Skip to main content

Advertisement

Log in

Getting the Jump on the Development of Bullfrog Oil Microemulsions: a Nanocarrier for Amphotericin B Intended for Antifungal Treatment

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Amphotericin B (AmB), a potent antifungal drug, presents physicochemical characteristics that impair the development of suitable dosage forms. In order to overcome the AmB insolubility, several lipid carriers such as microemulsions have been developed. In this context, the bullfrog oil stands out as an eligible oily phase component, since its cholesterol composition may favor the AmB incorporation. Thus, the aim of this study was to develop a microemulsion based on bullfrog oil containing AmB. Moreover, its thermal stability, antifungal activity, and cytotoxicity in vitro were evaluated. The microemulsion formulation was produced using the pseudo-ternary phase diagram (PTPD) approach and the AmB was incorporated based on the pH variation technique. The antifungal activity was evaluated by determination of minimal inhibitory concentration (MIC) against different species of Candida spp. and Trichosporon asahii. The bullfrog oil microemulsion, stabilized with 16.8% of a surfactant blend, presented an average droplet size of 26.50 ± 0.14 nm and a polydispersity index of 0.167 ± 0.006. This system was able to entrap AmB up to 2 mg mL−1. The use of bullfrog oil as oily phase allowed an improvement of the thermal stability of the system. The MIC assay results revealed a growth inhibition for different strains of Candida spp. and were able to enhance the activity of AmB against T. asahii. The microemulsion was also able to reduce the AmB toxicity. Finally, the developed microemulsion showed to be a suitable system to incorporate AmB, improving the system’s thermal stability, increasing the antifungal activity, and reducing the toxicity of this drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Damasceno BPGL, Dominici VA, Urbano IA, Silva JA, Araújo IB, Santos-Magalhães NS, et al. Amphotericin B microemulsion reduces toxicity and maintains the efficacy as an antifungal product. J Biomed Nanotechnol. 2012;8:290–300.

    Article  PubMed  CAS  Google Scholar 

  2. Silva AE, Barratt G, Chéron M, Egito EST. Development of oil-in-water microemulsions for the oral delivery of amphotericin B. Int J Pharm. 2013;454:641–8.

    Article  PubMed  CAS  Google Scholar 

  3. Cordonnier C, Mohty M, Faucher C, Pautas C, Robin M, Vey N, et al. Safety of a weekly high dose of liposomal amphotericin B for prophylaxis of invasive fungal infection in immunocompromised patients: Prophysome Study. Int J Antimicrob Agents. 2008;31:135–41.

    Article  PubMed  CAS  Google Scholar 

  4. Wilcock BC, Endo MM, Uno BE, Burke MD. C2′-OH of amphotericin B plays an important role in binding the primary sterol of human cells but not yeast cells. J Am Chem Soc. 2013;135:8488–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Ellis D. Amphotericin B: spectrum and resistance. J Antimicrob Chemother. 2002;49:7–10.

    Article  PubMed  CAS  Google Scholar 

  6. Urbina JA, Pekerar S, Le H-B, Patterson J, Montez B, Oldfield E. Molecular order and dynamics of phosphatidylcholine bilayer membranes in the presence of cholesterol, ergosterol and lanosterol: a comparative study using 2 H-, 13 C-and 31 P-NMR spectroscopy. Biochim Biophys Acta. 1995;1238:163–76.

    Article  PubMed  Google Scholar 

  7. Yoo BK, Jalil Miah MA, Lee E-S, Han K. Reduced renal toxicity of nanoparticular amphotericin B micelles prepared with partially benzylated poly-L-aspartic acid. Biol Pharm Bull. 2006;29:1700–5.

    Article  PubMed  CAS  Google Scholar 

  8. Italia JL, Yahya MM, Singh D, Kumar MNVR. Biodegradable nanoparticles improve oral bioavailability of amphotericin B and show reduced nephrotoxicity compared to intravenous Fungizone®. Pharm Res. 2009;26:1324–31.

    Article  PubMed  CAS  Google Scholar 

  9. Belkherroubi-Sari L, Adida H, Seghir A, Boucherit Z, Boucherit K. New strategy for enhancing the therapeutic index of Fungizone®. J Mycol Med. 2013;23:3–7.

    Article  PubMed  CAS  Google Scholar 

  10. Bartner E, Zinnes H, Moe RA, Kulesza JS. Studies on a new solubilized preparation of amphotericin B. Antibiot Annu. 1957;5:53–8.

  11. Filippin FB, Souza LC. Eficiência terapêutica das formulações lipídicas de anfotericina B. Braz J Pharm Sci. 2006;42:167–94.

  12. Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9:12.

