Skip to main content
Log in

Lyotropic Liquid Crystalline Nanoparticles of Amphotericin B: Implication of Phytantriol and Glyceryl Monooleate on Bioavailability Enhancement

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Implication of different dietary specific lipids such as phytantriol (PT) and glyceryl monooleate (GMO) on enhancing the oral bioavailability of amphotericin B (AmB) was examined. Liquid crystalline nanoparticles (LCNPs) were prepared using hydrotrope method, followed by in vitro characterization, Caco-2 cell monolayer uptake, and in vivo pharmacokinetic and toxicity evaluation. Optimized AmB-LCNPs displayed small particle size (< 210 nm) with a narrow distribution (~ 0.2), sustained drug release and high gastrointestinal stability, and reduced hemolytic toxicity. PLCNPs presented slower release, i.e., ~ 80% as compared to ~ 90% release in case of GLCNPs after 120 h. Significantly higher uptake in Caco-2 monolayer substantiated the role of LCNPs in increasing the intestinal permeability followed by increased drug titer in plasma. Pharmacokinetic studies demonstrated potential of PT in enhancing the bioavailability (approximately sixfold) w.r.t. of its native counterpart with reduced nephrotoxicity as presented by reduced nephrotoxicity biomarkers and histology studies. These studies established usefulness of PLCNPs over GLCNPs and plain drug. It can be concluded that acid-resistant lipid, PT, can be utilized efficiently as an alternate lipid for the preparation of LCNPs to enhance bioavailability and to reduce nephrotoxicity of the drug as compared to other frequently used lipid, i.e., GMO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Brajtburg J, Powderly WG, Kobayashi GS, Medoff G. Amphotericin B: current understanding of mechanisms of action. Antimicrob Agents Chemother. 1990;34(2):183–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gallis HA, Drew RH, Pickard WW. Amphotericin B: 30 years of clinical experience. Rev Infect Dis. 1990;12(2):308–29.

    Article  CAS  PubMed  Google Scholar 

  3. Laniado-Laborín R, Cabrales-Vargas MN. Amphotericin B: side effects and toxicity. Rev Iberoam Micol. 2009;26(4):223–7.

    Article  PubMed  Google Scholar 

  4. Italia J, Yahya M, Singh D, Kumar MR. Biodegradable nanoparticles improve oral bioavailability of amphotericin B and show reduced nephrotoxicity compared to intravenous Fungizone®. Pharm Res. 2009;26(6):1324–31.

    Article  CAS  PubMed  Google Scholar 

  5. Prajapati VK, Awasthi K, Yadav TP, Rai M, Srivastava ON, Sundar S. An oral formulation of amphotericin B attached to functionalized carbon nanotubes is an effective treatment for experimental visceral leishmaniasis. J Infect Dis. 2011; jir735.

  6. Delmas G, Park S, Chen Z, Tan F, Kashiwazaki R, Zarif L, et al. Efficacy of orally delivered cochleates containing amphotericin B in a murine model of aspergillosis. Antimicrob Agents Chemother. 2002;46(8):2704–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gershkovich P, Wasan EK, Lin M, Sivak O, Leon CG, Clement JG, et al. Pharmacokinetics and biodistribution of amphotericin B in rats following oral administration in a novel lipid-based formulation. J Antimicrob Chemother. 2009; dkp140.

  8. Wasan EK, Gershkovich P, Zhao J, Zhu X, Werbovetz K, Tidwell RR, et al. A novel tropically stable oral amphotericin B formulation (iCo-010) exhibits efficacy against visceral Leishmaniasis in a murine model. PLoS Negl Trop Dis. 2010;4(12):e913.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jain S, Valvi PU, Swarnakar NK, Thanki K. Gelatin coated hybrid lipid nanoparticles for oral delivery of amphotericin B. Mol Pharm. 2012;9(9):2542–53.

    Article  CAS  PubMed  Google Scholar 

  10. Chaudhari MB, Desai PP, Patel PA, Patravale VB. Solid lipid nanoparticles of amphotericin B (AmbiOnp): in vitro and in vivo assessment towards safe and effective oral treatment module. Drug Deliv Transl Res. 2016;6(4):354–64.

    CAS  PubMed  Google Scholar 

  11. Takemoto K, Kanazawa K. AmBisome: relationship between the pharmacokinetic characteristics acquired by liposomal formulation and safety/efficacy. J Liposome Res. 2016; 1–9.

  12. Lian T, Ho RJ. Trends and developments in liposome drug delivery systems. J Pharm Sci. 2001;90(6):667–80.

    Article  CAS  PubMed  Google Scholar 

  13. Adler-Moore JP, Gangneux J-P, Pappas PG. Comparison between liposomal formulations of amphotericin B. Sabouraudia. 2016;54(3):223–31.

