus planktonic and biofilm cultures. Lasers Surg Med. 2016;48:400–8.

    PubMed  Google Scholar 

  162. Winkler K, Simon C, Finke M, Bleses K, Birke M, Szentmáry N, et al. Photodynamic inactivation of multidrug-resistant Staphylococcus aureus by chlorin e6 and red light (λ=670nm). J Photochem Photobiol B. 2016;162:340–7.

    CAS  PubMed  Google Scholar 

  163. Giannelli M, Landini G, Materassi F, Chellini F, Antonelli A, Tani A, et al. Effects of photodynamic laser and violet-blue led irradiation on Staphylococcus aureus biofilm and Escherichia coli lipopolysaccharide attached to moderately rough titanium surface: in vitro study. Lasers Med Sci. 2017;32:857–64.

    PubMed  Google Scholar 

  164. Bhavya ML, Hebbar HU. Efficacy of blue LED in microbial inactivation: effect of photosensitization and process parameters. Int J Food Microbiol. 2019;290:296–304.

    CAS  PubMed  Google Scholar 

  165. Araújo TSD, Rodrigues PLF, Santos MS, de Oliveira JM, Rosa LP, Bagnato VS, et al. Reduced methicillin-resistant Staphylococcus aureus biofilm formation in bone cavities by photodynamic therapy. Photodiagn Photodyn Ther. 2018;21:219–23.

    Google Scholar 

  166. Liu J, Yu M, Zeng G, Cao J, Wang Y, Ding T, et al. Dual antibacterial behaviors of curcumin-upconversion photodynamic nanosystem for efficient eradicating drug-resistant bacteria in deep joint infection. J Mater Chem B. 2018;6:7854–61.

    CAS  Google Scholar 

  167. Zhao KQ, Wu Y, Yi YX, Feng SJ, Wei RY, Ma Y, et al. An in vitro model to study the effect of 5-aminolevulinic acid-mediated photodynamic therapy on Staphylococcus aureus biofilm. J Vis Exp. 2018;134:E57604–e57604.

    Google Scholar 

  168. Chevalier S, Bouffartigues E, Bodilis J, Maillot O, Lesouhaitier O, Feuilloley MGJ, et al. Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiol Rev. 2017;41:698–722.

    CAS  PubMed  Google Scholar 

  169. Miyoshi-Akiyama T, Tada T, Ohmagari N, Viet Hung N, Tharavichitkul P, Pokhrel BM, et al. Emergence and spread of epidemic multidrug-resistant Pseudomonas aeruginosa. Genome Biol Evol. 2017;9:3238–45.

    CAS  PubMed  Google Scholar 

  170. Viedma E, Juan C, Acosta J, Zamorano L, Otero JR, Sanz F, et al. Nosocomial spread of colistin-only-sensitive sequence type 235 Pseudomonas aeruginosa isolates producing the extended-spectrum β-lactamases GES-1 and GES-5 in Spain. Antimicrob Agents Chemother. 2009;53:4930–3.

    CAS  PubMed  Google Scholar 

  171. Park JH, Moon YH, Bang IS, Kim YC, Kim SA, Ahn SG, et al. Antimicrobial effect of photodynamic therapy using a highly pure chlorin e6. Lasers Med Sci. 2010;25:705–10.

    PubMed  Google Scholar 

  172. Yang SM, Lee DW, Park HJ, Kwak MH, Park JM, Choi MG. Hydrogen peroxide enhances the antibacterial effect of methylene blue-based photodynamic therapy on biofilm-forming bacteria. Photochem Photobiol. 2018. https://doi.org/10.1111/php.13056.

    PubMed  Google Scholar 

  173. Pereira AHC, Pinto JG, Freitas MAA, Fontana LC, Pacheco Soares C, Ferreira-Strixino J. Methylene blue internalization and photodynamic action against clinical and ATCC Pseudomonas aeruginosa and Staphyloccocus aureus strains. Photodiagn Photodyn Ther. 2018;22:43–50.

    CAS  Google Scholar 

  174. Prochnow EP, Martins MR, Campagnolo CB, Santos RC, Villetti MA, Kantorski KZ. Antimicrobial photodynamic effect of phenothiazinic photosensitizers in formulations with ethanol on Pseudomonas aeruginosa biofilms. Photodiagn Photodyn Ther. 2016;13:291–6.

