Skip to main content
Log in

Optimized Mucoadhesive Coated Niosomes as a Sustained Oral Delivery System of Famotidine

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The objective of this study is to develop an oral formulation of famotidine niosomes coated with a mucoadhesive polymer, chitosan. Famotidine (FMT) has low oral bioavailability of 40–45% and short half-life between 2.5 to 4 h. Famotidine is classified as class IV in BCS because of its low aqueous solubility (0.1% w/v) and low permeability. Thus, FMT was loaded to the bioadhesive coated niosomes to improve its solubility, enhance its oral bioavailability, and sustain FMT release pattern. Different formulations were prepared by thin-film hydration method and characterized in terms of entrapment efficiency, morphological features, vesicle size, and zeta potential. In vitro release and ex vivo permeability of famotidine from the formulations were evaluated. The optimized formula was coated with chitosan and its mucoadhesion and stability in bile salt was tested. The optimized formula showed a high entrapment efficiency of 74%, as well sustained the in vitro release of FMT in the simulated gastric medium and enhanced its permeation through an excised goat’s intestinal membrane by 1.4 fold in comparison to FMT control suspension. The mucoadhesive coated formula exhibited a significantly higher (p < 0.05) mucoadhesive efficiency and more stability in the bile salt as compared to the uncoated formula. Therefore, it could be considered as an efficient delivery system to maintain the prolonged release of FMT and improve its oral bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Saraf S, Kaur CD, Rathi R, Saraf S. Colloidosomes an advanced vesicular system in drug delivery. Asian J Sci Res. 2011;4(1):1–15.

    Article  CAS  Google Scholar 

  2. Mahale NB, Thakkar PD, Mali RG, Walunj DR, Chaudhari SR. Niosomes: novel sustained release nonionic stable vesicular systems—an overview. Adv Colloid Interf Sci. 2012;183–184:46–54. doi:10.1016/j.cis.2012.08.002.

    Article  Google Scholar 

  3. Srinivas S, Kumar YA, Hemanth A, Anitha M. Preparation and evaluation of niosomes containing aceclofenac. Dig J Nanomater Bios. 2010;5(1):249–54.

    Google Scholar 

  4. Hasan AA, Madkor H, Wageh S. Formulation and evaluation of metformin hydrochloride-loaded niosomes as controlled release drug delivery system. Drug Deliv. 2013;20(3–4):120–6. doi:10.3109/10717544.2013.779332.

    Article  CAS  PubMed  Google Scholar 

  5. Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm Sin B. 2011;1(4):208–19.

    Article  Google Scholar 

  6. Rani NP, Suriyaprakash TNK, Senthamarai R. Formulation and evaluation of rifampicin and gatifloxacin niosomes on logarithmic-phase cultures of mycobacterium tuberculosis. Int J Pharm Biol Sci. 2010;1:379–87.

    Google Scholar 

  7. Mizrahy S, Raz SR, Hasgaard M, Liu H, Soffer-Tsur N, Cohen K, et al. Hyaluronan-coated nanoparticles: the influence of the molecular weight on CD44-hyaluronan interactions and on the immune response. J Control Release. 2011;156(2):231–8. doi:10.1016/j.jconrel.2011.06.031.

    Article  CAS  PubMed  Google Scholar 

  8. Zubairu Y, Negi LM, Iqbal Z, Talegaonkar S. Design and development of novel bioadhesive niosomal formulation for the transcorneal delivery of anti-infective agent: in-vitro and ex-vivo investigations. Asian J Pharm Sci. 2015;10(4):322–30.

    Article  Google Scholar 

  9. M.J. O’Neil, A. Smith, P.E. Heckelman, J.R. Obenchain, J.R. Gallipeau, M.A. D’Arecca, S. Budavari, The Merck index. 13th ed., Merk and co. Inc., NJ, 2001, p. 696 In.

  10. Fahmy RH, Kassem MA. Enhancement of famotidine dissolution rate through liquisolid tablets formulation: in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2008;69(3):993–1003. doi:10.1016/j.ejpb.2008.02.017.

    Article  CAS  PubMed  Google Scholar 

  11. Hassan MA, Suleiman MS, Najib NM. Improvement of the in vitro dissolution characteristics of famotidine by inclusion in β-cyclodextrin. Int J Pharm. 1990;58(1):19–24.

