Skip to main content
Log in

In vitro and In vivo Studies on a Novel Bioadhesive Colloidal System: Cationic Liposomes of Ibuprofen

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The objective of this study was to develop an ocular drug delivery system built on the cationic liposomes, a novel bioadhesive colloidal system, which could enhance the precorneal residence time, ocular permeation, and bioavailability of ibuprofen. The optimal formulation of cationic liposomes prepared by ethanol injection method was ultimately confirmed by an orthogonal L9 (33) test design. In addition, γ-scintigraphic technology and the microdialysis technique were utilized in the assessment of in vivo precorneal retention capability and ocular bioavailability individually. In the end, we acquired the optimal formulation of ibuprofen cationic liposomes (Ibu-CL) by orthogonal test design, and the particle size and entrapment efficiency (EE%) were 121.0 ± 3.5 nm and 72.9 ± 3.4%, respectively. In comparison to ibuprofen eye drops (Ibu-ED), Ibu-CL could significantly prolong the T max to 100 min and the AUC to 1.53-folds, which indicated that the Ibu-CL could improve the precorneal retention time and bioavailability of ibuprofen. Consequently, these outcomes designated that the ibuprofen cationic liposomes we researched probably are a promising application in ocular drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ali J, Fazil M, Qumbar M, Khan N, Ali A. Colloidal drug delivery system: amplify the ocular delivery. Drug Deliv. 2016;23(3):710–26. https://doi.org/10.3109/10717544.2014.923065.

    PubMed  Google Scholar 

  2. He L, Xu H, Nie S, Yang X, Yin J, Pan W. Optimized flurbiprofen cationic liposomes in situ gelling system of thermosensitive polymers for ocular delivery. J Appl Polym Sci. 2012;123(6):3363–74. https://doi.org/10.1002/app.33883.

    Article  CAS  Google Scholar 

  3. Liu S, Jones L, Gu FX. Nanomaterials for ocular drug delivery. Macromol Biosci. 2012;12(5):608–20. https://doi.org/10.1002/mabi.201100419.

    Article  CAS  PubMed  Google Scholar 

  4. De Sa FA, Taveira SF, Gelfuso GM, Lima EM, Gratieri T. Liposomal voriconazole (VOR) formulation for improved ocular delivery. Colloids Surf B: Biointerfaces. 2015;133:331–8. https://doi.org/10.1016/j.colsurfb.2015.06.036.

    Article  PubMed  Google Scholar 

  5. Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010;12(3):348–60. https://doi.org/10.1208/s12248-010-9183-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pignatello R, Bucolo C, Ferrara P, Maltese A, Puleo A, Puglisi G. Eudragit RS100 nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur J Pharm Sci. 2002;16(1–2):53–61. https://doi.org/10.1016/S0928-0987(02)00057-X.

    Article  CAS  PubMed  Google Scholar 

  7. Shi JJ, Xiao ZY, Kamaly N, Farokhzad OC. Self-assembled targeted nanoparticles:evolution of technologies and bench to bedside translation. Acc Chem Res. 2011;44(10):1123–34. https://doi.org/10.1021/ar200054n.

    Article  CAS  PubMed  Google Scholar 

  8. Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine. 2013;9(1):1–14. https://doi.org/10.1016/j.nano.2012.05.013.

    Article  CAS  PubMed  Google Scholar 

  9. Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9(8):615–27. https://doi.org/10.1038/nrd2591.

    Article  CAS  PubMed  Google Scholar 

  10. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine—challenge and perspectives. Angew Chem Int Ed. 2009;48(5):872–97. https://doi.org/10.1002/anie.200802585/full.

    Article  CAS  Google Scholar 

  11. Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 2016;23(9):3319–29. https://doi.org/10.1080/10717544.2016.1177136.

    Article  CAS  PubMed  Google Scholar 

  12. Wei M, Xu Y, Zou Q, Tu L, Tang C, Xu T, et al. Hepatocellular carcinoma targeting effect of PEGylated liposomes modified with lactoferrin. Eur J Pharm Sci. 2012;46(3):131–41. https://doi.org/10.1016/j.ejps.2012.02.007.

    Article  CAS  PubMed  Google Scholar 

  13. Kaur CD, Nahar M, Jain NK. Lymphatic targeting of zidovudine using surface-engineered liposomes. J Drug Target. 2008;16(10):798–805. https://doi.org/10.1080/10611860802475688.