    CAS  Google Scholar 

  175. Tan Y, Cheng Q, Yang H, Li H, Gong N, Liu D, et al. Effects of ALA-PDT on biofilm structure, virulence factor secretion, and QS in Pseudomonas aeruginosa. Photodiagnosis Photodyn Ther. 2018;24:88–94.

    CAS  PubMed  Google Scholar 

  176. Topaloglu N, Guney M, Aysan N, Gulsoy M, Yuksel S. The role of reactive oxygen species in the antibacterial photodynamic treatment: photoinactivation vs proliferation. Lett Appl Microbiol. 2016;62:230–6.

    CAS  PubMed  Google Scholar 

  177. Orlandi VT, Rybtke M, Caruso E, Banfi S, Tolker-Nielsen T, Barbieri P. Antimicrobial and anti-biofilm effect of a novel BODIPY photosensitizer against Pseudomonas aeruginosa PAO1. Biofouling. 2014;30:883–91.

    CAS  PubMed  Google Scholar 

  178. De Freitas LM, Lorenzón EM, Santos-Filho NA, Zago LHDP, Uliana MP, De Oliveira KT, et al. Antimicrobial photodynamic therapy enhanced by the peptide aurein 1.2. Sci Rep. 2018;8:4212.

    PubMed  PubMed Central  Google Scholar 

  179. Dworniczek E, Piwowarczyk J, Seniuk A, Gościniak G. Enterococcus–virulence and susceptibility to photodynamic therapy of clinical isolates from Lower Silesia, Poland. Scand J Infect Dis. 2014;46:846–53.

    CAS  PubMed  Google Scholar 

  180. Chibebe Junior J, Fuchs BB, Sabino CP, Junqueira JC, Jorge AO, Ribeiro MS, et al. Photodynamic and antibiotic therapy impair the pathogenesis of Enterococcus faecium in a whole animal insect model. PLoS One. 2013;8:E55926.

    PubMed  PubMed Central  Google Scholar 

  181. Ragàs X, Dai T, Tegos GP, Agut M, Nonell S, Hamblin MR. Photodynamic inactivation of Acinetobacter baumannii using phenothiazinium dyes: in vitro and in vivo studies. Lasers Surg Med. 2010;42:384–90.

    PubMed  PubMed Central  Google Scholar 

  182. Caruso E, Banfi S, Barbieri P, Leva B, Orlandi VT. Synthesis and antibacterial activity of novel cationic BODIPY photosensitizers. J Photochem Photobiol B. 2012;114:44–51.

    CAS  PubMed  Google Scholar 

  183. Edwards L, Turner D, Champion C, Khandelwal M, Zingler K, Stone C, et al. Photoactivated 2, 3-distyrylindoles kill multi-drug resistant bacteria. Bioorg Med Chem Lett. 2018;28:1879–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Misba L, Zaidi S, Khan AU. A comparison of antibacterial and antibiofilm efficacy of phenothiazinium dyes between Gram positive and Gram negative bacterial biofilm. Photodiagn Photodyn Ther. 2017;18:24–33.

    CAS  Google Scholar 

  185. de Annunzio SR, de Freitas LM, Blanco A, da Costa MM, Carmona-Vargas CC, de Oliveira KT, et al. Susceptibility of Enterococcus faecalis and Propionibacterium acnes to antimicrobial photodynamic therapy. J Photochem Photobiol B. 2018;178:545–50.

    PubMed  Google Scholar 

  186. Hosseinnejad M, Jafari SM. Evaluation of different factors affecting antimicrobial properties of chitosan. Int J Biol Macromol. 2016;85:467–75.

    CAS  PubMed  Google Scholar 

  187. Shrestha A, Kishen A. The effect of tissue inhibitors on the antibacterial activity of chitosan nanoparticles and photodynamic therapy. J Endod. 2012;38:1275–8.

    PubMed  Google Scholar 

  188. Verlee A, Mincke S, Stevens CV. Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr Polym. 2017;164:268–83.

    CAS  PubMed  Google Scholar 

  189. Tsai T, Chien H, Wang T, Huang C, Ker Y, Chen C. Chitosan augments photodynamic inactivation of gram-positive and gram-negative bacteria. Antimicrob Agents Chemother. 2011;55:1883–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol. 2010;144:51–63.