    Article  CAS  Google Scholar 

  12. Matsuda H, Matsumoto S, Kaguragi K, Kurihara K, Tochigi K, Tomono K. Determination and correlation of solubilities of famotidine in water + co-solvent mixed solvents. Fluid Phase Equilib. 2011;302(1–2):115–22.

    Article  CAS  Google Scholar 

  13. Raval JA, Patel MM. Formulation and characterization of gastroretentive discs containing famotidine. Braz Arch Biol Technol. 2011;54(2):293–300.

    Article  CAS  Google Scholar 

  14. Jha SK, Karki R, Puttegowda VD, Harinarayana D. In vitro intestinal permeability studies and pharmacokinetic evaluation of famotidine microemulsion for oral delivery. Int Sch Res Not. 2014;2014:e452051. doi:10.1155/2014/452051.

    Google Scholar 

  15. Patel RP, Baria AH, Pandya NB. Stomach-specific drug delivery of famotidine using floating alginate beads. Int J Pharmatech Res. 2009;1(2):288–91.

    CAS  Google Scholar 

  16. Gupta R, Prajapati SK, Pattnaik S, Bhardwaj P. Formulation and evaluation of novel stomach specific floating microspheres bearing famotidine for treatment of gastric ulcer and their radiographic study. Asian Pac J Trop Biomed. 2014;4(9):729–35.

    Article  CAS  Google Scholar 

  17. Patel DJ, Patel JK. Design and evaluation of famotidine mucoadhesive nanoparticles for aspirin induced ulcer treatment. Braz Arch Biol Technol. 2013;56(2):223–36.

    Article  CAS  Google Scholar 

  18. Deb P, Dash S, Murthy PN. Development and statistical optimization of mucoadhesive drug delivery system of famotidine using Hibiscus esculentus polysaccharide. Int J Drug Deliv. 2014;6(3):311–25.

    Google Scholar 

  19. Jain CP, Vyas SP. Preparation and characterization of niosomes containing rifampicin for lung targeting. J Microencapsul. 1995;12(4):401–7. doi:10.3109/02652049509087252.

    Article  CAS  PubMed  Google Scholar 

  20. Aggarwal D, Kaur IP. Improved pharmacodynamics of timolol maleate from a mucoadhesive niosomal ophthalmic drug delivery system. Int J Pharm. 2005;290(1–2):155–9. doi:10.1016/j.ijpharm.2004.10.026.

    Article  CAS  PubMed  Google Scholar 

  21. Yang T, Choi M-K, Cui F-D, Kim JS, Chung S-J, Shim C-K, et al. Preparation and evaluation of paclitaxel-loaded PEGylated immunoliposome. J Control Release. 2007;120(3):169–77. doi:10.1016/j.jconrel.2007.05.011.

    Article  CAS  PubMed  Google Scholar 

  22. Higuchi T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52(12):1145–9.

    Article  CAS  PubMed  Google Scholar 

  23. Hixson AW, Crowell JH. Dependence of reaction velocity upon surface and agitation. Ind Eng Chem. 1931;23(10):1160–8.

    Article  CAS  Google Scholar 

  24. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983 May 1;15(1):25–35.

    Article  CAS  Google Scholar 

  25. Ali MS, Alam MS, Alam N, Siddiqui MR. Preparation, characterization and stability study of dutasteride loaded nanoemulsion for treatment of benign prostatic hypertrophy. Iran J Pharm Res IJPR. 2014;13(4):1125–40.

    CAS  PubMed  Google Scholar 

  26. Filipović-Grčić J, Škalko-Basnet N, Jalšienjak I. Mucoadhesive chitosan-coated liposomes: characteristics and stability. J Microencapsul. 2001;18(1):3–12. doi:10.1080/026520401750038557.

    Article  PubMed  Google Scholar 

  27. Pawar H, Douroumis D, Boateng JS. Preparation and optimization of PMAA–chitosan–PEG nanoparticles for oral drug delivery. Colloids Surf B Biointerfaces. 2012;90:102–8. doi:10.1016/j.colsurfb.2011.10.005.

    Article  CAS  PubMed  Google Scholar 

  28. Varshosaz J, Pardakhty A, Hajhashemi V, Najafabadi AR. Development and physical characterization of sorbitan monoester niosomes for insulin oral delivery. Drug Deliv. 2003;10(4):251–62.