    Article  CAS  Google Scholar 

  14. Zeng N, Gao X, Hu Q, Song Q, Xia H, Liu Z, et al. Lipid-based liquid crystalline nanoparticles as oral drug delivery vehicles for poorly water-soluble drugs: cellular interaction and in vivo absorption. Int J Nanomedicine. 2012;7:3703–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Barauskas J, Johnsson M, Tiberg F. Self-assembled lipid superstructures: beyond vesicles and liposomes. Nano Lett. 2005;5(8):1615–9.

    Article  CAS  PubMed  Google Scholar 

  16. Johnsson M, Barauskas J, Norlin A, Tiberg F. Physicochemical and drug delivery aspects of lipid-based liquid crystalline nanoparticles: a case study of intravenously administered propofol. J Nanosci Nanotechnol. 2006;6(9–10):3017–24.

    Article  CAS  PubMed  Google Scholar 

  17. Swarnakar NK, Thanki K, Jain S. Lyotropic liquid crystalline nanoparticles of CoQ10: implication of lipase digestibility on oral bioavailability, in vivo antioxidant activity, and in vitro–in vivo relationships. Mol Pharm. 2014;11(5):1435–49.

    Article  CAS  PubMed  Google Scholar 

  18. Swarnakar NK, Thanki K, Jain S. Bicontinuous cubic liquid crystalline nanoparticles for oral delivery of doxorubicin: implications on bioavailability, therapeutic efficacy, and cardiotoxicity. Pharm Res. 2014;31(5):1219–38.

    Article  CAS  PubMed  Google Scholar 

  19. Swarnakar NK, Jain AK, Singh RP, Godugu C, Das M, Jain S. Oral bioavailability, therapeutic efficacy and reactive oxygen species scavenging properties of coenzyme Q10-loaded polymeric nanoparticles. Biomaterials. 2011;32(28):6860–74.

    Article  CAS  PubMed  Google Scholar 

  20. Lai J, Chen J, Lu Y, Sun J, Hu F, Yin Z, et al. Glyceryl monooleate/poloxamer 407 cubic nanoparticles as oral drug delivery systems: I. In vitro evaluation and enhanced oral bioavailability of the poorly water-soluble drug simvastatin. AAPS PharmSciTech. 2009;10(3):960–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gan L, Han S, Shen J, Zhu J, Zhu C, Zhang X, et al. Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: improving preocular retention and ocular bioavailability. Int J Pharm. 2010;396(1):179–87.

    Article  CAS  PubMed  Google Scholar 

  22. Yang Z, Chen M, Yang M, Chen J, Fang W, Xu P. Evaluating the potential of cubosomal nanoparticles for oral delivery of amphotericin B in treating fungal infection. Int J Nanomedicine. 2014;9:327.

    PubMed  PubMed Central  Google Scholar 

  23. Jain S, Bhankur N, Swarnakar NK, Thanki K. Phytantriol based “stealth” lyotropic liquid crystalline nanoparticles for improved antitumor efficacy and reduced toxicity of docetaxel. Pharm Res. 2015;32(10):3282–92.

    Article  CAS  PubMed  Google Scholar 

  24. Swarnakar NK, Thanki K, Jain S. Enhanced antitumor efficacy and counterfeited cardiotoxicity of combinatorial oral therapy using doxorubicin-and coenzyme Q10-liquid crystalline nanoparticles in comparison with intravenous Adriamycin. Nanomedicine. 2014;10(6):1231–41.

    Article  CAS  PubMed  Google Scholar 

  25. Dong Y-D, Larson I, Hanley T, Boyd BJ. Bulk and dispersed aqueous phase behavior of phytantriol: effect of vitamin E acetate and F127 polymer on liquid crystal nanostructure. Langmuir. 2006;22(23):9512–8.

    Article  CAS  PubMed  Google Scholar 

  26. Guo C, Wang J, Cao F, Lee RJ, Zhai G. Lyotropic liquid crystal systems in drug delivery. Drug Discov Today. 2010;15(23):1032–40.

    Article  CAS  PubMed  Google Scholar 

  27. Spicer PT, Hayden KL, Lynch ML, Ofori-Boateng A, Burns JL. Novel process for producing cubic liquid crystalline nanoparticles (cubosomes). Langmuir. 2001;17(19):5748–56.

    Article  CAS  Google Scholar 

  28. Jain S, Chauhan D, Jain A, Swarnakar N, Harde H, Mahajan R, et al. Stabilization of the nanodrug delivery systems by lyophilization using universal step-wise freeze drying cycle. Indian Patent Application No 2559/DEL. 2011 filed on September. 2011.