    CAS  PubMed  Google Scholar 

  191. Helander IM, Nurmiaho-Lassila EL, Ahvenainen R, Rhoades J, Roller S. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int J Food Microbiol. 2001;71:235–44.

    CAS  PubMed  Google Scholar 

  192. Xing R, Yu H, Liu S, Zhang W, Zhang Q, Li Z, et al. Antioxidant activity of differently regioselective chitosan sulfates in vitro. Bioorg Med Chem. 2005;13:1387–92.

    CAS  PubMed  Google Scholar 

  193. Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W, et al. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2003;4:1457–65.

    CAS  PubMed  Google Scholar 

  194. Peña A, Sánchez NS, Calahorra M. Effects of chitosan on Candida albicans: conditions for its antifungal activity. Biomed Res Int. 2013;2013:527549.

    PubMed  PubMed Central  Google Scholar 

  195. Upadya M, Shrestha A, Kishen A. Role of efflux pump inhibitors on the antibiofilm efficacy of calcium hydroxide, chitosan nanoparticles, and light-activated disinfection. J Endod. 2011;37:1422–6.

    PubMed  Google Scholar 

  196. Shrestha C. Effect of photodynamic therapy using hexyl aminolevulinate and Amphinex–in vitro and in vivo studies. http://hdl.handle.net/11250/263552 (2011).

  197. Sperandio FF, Huang YY, Hamblin MR. Antimicrobial photodynamic therapy to kill Gram-negative bacteria. Recent Pat Antiinfect Drug Discov. 2013;8:108–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Shrestha TB, Seo GM, Basel MT, Kalita M, Wang H, Villanueva D, et al. Stem cell-based photodynamic therapy. Photochem Photobiol Sci. 2012;11:1251–8.

    CAS  PubMed  Google Scholar 

  199. Shrestha A, Kishen A. Polycationic chitosan-conjugated photosensitizer for antibacterial photodynamic therapy. Photochem Photobiol. 2012;88:577–83.

    CAS  PubMed  Google Scholar 

  200. Da Silva L, Finer Y, Friedman S, Basrani B, Kishen A. Biofilm formation within the interface of bovine root dentin treated with conjugated chitosan and sealer containing chitosan nanoparticles. J Endod. 2013;39:249–53.

    Google Scholar 

  201. Nagahara A, Mitani A, Fukuda M, Yamamoto H, Tahara K, Morita I, et al. Antimicrobial photodynamic therapy using a diode laser with a potential new photosensitizer, indocyanine green-loaded nanospheres, may be effective for the clearance of Porphyromonas gingivalis. J Periodontal Res. 2013;48:591–9.

    CAS  PubMed  Google Scholar 

  202. Choi SS, Lee HK, Chae HS. Synergistic in vitro photodynamic antimicrobial activity of methylene blue and chitosan against Helicobacter pylori 26695. Photodiagnosis Photodyn Ther. 2014;11:526–32.

    CAS  PubMed  Google Scholar 

  203. Chen CP, Hsieh CM, Tsai T, Yang JC, Chen CT. Optimization and evaluation of a Chitosan/hydroxypropyl methylcellulose hydrogel containing toluidine blue O for antimicrobial photodynamic inactivation. Int J Mol Sci. 2015;16:20859–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Darabpour E, Kashef N, Mashayekhan S. Chitosan nanoparticles enhance the efficiency of methylene blue-mediated antimicrobial photodynamic inactivation of bacterial biofilms: an in vitro study. Photodiagn Photodyn Ther. 2016;14:211–7.

    CAS  Google Scholar 

  205. Peng PC, Hsieh CM, Chen CP, Tsai T, Chen CT. Assessment of photodynamic inactivation against periodontal bacteria mediated by a chitosan hydrogel in a 3D gingival model. Int J Mol Sci. 2016;17(11).

    PubMed Central  Google Scholar 

  206. Camacho-Alonso F, Julián-Belmonte E, Chiva-García F, Martínez-Beneyto Y. Bactericidal efficacy of photodynamic therapy and Chitosan in root canals experimentally infected with enterococcus faecalis: an in vitro study. Photomed Laser Surg. 2017;35:184–9.