    Article  PubMed Central  CAS  Google Scholar 

  13. Sorrell TC, Chen SCA. Antifungal agents. MJA. 2007;187(7):404–9.

  14. Egito EST, Araújo IB, Damasceno BPGL, Price JC. Amphotericin B/emulsion admixture interactions: an approach concerning the reduction of amphotericin B toxicity. J Pharm Sci. 2002;91:2354–66.

    Article  PubMed  CAS  Google Scholar 

  15. Fanun M. Microemulsions as delivery systems. Curr Opin Colloid Interface Sci. 2012;17:306–13.

    Article  CAS  Google Scholar 

  16. Surabhi K, Op K, Atul N, Arun G. Microemulsions: developmental aspects. Res J Pharm, Biol Chem Sci. 2010;1(4):683–706.

  17. Amaral-Machado L, Xavier-Júnior FH, Rutckeviski R, Morais ARV, Alencar EN, Dantas TRF, et al. New trends on antineoplastic therapy research: bullfrog (Rana catesbeiana Shaw) oil nanostructured systems. Molecules. 2016;21:585–601.

    Article  CAS  Google Scholar 

  18. Rutckeviski R, Xavier-Júnior FH, Morais ARV, Alencar EN, Amaral-Machado L, Genre J, et al. Thermo-oxidative stability evaluation of bullfrog (Rana catesbeiana Shaw) oil. Molecules. 2017;22:606–21.

    Article  CAS  Google Scholar 

  19. Kamiński DM, Czernel G, Murphy B, Runge B, Magnussen OM, Gagoś M. Effect of cholesterol and ergosterol on the antibiotic amphotericin B interactions with dipalmitoylphosphatidylcholine monolayers: X-ray reflectivity study. Biochim Biophys Acta. 2014;1838:2947–53.

    Article  PubMed  CAS  Google Scholar 

  20. Mahdi ES, Sakeena MHF, Abdulkarim MF, Abdullah GZ, Sattar MA, Noor AM. Effect of surfactant and surfactant blends on pseudoternary phase diagram behavior of newly synthesized palm kernel oil esters. Drug Des Devel Ther. 2011;5:311–23.

  21. Morais ARV, Alencar EN, Xavier-Júnior FH, Oliveira C, Marcelino HR, Barratt G, et al. Freeze-drying of emulsified systems: a review. Int J Pharm. 2016;503:102–14.

    Article  PubMed  CAS  Google Scholar 

  22. Ribeiro TG, Chávez-Fumagalli MA, Valadares DG, França JR, Rodrigues LB, Duarte MC, et al. Novel targeting using nanoparticles: an approach to the development of an effective anti-leishmanial drug-delivery system. Int J Nanomedicine. 2014;9:877–90.

  23. Oliveira ACP, Shinobu CS, Longhini R, Franco SL, Svidzinski TIE. Antifungal activity of propolis extract against yeasts isolated from onychomycosis lesions. Mem Inst Oswaldo Cruz. 2006;101:493–7.

    Article  PubMed  Google Scholar 

  24. Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved Standard-Third Edition M27-A3. Wayne: CLSI; 2008.

  25. Cruz-Silva MM, Madeira VMC, Almeida LM, Custódio JBA. Hemolysis of human erythrocytes induced by tamoxifen is related to disruption of membrane structure. Biochim Biophys Acta. 2000;1464:49–61.

    Article  PubMed  CAS  Google Scholar 

  26. Joskova M, Sadlonova V, Nosalova G, Novakova E, Franova S. Polyphenols and their components in experimental allergic asthma. Adv Exp Med Biol. 2013;756:91–8.

  27. Moghimipour E, Salimi A, Leis F. Preparation and evaluation of tretinoin microemulsion based on pseudo-ternary phase diagram. Adv Pharm Bull. 2012;2(2):141–7.

  28. Pestana KC, Formariz TP, Franzini CM, Sarmento VHV, Chiavacci LA, Scarpa MV, et al. Oil-in-water lecithin-based microemulsions as a potential delivery system for amphotericin B. Colloids Surf B Biointerfaces. 2008;66:253–9.

    Article  PubMed  CAS  Google Scholar 

  29. Todosijević MN, Savić MM, Batinić BB, Marković BD, Gašperlin M, Ranđelović DV, et al. Biocompatible microemulsions of a model NSAID for skin delivery: a decisive role of surfactants in skin penetration/irritation profiles and pharmacokinetic performance. Int J Pharm. 2015;496:931–41.

    Article  PubMed  CAS  Google Scholar 

  30. Silveira WLL, Damasceno BP, Ferreira LF, Ribeiro IL, Silva KS, Silva AL, et al. Development and characterization of a microemulsion system containing amphotericin B with potential ocular applications. Curr Neuropharmacol. 2016;13(6):982–93.