  29. Vertzoni M, Fotaki N, Nicolaides E, Reppas C, Kostewicz E, Stippler E, et al. Dissolution media simulating the intralumenal composition of the small intestine: physiological issues and practical aspects. J Pharm Pharmacol. 2004;56(4):453–62.

    Article  CAS  PubMed  Google Scholar 

  30. Swami R, Singh I, Jeengar MK, Naidu V, Khan W, Sistla R. Adenosine conjugated lipidic nanoparticles for enhanced tumor targeting. Int J Pharm. 2015;486(1):287–96.

    Article  CAS  PubMed  Google Scholar 

  31. Larabi M, Gulik A, Dedieu J-P, Legrand P, Barratt G, Cheron M. New lipid formulation of amphotericin B: spectral and microscopic analysis. Biochim Biophys Acta Biomembr. 2004;1664(2):172–81.

    Article  CAS  Google Scholar 

  32. Jain AK, Thanki K, Jain S. Solidified self-nanoemulsifying formulation for oral delivery of combinatorial therapeutic regimen: part I. Formulation development, statistical optimization, and in vitro characterization. Pharm Res. 2014;31(4):923–45.

    Article  CAS  PubMed  Google Scholar 

  33. Chen Y, Ma P, Gui S. Cubic and hexagonal liquid crystals as drug delivery systems. BioMed Res Int. 2014;2014.

  34. Yang Z, Tan Y, Chen M, Dian L, Shan Z, Peng X, et al. Development of amphotericin B-loaded cubosomes through the SolEmuls technology for enhancing the oral bioavailability. AAPS PharmSciTech. 2012;13(4):1483–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang Z, Peng X, Tan Y, Chen M, Zhu X, Feng M, et al. Optimization of the preparation process for an oral phytantriol-based amphotericin B cubosomes. J Nanomater. 2011;2011:4.

    Google Scholar 

  36. Sabliov C, Chen H, Yada R. Nanotechnology and functional foods: effective delivery of bioactive ingredients. Wiley; 2015.

  37. Swarnakar NK, Jain V, Dubey V, Mishra D, Jain N. Enhanced oromucosal delivery of progesterone via hexosomes. Pharm Res. 2007;24(12):2223–30.

    Article  CAS  PubMed  Google Scholar 

  38. Nguyen T-H, Hanley T, Porter CJ, Boyd BJ. Nanostructured liquid crystalline particles provide long duration sustained-release effect for a poorly water soluble drug after oral administration. J Control Release. 2011;153(2):180–6.

    Article  CAS  PubMed  Google Scholar 

  39. Rizwan S, Hanley T, Boyd B, Rades T, Hook S. Liquid crystalline systems of phytantriol and glyceryl monooleate containing a hydrophilic protein: characterisation, swelling and release kinetics. J Pharm Sci. 2009;98(11):4191–204.

    Article  CAS  PubMed  Google Scholar 

  40. Forster D, Washington C, Davis S. Toxicity of solubilized and colloidal amphotericin B formulations to human erythrocytes. J Pharm Pharmacol. 1988;40(5):325–8.

    Article  CAS  PubMed  Google Scholar 

  41. Jain AK, Swarnakar NK, Godugu C, Singh RP, Jain S. The effect of the oral administration of polymeric nanoparticles on the efficacy and toxicity of tamoxifen. Biomaterials. 2011;32(2):503–15.

    Article  CAS  PubMed  Google Scholar 

  42. Patel PA, Fernandes CB, Pol AS, Patravale VB. Oral amphotericin B: challenges and avenues. Int J Pharm Biosci Technol. 2013;1:1–9.

    Google Scholar 

  43. Hargreaves PL, Nguyen T-S, Ryan RO. Spectroscopic studies of amphotericin B solubilized in nanoscale bilayer membranes. Biochim Biophys Acta Biomembr. 2006;1758(1):38–44.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Director of NIPER for providing the required facilities and infrastructure. Rajan Swami is grateful to SERB, DST, GOI, New Delhi, for providing research fellowship. Varun Kushwah is appreciative to CSIR, GOI, New Delhi, for providing fellowships.

Funding

Authors are also thankful to the Department of Science & Technology (DST), GOI, New Delhi, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanyog Jain.

Ethics declarations

All the animal study protocols were duly approved by Institutional Animal Ethics Committee (IAEC), NIPER, India.

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, S., Yadav, P., Swami, R. et al. Lyotropic Liquid Crystalline Nanoparticles of Amphotericin B: Implication of Phytantriol and Glyceryl Monooleate on Bioavailability Enhancement. AAPS PharmSciTech 19, 1699–1711 (2018). https://doi.org/10.1208/s12249-018-0986-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-0986-3

KEY WORDS

Navigation