    CAS  PubMed  Google Scholar 

  207. Theodoratou E, Timofeeva M, Li X, Meng X, Ioannidis JPA. Nature, nurture, and cancer risks: genetic and nutritional contributions to cancer. Send to Annu Rev Nutr. 2017;37:293–320.

    CAS  Google Scholar 

  208. Chilakamarthi U, Giribabu L. Photodynamic therapy: past, present and future. Chem Rec. 2017;17:775–802.

    CAS  PubMed  Google Scholar 

  209. De Grand AM, Frangioni JV. An operational near-infrared fluorescence imaging system prototype for large animal surgery. Technol Cancer Res Treat. 2003;2:553–62.

    PubMed  Google Scholar 

  210. Diaz EM Jr, Sturgis EM, Laramore GE, Sabichi AL, Lippman SM, Clayman G. Holland-freicancer Medicine. 6th edition. Hamilton: BC Decker; 2003.

    Google Scholar 

  211. King PD, Perry MC. Hepatotoxicity of chemotherapy. Oncologist. 2001;6:162–76.

    CAS  PubMed  Google Scholar 

  212. Lee SJ, Koo H, Jeong H, Huh MS, Choi Y, Jeong SY, et al. Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy. J Control Release. 2011;152:21–9.

    CAS  PubMed  Google Scholar 

  213. Ghaz-Jahanian MA, Abbaspour-Aghdam F, Anarjan N, Berenjian A, Jafarizadeh-Malmiri H. Application of chitosan-based nanocarriers in tumor-targeted drug delivery. Mol Biotechnol. 2015;57:201–18.

    CAS  PubMed  Google Scholar 

  214. Simone CB, Cengel KA. Photodynamic therapy for lung cancer and malignant pleural mesothelioma. Semin Oncol. 2014;41:820–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Baldea I, Filip A. Photodynamic therapy in melanoma—an update. J Physiol Pharmacol. 2012;63:109–18.

    CAS  PubMed  Google Scholar 

  216. Dolmans DEJGJ, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3:380–7.

    CAS  PubMed  Google Scholar 

  217. Gao H, Shi L, Yin H, Wang H, Shen J, Wang C, et al. Evaluation of the effect of photodynamic therapy with hematoporphyrin monomethyl ether on VX2 tumors implanted in the rectal submucosa of rabbits. J Photochem Photobiol B. 2016;163:162–9.

    CAS  PubMed  Google Scholar 

  218. Yano T, Kasai H, Horimatsu T, Yoshimura K, Teramukai S, Morita S. A multicenter phase II study of salvage photodynamic therapy using talaporfin sodium (ME2906) and a diode laser (PNL6405EPG) for local failure after chemoradiotherapy or radiotherapy for esophageal cancer. Oncotarget. 2017;8:22135–44.

    PubMed  Google Scholar 

  219. Zhang X, Cai L, He J, Li X, Li L, Chen X, et al. Influence and mechanism of 5-aminolevulinic acid-photodynamic therapy on the metastasis of esophageal carcinoma. Photodiagn Photodyn Ther. 2017;20:78–85.

    CAS  Google Scholar 

  220. Srdanović S, Gao YH, Chen DY, Yan YJ, Margetić D, Chen ZL. The photodynamic activity of 131-[2′-(2-pyridyl)ethylamine] chlorin e6 photosensitizer in human esophageal cancer. Bioorg Med Chem Lett. 2018;28:1785–91.

    PubMed  Google Scholar 

  221. Cramer G, Shin M, Hagan S, Katz SI, Simone CB 2nd, Busch TM, et al. Modeling epidermal growth factor inhibitor-mediated enhancement of photodynamic therapy efficacy using 3D mesothelioma cell culture. Photochem Photobiol. 2018:1–9.

  222. Cheng YS, Peng YB, Yao M, Teng JP, Ni D, Zhu ZJ, et al. Cisplatin and photodynamic therapy exert synergistic inhibitory effects on small-cell lung cancer cell viability and xenograft tumor growth. Biochem Biophys Res Commun. 2017;487:567–72.

    PubMed  Google Scholar 

  223. Van Doeveren TEM, Karakullukçu MB, van Veen RLP, Lopez-Yurda M, Schreuder WH, Tan IB. Adjuvant photodynamic therapy in head and neck cancer after tumor-positive resection margins. Laryngoscope. 2018;128:657–63.