    Article  CAS  PubMed  Google Scholar 

  14. Hayashi T, Onodera R, Tahara K, Takeuchi H. Novel approaches for posterior segment ocular drug delivery with folate-modified liposomal formulation. Asian J Pharml Sci. 2016;11(1):201–2. https://doi.org/10.1016/j.ajps.2015.11.036.

    Article  Google Scholar 

  15. Zhang Y, Ren J, Ma R, An Y, Shi L. Synthesis and research on pH and redox dual responsive UV-cross-linked micelle. J Control Release. 2015;213:e131–e2. https://doi.org/10.1016/j.jconrel.2015.05.222.

    Article  PubMed  Google Scholar 

  16. Rohiwal SS, Satvekar RK, Tiwari AP, Raut AV, Kumbhar SG, Pawar SH. Investigating the influence of effective parameters on molecular characteristics of bovine serum albumin nanoparticles. Appl Surf Sci. 2015;334:157–64. https://doi.org/10.1016/j.apsusc.2014.08.170.

    Article  CAS  Google Scholar 

  17. Chu DF, Gao J, Wang ZJ. Neutrophil-mediated delivery of therapeutic nanoparticles across blood vessel barrier for treatment of inflammation and infection. ACS Nano. 2015;9:11800–11. https://doi.org/10.1021/acsnano.5b05583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang Z, Li J, Cho J, Malik AB. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils. Nat Nanotechnol. 2014;9(3):204–10. https://doi.org/10.1038/nnano.2014.17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tabernero A, Gonzalez-Garcinuno A, Sanchez-Alvarez JM, Galan MA, Martin Del Valle EM. Development of a nanoparticle system based on a fructose polymer: stability and drug release studies. Carbohydr Polym. 2017;160:26–33. https://doi.org/10.1016/j.carbpol.2016.12.025.

    Article  CAS  PubMed  Google Scholar 

  20. Liu Q, Zhan C, Kohane DS. Phototriggered drug delivery using inorganic nanomaterials. Bioconjug Chem. 2017;28(1):98–104. https://doi.org/10.1021/acs.bioconjchem.6b00448.

    Article  CAS  PubMed  Google Scholar 

  21. Mehra NK, Palakurthi S. Interactions between carbon nanotubes and bioactives: a drug delivery perspective. Drug Discov Today. 2016;21(4):585–97. https://doi.org/10.1016/j.drudis.2015.11.011.

    Article  CAS  PubMed  Google Scholar 

  22. Chen S, Hao X, Liang X, Zhang Q, Zhang C, Zhou G, et al. Inorganic nanomaterials as carriers for drug delivery. J Biomed Nanotechnol. 2016;12(1):1–27. https://doi.org/10.1166/jbn.2016.2122.

    Article  CAS  PubMed  Google Scholar 

  23. Cortesi R, Argnani R, Esposito E, Dalpiaz A, Scatturin A, Bortolotti F. Cationic liposomes as potential carriers for ocular administration of peptides with anti-herpetic activity. Int J Pharm. 2006;317(1):90–100. https://doi.org/10.1016/j.ijpharm.2006.02.050.

    Article  CAS  PubMed  Google Scholar 

  24. He W, Guo X, Feng M, Mao N. In vitro and in vivo studies on ocular vitamin A palmitate cationic liposomal in situ gels. Int J Pharm. 2013;458(2):305–14. https://doi.org/10.1016/j.ijpharm.2013.10.033.

    Article  CAS  PubMed  Google Scholar 

  25. Helene E, Schaeffer DLK. Liposomes in topical drug delivery. Investig Ophthalmol Vis Sci. 1982;22(2):220–7.

    Google Scholar 

  26. Jaafar-Maalej C, Diab R, Andrieu V, Elaissari A, Fessi H. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J Liposome Res. 2010;20(3):228–43. https://doi.org/10.3109/08982100903347923.

    Article  CAS  PubMed  Google Scholar 

  27. Oku N, Namba Y, Takeda A, Okada S. Tumor imaging with technetium-99m-DTPA encapsulated in RES-avoiding liposomes. Nucl Med Biol. 1993;20(4):407–12. https://doi.org/10.1016/0969-8051(93)90071-2.