  31. Sebaaly C, Greige-Gerges H, Stainmesse S, Fessi H, Charcosset C. Effect of composition, hydrogenation of phospholipids and lyophilization on the characteristics of eugenol-loaded liposomes prepared by ethanol injection method. Food Biosci. 2016;15:1–10.

    Article  CAS  Google Scholar 

  32. Vandamme TF. Microemulsions as ocular drug delivery systems: recent developments and future challenges. Prog Retin Eye Res. 2002;21:15–34.

    Article  PubMed  CAS  Google Scholar 

  33. Anton N, Vandamme TF. Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharm Res. 2011;28:978–85.

    Article  PubMed  CAS  Google Scholar 

  34. Ruckenstein E. The origin of thermodynamic stability of microemulsions. Chem Phys Lett. 1978;57:517–21.

    Article  CAS  Google Scholar 

  35. Butani D, Yewale C, Misra A. Amphotericin B topical microemulsion: formulation, characterization and evaluation. Colloids Surf B Biointerfaces. 2014;116:351–8.

    Article  PubMed  CAS  Google Scholar 

  36. Shinde RL, Bharkad GP, Devarajan PV. Intranasal microemulsion for targeted nose to brain delivery in neurocysticercosis: role of docosahexaenoic acid. Eur J Pharm Biopharm. 2015;96:363–79.

    Article  PubMed  CAS  Google Scholar 

  37. Arora R. Microemulsion system in role of expedient vehicle for dermal application. J Drug Deliv Ther. 2012;2(4):23–8.

  38. Winsor PA. Hydrotropy, solubilisation and related emulsification processes. Phys Chem Chem Phys. 1948;44:376–98.

  39. Peng CC, Bengani LC, Jung HJ, Leclerc J, Gupta C, Chauhan A. Emulsions and microemulsions for ocular drug delivery. J Drug Deliv Sci Technol. 2011;21:111–21.

    Article  CAS  Google Scholar 

  40. Junyaprasert VB, Boonme P, Songkro S, Krauel K, Rades T. Transdermal delivery of hydrophobic and hydrophilic local anesthetics from o/w and w/o Brij 97-based microemulsions. J Pharm Pharm Sci. 2007;10(3):288–98.

  41. Peltola S, Saarinen-Savolainen P, Kiesvaara J, Suhonen TM, Urtti A. Microemulsions for topical delivery of estradiol. Int J Pharm. 2003;254:99–107.

    Article  PubMed  CAS  Google Scholar 

  42. Dai J, Kim SM, Shin IS, Dai-Kim J, Lee HY, Shin WC, et al. Preparation and stability of fucoxanthin-loaded microemulsions. Ind Eng Chem. 2014;20:2103–10.

    Article  CAS  Google Scholar 

  43. Espada R, Valdespina S, Alfonso C, Rivas G, Ballesteros MP, Torrado JJ. Effect of aggregation state on the toxicity of different amphotericin B preparations. Int J Pharm. 2008;361:64–9.

    Article  PubMed  CAS  Google Scholar 

  44. Theochari I, Goulielmaki M, Danino D, Papadimitriou V, Pintzas A, Xenakis A. Drug nanocarriers for cancer chemotherapy based on microemulsions: the case of Vemurafenib analog PLX4720. Colloids Surf B Biointerfaces. 2017;154:350–6.

    Article  PubMed  CAS  Google Scholar 

  45. Xu Z, Jin J, Zheng M, Zheng Y, Xu X, Liu Y, et al. Co-surfactant free microemulsions: preparation, characterization and stability evaluation for food application. Food Chem. 2016;204:194–200.

    Article  PubMed  CAS  Google Scholar 

  46. Franzini CM, Pestana KC, Molina EF, Scarpa MV, Egito EST, de Oliveira AG. Structural properties induced by the composition of biocompatible phospholipid-based microemulsion and amphotericin B association. J Biomed Nanotechnol. 2012;8:350–9.

    Article  PubMed  CAS  Google Scholar 

  47. Jotania RB, Khomane RB, Chauhan CC, Menon SK, Kulkarni BD. Synthesis and magnetic properties of barium–calcium hexaferrite particles prepared by sol–gel and microemulsion techniques. J Magn Magn Mater. 2008;320:1095–101.

    Article  CAS  Google Scholar 

  48. Mei Y, Han Y, Li Y, Wang W, Nie Z. Measurement of microemulsion zone and preparation of monodispersed cerium oxide nanoparticles by W/O microemulsion method. Mater Lett. 2006;60:3068–72.

    Article  CAS  Google Scholar 

  49. Rozanna D, Chuah TG, Salmiah A, Choong TSY, Sa'ari M. Fatty acids as phase change materials (PCMs) for thermal energy storage: a review. Int J Green Energy. 2005;1:495–513.