    PubMed  Google Scholar 

  224. Hodgkinson N, Kruger CA, Mokwena M, Abrahamse H. Cervical cancer cells (hela) response to photodynamic therapy using a zinc phthalocyanine photosensitizer. J Photochem Photobiol B. 2017;177:32–8.

    CAS  PubMed  Google Scholar 

  225. De Freitas LM, Serafim RB, de Sousa JF, Moreira TF, Dos Santos CT, Baviera AM, et al. Photodynamic therapy combined to cisplatin potentiates cell death responses of cervical cancer cells. BMC Cancer. 2017;17:1–12.

    Google Scholar 

  226. Inoue K. 5-Aminolevulinic acid-mediated photodynamic therapy for bladder cancer. Int J Urol. 2017;24:97–101.

    CAS  PubMed  Google Scholar 

  227. Ohulchanskyy TY, Roy I, Goswami LN, Chen Y, Bergey EJ, Pandey RK, et al. Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer. Nano Lett. 2007;7:2835–42.

    CAS  PubMed  Google Scholar 

  228. Sun Y, Chen ZL, Yang XX, Huang P, Zhou XP, Du XX. Magnetic chitosan nanoparticles as a drug delivery system for targeting photodynamic therapy. 2009;20:1–8.

  229. Jabr-Milane LS, van Vlerken LE, Yadav S, Amiji MM. Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat Rev. 2008;34:592–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Kim K, Kim JH, Park H, Kim YS, Park K, Nam H, et al. Tumor-homing multifunctional nanoparticles for cancer theragnosis: simultaneous diagnosis, drug delivery, and therapeutic monitoring. J Control. 2010;146:219–27.

    CAS  Google Scholar 

  231. Calixto GM, Bernegossi J, de Freitas LM, Fontana CR, Chorilli M. Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules. 2016;21:342.

    PubMed  Google Scholar 

  232. Costa Idos S, Abranches RP, Garcia MT, Pierre MB. Chitosan-based mucoadhesive films containing 5-aminolevulinic acid for buccal cancer's treatment. J Photochem Photobiol B. 2014;140:266–75.

    PubMed  Google Scholar 

  233. Filip A, Clichici S, Muresan A, Daicoviciu D, Tatomir C, Login C, et al. Effects of pdt with 5-aminolevulinic acid and chitosan on walker carcinosarcoma. Exp Oncol. 2008;30:212–9.

    CAS  PubMed  Google Scholar 

  234. Shen L, Huang Y, Chen D, Qiu F, Ma C, Jin X, et al. Ph-responsive aerobic nanoparticles for effective photodynamic therapy. Theranostics. 2017;7:4537–50.

    CAS  PubMed  Google Scholar 

  235. Battogtokh G, Gotov O, Kang JH, Hong EJ, Shim MS, Shin D, et al. Glycol chitosan-coated near-infrared photosensitizer-encapsulated gold nanocages for glioblastoma phototherapy. Nanomedicine. 2018;30544-6:S1549–9634.

    Google Scholar 

  236. Keyal U, Luo Q, Bhatta AK, Luan H, Zhang P, Wu Q, et al. Zinc pthalocyanine-loaded chitosan/mpeg-PLA nanoparticles-mediated photodynamic therapy for the treatment of cutaneous squamous cell carcinoma. J Biophotonics. 2018;e201800114:1–15.

    Google Scholar 

  237. Tsai WH, Yu KH, Huang YC, Lee CI. EGFR-targeted photodynamic therapy by curcumin-encapsulated chitosan/TPP nanoparticles. Int J Nanomedicine. 2018;13:903–16.

    CAS  PubMed  Google Scholar 

  238. Belali S, Karimi AR, Hadizadeh M. Cell-specific and ph-sensitive nanostructure hydrogel based on chitosan as a photosensitizer carrier for selective photodynamic therapy. Int J Biol Macromol. 2018;110:437–48.

    CAS  PubMed  Google Scholar 

  239. Lin X, Yan SZ, Qi SS, Xu Q, Han SS, Guo LY, et al. Transferrin-modified nanoparticles for photodynamic therapy enhance the antitumor efficacy of hypocrellin A. Front Pharmacol. 2017;8:1–16.

