Skip to main content
Log in

Enhancement of In Vivo Efficacy and Oral Bioavailability of Aripiprazole with Solid Lipid Nanoparticles

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Aripiprazole (ARP), a second-generation or atypical antipsychotic, is poorly soluble and undergoes extensive hepatic metabolism and P-glycoprotein efflux which lead to reduced in vivo efficacy and increased dose-related side effects. To enhance in vivo efficacy and oral bioavailability of aripiprazole, aripiprazole-loaded solid lipid nanoparticles (SLNs) were developed using tristearin as solid lipid. Tween 80 and sodium taurocholate were used as surfactants to prepare SLNs using microemulsification method. SLNs were characterized for particle size, zeta potential, entrapment efficiency, and crystallinity of lipid and drug. In vitro release studies were performed in water containing 0.5% sodium dodecyl sulfate. Pharmacodynamic evaluation was carried out in laca mice using dizocilpine-induced schizophrenic model where behavioral evaluation revealed better in vivo efficacy of SLNs. Pharmacokinetics of aripiprazole-loaded SLNs after oral administration to conscious male Wistar rats was studied. Bioavailability of aripiprazole was increased 1.6-fold after formulation of aripiprazole into SLNs as compared to plain drug suspension. The results indicated that solid lipid nanoparticles can improve the bioavailability of lipophilic drugs like aripiprazole by enhancement of absorption and minimizing first-pass metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Patel KR, Cherian J, Gohil K, Atkinson D. Schizophrenia: overview and treatment options. P&T®. 2014;39 (9):638–345.

  2. Wig NN, Varma VK, Mattoo SK, Bedi HS. An incidence study of schizophrenia in India. Indian J Psychiatry. 1993;35(1):11–7.

    CAS  Google Scholar 

  3. Sawant K, Pandey A, Patel S. Aripiprazole loaded poly(caprolactone) nanoparticles: optimization and in vivo pharmacokinetics. Mater Sci Eng C. 2016;66:230–43. https://doi.org/10.1016/j.msec.2016.04.089.

    Article  CAS  Google Scholar 

  4. Mathews M, Muzina DJ. Atypical antipsychotics: new drugs, new challenges. Cleve Clin J Med. 2007;74(8):597–605. https://doi.org/10.3949/ccjm.74.8.597.

    Article  Google Scholar 

  5. Oh Y, Choi G, Choy YB, Park JW, et al. Aripiprazole_montmorillonite: a new organic–inorganic nanohybrid material for biomedical applications. Chem Eur J. 2013;19(15):4869–75. https://doi.org/10.1002/chem.201203384.

    Article  CAS  Google Scholar 

  6. Ying X, Liu X, Lian R, Zheng S, Yin Z, Lu Y, et al. Enhanced dissolution and oral bioavailability of aripiprazole nanosuspensions prepared by nanoprecipitation/homogenization based on acid-base neutralization. Int J Pharm. 2012;438(1–2):287–95. https://doi.org/10.1016/j.ijpharm.2012.09.020.

    Google Scholar 

  7. Harde H, Das M, Jain S. Solid lipid nanoparticles: an oral bioavailability enhancer vehicle. Expert Opin Drug Deliv. 2011;8(11):1407–24. https://doi.org/10.1517/17425247.2011.604311.

    Article  CAS  Google Scholar 

  8. Raza K, Singh B, Singal P, Wadhwa S, Katare OP. Systematically optimized biocompatible isotretinoin-loaded solid lipid nanoparticles (SLNs) for topical treatment of acne. Colloids Surf B: Biointerfaces. 2013;105:67–74. https://doi.org/10.1016/j.colsurfb.2012.12.043.

  9. Maghsoudi A, Shojaosadati SA, Farahani EV. 5-Fluorouracil-loaded BSA nanoparticles: formulation optimization and in vitro release study. AAPS PharmSciTech. 2008;9(4):1092–6. https://doi.org/10.1208/s12249-008-9146-5.

    Article  CAS  Google Scholar 

  10. Zhang C, Gu C, Peng F, Liu W, Wan J, Xu H, et al. Preparation and optimization of triptolide-loaded solid lipid nanoparticles for oral delivery with reduced gastric irritation. Molecules. 2013;18(11):13340–56. https://doi.org/10.3390/molecules181113340.