    Article  CAS  PubMed  Google Scholar 

  28. Li X, Nie SF, Kong J, Li N, Ju CY, Pan WS. A controlled-release ocular delivery system for ibuprofen based on nanostructured lipid carriers. Int J Pharm. 2008;363(1–2):177–82. https://doi.org/10.1016/j.ijpharm.2008.07.017.

    Article  CAS  PubMed  Google Scholar 

  29. Wei G, Xu H, Ding PT, Li SM, Zheng JM. Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies. J Control Release. 2002;83(1):65–74. https://doi.org/10.1016/S0168-3659(02)00175-X.

    Article  CAS  PubMed  Google Scholar 

  30. Felt O, Furrer P, Mayer JM, Plazonnet B, Buri P, Gurny R. Topical use of chitosan in ophthalmology: tolerance assessment and evaluation of precorneal retention. Int J Pharm. 1999;180(2):185–93. https://doi.org/10.1016/S0378-5173(99)00003-4.

    Article  CAS  PubMed  Google Scholar 

  31. Huang HS, Schoenwald RD, Lach JL. Corneal penetration behavior of β-blocking agents I: physicochemical factors. J Pharm Sci. 1983;72(11):1266–72. https://doi.org/10.1002/jps.2600721108.

    Article  PubMed  Google Scholar 

  32. Zhang HH, Luo QH, Yang ZJ, Pan WS, Nie SF. Novel ophthalmic timolol meleate liposomal-hydrogel and its improved local glaucomatous therapeutic effect in vivo. Drug Deliv. 2011;18(7):502–10. https://doi.org/10.3109/10717544.2011.595839.

    Article  PubMed  Google Scholar 

  33. Koklic T. Perifosine induced release of contents of trans cell-barrier transport efficient liposomes. Chem Phys Lipids. 2014;183:50–9. https://doi.org/10.1016/j.chemphyslip.2014.05.006.

    Article  CAS  PubMed  Google Scholar 

  34. Araujo J, Gonzalez E, Egea MA, Garcia ML, Souto EB. Nanomedicines for ocular NSAIDs: safety on drug delivery. Nanomedicine. 2009;5(4):394–401. https://doi.org/10.1016/j.nano.2009.02.003.

    Article  CAS  PubMed  Google Scholar 

  35. Ran C, Chen D, Xu M, Du C, Li Q, Jiang Y. A study on characteristic of different sample pretreatment methods to evaluate the entrapment efficiency of liposomes. J Chromatogr B Anal Technol Biomed Life Sci. 2016;1028:56–62. https://doi.org/10.1016/j.jchromb.2016.06.008.

    Article  CAS  Google Scholar 

  36. Hathout RMMS, Mortada ND, Guinedi AS. Liposomes as an ocular delivery system for acetazolamide: In vitro and in vivo studies. AAPS PharmSciTech. 2007;8(1):1.

    Article  PubMed  Google Scholar 

  37. PR. BAC. Membrane fusion with cationic liposomes: effects of target membrane lipid composition. Biochemistry. 1997;36(7):1628–34. https://doi.org/10.1021/bi961173x.

    Article  Google Scholar 

  38. Alvarado HL, Abrego G, Garduno-Ramirez ML, Clares B, Calpena AC, Garcia ML. Design and optimization of oleanolic/ursolic acid-loaded nanoplatforms for ocular anti-inflammatory applications. Nanomedicine. 2015;11(3):521–30. https://doi.org/10.1016/j.nano.2015.01.004.

    Article  CAS  PubMed  Google Scholar 

  39. Liu Z, Yang XG, Li X, Pan W, Li J. Study on the ocular pharmacokinetics of ion-activated in situ gelling ophthalmic delivery system for gatifloxacin by microdialysis. Drug Dev Ind Pharm. 2007;33(12):1327–31. https://doi.org/10.1080/03639040701397241.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the program of supporting career development of young and middle-aged teachers from Shenyang Pharmaceutical University (ZQN2015011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinggang Yang.

Ethics declarations

Conflict of Interest

The authors confirm that there are no known conflicts of interest associated with this publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gai, X., Cheng, L., Li, T. et al. In vitro and In vivo Studies on a Novel Bioadhesive Colloidal System: Cationic Liposomes of Ibuprofen. AAPS PharmSciTech 19, 700–709 (2018). https://doi.org/10.1208/s12249-017-0872-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0872-4

KEY WORDS

Navigation