    Google Scholar 

  240. Jeong YI, Cha B, Lee HL, Song YH, Jung YH, Kwak TW, et al. Simple nanophotosensitizer fabrication using water-soluble chitosan for photodynamic therapy in gastrointestinal cancer cells. Int J Pharm. 2017;532:194–203.

    CAS  PubMed  Google Scholar 

  241. Garcia MTJ, de Paula Freitas C, Graciano TB, Coutinho TS, Cressoni CB, de Lima Pereira SA, et al. Chitosan-based mucoadhesive gel for oral mucosal toluidine blue O delivery: the influence of a non-ionic surfactant. Photodiagn Photodyn Ther. 2017;20:48–54.

    CAS  Google Scholar 

  242. Wei PR, Kuthati Y, Kankala RK, Lee CH. Synthesis and characterization of chitosan-coated near-infrared (NIR) layered double hydroxide-indocyanine green nanocomposites for potential applications in photodynamic therapy. Int J Mol Sci. 2015;16:20943–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Ferreira DP, Conceição DS, Calhelha RC, Sousa T, Socoteanu R, Ferreira ICFR, et al. Porphyrin dye into biopolymeric chitosan films for localized photodynamic therapy of cancer. Carbohydr Polym. 2016;151:160–71.

    CAS  PubMed  Google Scholar 

  244. Voon SH, Tiew SX, Kue CS, Lee HB, Kiew LV, Misran M, et al. Chitosan-coated poly(lactic-co-glycolic acid)-diiodinated boron-dipyrromethene nanoparticles improve tumor selectivity and stealth properties in photodynamic cancer therapy. J Biomed Nanotechnol. 2016;12:1431–52.

    CAS  PubMed  Google Scholar 

  245. Ferreira DP, Conceição DS, Fernandes F, Sousa T, Calhelha RC, Ferreira IC, et al. Characterization of a Squaraine/Chitosan system for photodynamic therapy of cancer. J Phys Chem B. 2016;120:1212–20.

    CAS  PubMed  Google Scholar 

  246. Jia HR, Jiang YW, Zhu YX, Li YH, Wang HY, Han X, et al. Plasma membrane activatable polymeric nanotheranostics with self-enhanced light-triggered photosensitizer cellular influx for photodynamic cancer therapy. J Control Release. 2017;255:231–41.

    CAS  PubMed  Google Scholar 

  247. Sun L, Jiang W, Zhang H, Guo Y, Chen W, Jin Y, et al. Photosensitizer-loaded multifunctional chitosan nanoparticles for simultaneous in situ imaging, highly efficient bacterial biofilm eradication, and tumor ablation. ACS Appl Mater Interfaces. 2018. https://doi.org/10.1021/acsami.8b19522.

    Google Scholar 

  248. Zhang X, Li L, Liu Q, Wang Y, Yang J, Qiu T, et al. Co-delivery of Rose Bengal and doxorubicin nanoparticles for combination photodynamic and chemo-therapy. J Biomed Nanotechnol. 2019;15:184–95.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) by grants FAPESP #2018/23015-7 and FAPESP #2018/09088-1, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Programa de Apoio ao Desenvolvimento Científico (PADC).

Abbreviations

5-ALA, 5-aminolevulinic acid; aPDT, antimicrobial photodynamic therapy; AuNPs, gold nanoparticles; Ce6, chlorin e6; CFU/mL, colony forming units per milliliter; CS, Chitosan; DDS, drug delivery systems; ER, erythrosine; ICG, indocyanine green; MB, methylene blue; NAC, N-acetyl cysteine; NIPAAm, poly(N-isopropylacrylamide); NP(s), nanoparticle(s); PDI, photodynamic inactivation; PDT, photodynamic therapy; PGA, poly(glutamic acid); PS(s), photosensitizer(s); RB, Rose Bengal; RNS, reactive nitrogen species; ROS, reactive oxygen species; TBO, Toluidine blue O; TPP, tripolyphosphate; VM, vancomycin

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giovana Maria Fioramonti Calixto or Carla Raquel Fontana.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calixto, G.M.F., de Annunzio, S.R., Victorelli, F.D. et al. Chitosan-Based Drug Delivery Systems for Optimization of Photodynamic Therapy: a Review. AAPS PharmSciTech 20, 253 (2019). https://doi.org/10.1208/s12249-019-1407-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1407-y

Keywords

Navigation