    Article  CAS  Google Scholar 

  50. AL-Quadeib BT, Radwan MA, Siller L, Horrocks B, Wright MC. Stealth amphotericin B nanoparticles for oral drug delivery: in vitro optimization. Saudi Pharm J. 2015;23:290–302.

    Article  PubMed  Google Scholar 

  51. Zu Y, Sun W, Zhao X, Wang W, Li Y, Ge Y, et al. Preparation and characterization of amorphous amphotericin B nanoparticles for oral administration through liquid antisolvent precipitation. Eur J Pharm Sci. 2014;53:109–17.

    Article  PubMed  CAS  Google Scholar 

  52. Carraro TCMM, Altmeyer C, Khalil NM, Mainardes RM. Assessment of in vitro antifungal efficacy and in vivo toxicity of amphotericin B-loaded PLGA and PLGA-PEG blend nanoparticles. J Mycol Med. 2017;27(4):519–29.

  53. Jung SH, Lim DH, Jung SH, Lee JE, Jeong K, Seong H, et al. Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. Eur J Pharm Sci. 2009;37:313–20.

    Article  PubMed  CAS  Google Scholar 

  54. Sosa L, Clares B, Alvarado HL, Bozal N, Domenech O, Calpena AC. Amphotericin B releasing topical nanoemulsion for the treatment of candidiasis and aspergillosis. Nanomedicine. 2017;13:2303–12.

    Article  PubMed  CAS  Google Scholar 

  55. Dalmora ME, Dalmora SL, Oliveira AG. Inclusion complex of piroxicam with β-cyclodextrin and incorporation in cationic microemulsion. In vitro drug release and in vivo topical anti-inflammatory effect. Int J Pharm. 2001;222:45–55.

    Article  PubMed  CAS  Google Scholar 

  56. Araújo IB, Brito CRN, Urbano IA, Dominici VA, Silva Filho MA, Silveira WLL, et al. Similarity between the in vitro activity and toxicity of two different fungizone™/lipofundin™ admixtures. Acta Cir Bras. 2005;20:129–33.

    Article  Google Scholar 

  57. Li H, Lu Q, Wan Z, Zhang J. In vitro combined activity of amphotericin B, caspofungin and voriconazole against clinical isolates of Trichosporon asahii. Int J Antimicrob Agents. 2010;35:550–2.

    Article  PubMed  CAS  Google Scholar 

  58. Knopik-Skrocka AGNIESZKA, Bielawski JOZEF. Differences in amphotericin-B-induced hemolysis between human erythrocytes from male and female donors. Biol Lett. 2005;42(1):49–60.

  59. Darole PS, Hegde DD, Nair HA. Formulation and evaluation of microemulsion based delivery system for amphotericin B. AAPS PharmSciTech. 2008;9:122–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Stepanenko AA, Dmitrenko VV. Pitfalls of the MTT assay: direct and off-target effects of inhibitors can result in over/underestimation of cell viability. Gene. 2015;574:193–203.

    Article  PubMed  CAS  Google Scholar 

  61. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  PubMed  CAS  Google Scholar 

  62. Espuelas MS, Legrand P, Campanero MA, Appel M, Cheron M, Gamazo C, et al. Polymeric carriers for amphotericin B: in vitro activity, toxicity and therapeutic efficacy against systemic candidiasis in neutropenic mice. J Antimicrob Chemother. 2003;52:419–27.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank CAPES and PIBIC/CNPQ for the financial support and Asmarana Produtos Naturais for providing fatty tissue from bullfrogs.

Author information

Authors and Affiliations

Authors

Contributions

Wógenes N. de Oliveira, Lucas Amaral-Machado, and Éverton N. Alencar performed the experiments. Wógenes N. de Oliveira, Lucas Amaral-Machado, and Éverton N. Alencar performed the literature search and drafted the manuscript. Wógenes N. de Oliveira, Lucas Amaral-Machado, and Walicyranison P. Silva-Rocha were responsible for the antifungal activity assay. Wógenes N. Oliveira, Lucas Amaral-Machado, Julieta Genre, Henrique R. Marcelino, Guilherme M. Chaves, Amanda D. Gondim, Matheus F. Fernandes-Pedrosa, and Eryvaldo S. T. Egito contributed to the development of the concept, data analysis, and writing of the manuscript.

Corresponding author

Correspondence to Eryvaldo Socrates T. Egito.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, W.N., Amaral-Machado, L., Alencar, E.N. et al. Getting the Jump on the Development of Bullfrog Oil Microemulsions: a Nanocarrier for Amphotericin B Intended for Antifungal Treatment. AAPS PharmSciTech 19, 2585–2597 (2018). https://doi.org/10.1208/s12249-018-1093-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1093-1

Key Words

Navigation