    Article  CAS  Google Scholar 

  11. Negi JS, Chattopadhyay P, Sharma AK, Ram V. Development of solid lipid nanoparticles (SLNs) of lopinavir using hot self nano-emulsification (SNE) technique. Eur J Pharm Sci. 2013;48(1-2):231–9. https://doi.org/10.1016/j.ejps.2012.10.022.

    Article  CAS  Google Scholar 

  12. Pandita D, Ahuja A, Lather V, Benjamin B, Dutta T, Velpandian T, et al. Development of lipid-based nanoparticles for enhancing the oral bioavailability of paclitaxel. AAPS PharmSciTech. 2011;12(2):712–22. https://doi.org/10.1208/s12249-011-9636-8.

    Article  CAS  Google Scholar 

  13. Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech. 2011;12(1):62–76. https://doi.org/10.1208/s12249-010-9563-0.

    Article  CAS  Google Scholar 

  14. Singh S, Dobhal AK, Jain A, Pandit JK, Chakraborthy A. Formulation and evaluation of solid lipid nanoparticles of water soluble drug: zidovudine. Chem Pharm Bull. 2010;58(5):650–5. https://doi.org/10.1248/cpb.58.650.

    Article  CAS  Google Scholar 

  15. Wang W, Chen L, Huang X, Shao A. Preparation and characterization of minoxidil loaded nanostructured lipid carriers. AAPS PharmSciTech. 2017;18(2):509–16. https://doi.org/10.1208/s12249-016-0519-x.

    Article  CAS  Google Scholar 

  16. Sood S, Jawahar N, Jain K, Gowthamarajan K, Meyyanathan SN. Olanzapine loaded cationic solid lipid nanoparticles for improved oral bioavailability. Curr Nanosci. 2013;9:26–34.

    CAS  Google Scholar 

  17. Kalam MA, Sultana Y, Ali A, Aqil M, Mishra AK, Chuttani K. Preparation, characterization, and evaluation of gatifloxacin loaded solid lipid nanoparticles as colloidal ocular drug delivery system. J Drug Target. 2010;18(3):191–204. https://doi.org/10.3109/10611860903338462.

    Article  CAS  Google Scholar 

  18. Rehman M, Madni A, Ihsan A, Khan WS, Khan MI, Mahmood MA, et al. Solid and liquid lipid-based binary solid lipid nanoparticles of diacerein: in vitro evaluation of sustained release, simultaneous loading of gold nanoparticles, and potential thermoresponsive behavior. Int J Nanomedicine. 2015;10:2805–14. https://doi.org/10.2147/IJN.S67147.

    Article  CAS  Google Scholar 

  19. Tiyaboonchai W, Tungpradit W, Plianbangchang P. Formulation and characterization of curcuminoids loaded solid lipid nanoparticles. Int J Pharm. 2007;337(1-2):299–306. https://doi.org/10.1016/j.ijpharm.2006.12.043.

    Article  CAS  Google Scholar 

  20. Luo Y, Chen D, Ren L, Zhao X, Qin J. Solid lipid nanoparticles for enhancing vinpocetine's oral bioavailability. J Control Release. 2006;114(1):53–9. https://doi.org/10.1016/j.jconrel.2006.05.010.

    Article  CAS  Google Scholar 

  21. Kelidari HR, Saeedi M, Akbari J, Morteza-semnani K, Valizadeh H, Maniruzzaman M, et al. Development and optimisation of spironolactone nanoparticles for enhanced dissolution rates and stability. AAPS PharmSciTech. 2017;18(5):1469–74. https://doi.org/10.1208/s12249-016-0621-0.

    Article  CAS  Google Scholar 

  22. Wang W, Zhu R, Xie Q, Li A, Xiao Y, Li K, et al. Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles. Int J Nanomedicine. 2012;7:3667–77. https://doi.org/10.2147/IJN.S30428.

    Article  CAS  Google Scholar 

  23. Kumar VV, Chandrasekar D, Ramakrishna S, Kishan V, Rao YM, Diwan PV. Development and evaluation of nitrendipine loaded solid lipid nanoparticles: influence of wax and glyceride lipids on plasma pharmacokinetics. Int J Pharm. 2007;335(1-2):167–75. https://doi.org/10.1016/j.ijpharm.2006.11.004.

    Article  CAS  Google Scholar 

  24. Carvalhoa SM, Noronha CM, Floriani CL, Linoa RC, Rocha G, et al. Optimization of α-tocopherol loaded solid lipid nanoparticles by central composite design. Ind Crop Prod. 2013;49:278–85. https://doi.org/10.1016/j.indcrop.2013.04.054.

    Article  Google Scholar 

  25. Aburahma MH, Badr-Eldin SM. Compritol 888 ATO: a multifunctional lipid excipient in drug delivery systems and nanopharmaceuticals. Expert Opin Drug Deliv. 2014;11(12):1865–83. https://doi.org/10.1517/17425247.2014.935335.

    Article  CAS  Google Scholar 

  26. Alexa MR, Aji CAJ, Josea S, Souto EB. Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. Eur J Pharm Sci. 2011;42(1-2):11–8. https://doi.org/10.1016/j.ejps.2010.10.002.

    Article  Google Scholar 

  27. Dhir A, Naidu PS, Kulkarni SK. Modulatory effect of nimesulide on apomorphine induced stereotypy and mk-801 induced hyperlocomotion. Ann Neurosci. 2005;12(4):71–3. https://doi.org/10.5214/ans.0972.7531.2005.120402.

    Article  CAS  Google Scholar 

  28. Yee BK, Singer P. A conceptual and practical guide to the behavioural evaluation of animal models of the symptomatology and therapy of schizophrenia. Cell Tissue Res. 2013;354(1):221–46. https://doi.org/10.1007/s00441-013-1611-0.

    Article  CAS  Google Scholar 

  29. Pedersen CS, Sørensen DB, Parachikova A, Plath N. PCP-induced deficits in murine nest building activity: employment of an ethological rodent behavior to mimic negative-like symptoms of schizophrenia. Behav Brain Res 2014; 15: 273:63–72. doi: https://doi.org/10.1016/j.bbr.2014.07.023.

  30. Lee SH, Lee MG. Pharmacokinetics and pharmacodynamics of azosemide after intravenous and oral administration to rats: absorption from various GI segments. J Pharmacokinet Biopharm. 1996;24(6):551-568.

  31. Metsugi Y, Miyaji Y, Ogawara K, Higaki K, Kimura T. Appearance of double peaks in plasma concentration–time profile after oral administration depends on gastric emptying profile and weight function. Pharm Res. 2008;25(4):886–95. https://doi.org/10.1007/s11095-007-9469-z.

    Article  CAS  Google Scholar 

  32. Yang S, Zhu J, Lu Y, Liang B, Liang C. Body distribution of camptothecin solid lipid nanoparticles after oral administration. Pharm Res. 1999;16(5)

  33. Hallan SS, Nidhi, Kaur V, Jain V, Mishra N. Development and characterization of polymer lipid hybrid nanoparticles for oral delivery of LMWH. Artif Cells Nanomed Biotechnol. 2017:1–12.

Download references

Acknowledgements

The authors are thankful to Unichem Laboratories, India for providing aripiprazole samples ex-gratis

Funding

The current research work was funded by AICTE, New Delhi, India (vide sanction no. 20/AICTE/RIFD/RPS (POLICY-1)27/2012-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Ranjan Sinha.

Ethics declarations

The study was previously approved by Institutional Animal Ethics Committee (IAEC, UIPS, Panjab University, Chandigarh). The experiments were conducted as per CPCSEA guidelines (Committee for Prevention, Control, and Supervision of Animal Experiments).

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silki, Sinha, V.R. Enhancement of In Vivo Efficacy and Oral Bioavailability of Aripiprazole with Solid Lipid Nanoparticles. AAPS PharmSciTech 19, 1264–1273 (2018). https://doi.org/10.1208/s12249-017-0944-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0944-5

KEY WORDS

Navigation