    Article  CAS  PubMed  Google Scholar 

  29. Ai X, Zhong L, Niu H, He Z. Thin-film hydration preparation method and stability test of DOX-loaded disulfide-linked polyethylene glycol 5000-lysine-di-tocopherol succinate nanomicelles. Asian J Pharm Sci. 2014;9(5):244–50.

    Article  Google Scholar 

  30. Palei NN, Das MK. Sorbitan ester niosomes for topical delivery of rofecoxib. http://nopr.niscair.res.in/handle/123456789/11742 [Internet]. 2011 Jun [cited 2016 Jan 1]; Available from: http://imsear.hellis.org/handle/123456789/145147

  31. Shahiwala A, Misra A. Studies in topical application of niosomally entrapped nimesulide. J Pharm Pharm Sci Publ Can Soc Pharm Sci Société Can Sci Pharm. 2002 Dec;5(3):220–5.

    CAS  Google Scholar 

  32. Hao Y, Zhao F, Li N, Yang Y, Li K ‘An. Studies on a high encapsulation of colchicine by a niosome system. Int J Pharm 2002;244(1–2):73–80.

  33. Bayindir ZS, Yuksel N. Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. J Pharm Sci. 2010;99(4):2049–60. doi:10.1002/jps.21944.

    Article  CAS  PubMed  Google Scholar 

  34. Ruckmani K, Jayakar B, Ghosal SK. Nonionic surfactant vesicles (niosomes) of cytarabine hydrochloride for effective treatment of leukemias: encapsulation, storage, and in vitro release. Drug Dev Ind Pharm. 2000;26(2):217–22. doi:10.1081/DDC-100100348.

    Article  CAS  PubMed  Google Scholar 

  35. O’Brien RW, Midmore BR, Lamb A, Hunter RJ. Electroacoustic studies of moderately concentrated colloidal suspensions. Faraday Discuss Chem Soc. 1990;90:301–12. doi:10.1039/DC9909000301.

    Article  Google Scholar 

  36. Girigoswami A, Das S, De S. Fluorescence and dynamic light scattering studies of niosomes-membrane mimetic systems. Spectrochim Acta A Mol Biomol Spectrosc. 2006;64(4):859–66. doi:10.1016/j.saa.2005.08.015/j.saa.2005.08.015.

    Article  PubMed  Google Scholar 

  37. Mohamed A, Bendas ER, Mohamed S, Abdel-Jaleel GA, Nasr-Alla SM. Formulation and evaluation of topical niosomal gel of baclofen. J Chem Pharm Res. 2015;7(1):277–88.

    Google Scholar 

  38. Ruckmani K, Sankar V. Formulation and optimization of zidovudine niosomes. AAPS PharmSciTech. 2010;11(3):1119–27. doi:10.1208/s12249-010-9480-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mehta SK, Jindal N, Kaur G. Quantitative investigation, stability and in vitro release studies of anti-TB drugs in triton niosomes. Colloids Surf B Biointerfaces. 2011;87(1):173–9. doi:10.1016/j.colsurfb.2011.05.018.

    Article  CAS  PubMed  Google Scholar 

  40. Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67(3):217–23.

    CAS  PubMed  Google Scholar 

  41. Mokale VJ, Patil HI, Patil AP, Shirude PR, Naik JB. Formulation and optimisation of famotidine proniosomes: an in vitro and ex vivo study. J Exp Nanosci. 2016;11(2):97–110.

    Article  CAS  Google Scholar 

  42. Jung I-W, Han H-K. Effective mucoadhesive liposomal delivery system for risedronate: preparation and in vitro/in vivo characterization. Int J Nanomedicine. 2014;9:2299–306. doi:10.2147/IJN.S61181.

    PubMed  PubMed Central  Google Scholar 

  43. Naderkhani E, Erber A, Škalko-Basnet N, Flaten GE. Improved permeability of acyclovir: optimization of mucoadhesive liposomes using the phospholipid vesicle-based permeation assay. J Pharm Sci. 2014;103(2):661–8.

    Article  CAS  PubMed  Google Scholar 

  44. Jain NK, Chaurasia M, Jain SK. Investigation of galactosylated low molecular weight chitosan-coated liposomes for cancer specific drug delivery. Trop J Pharm Res. 2014;13(5):661–8.

    Article  CAS  Google Scholar 

  45. Sogias IA, Williams AC, Khutoryanskiy VV. Why is chitosan mucoadhesive? Biomacromolecules. 2008;9(7):1837–42. doi:10.1021/bm800276d.

    Article  CAS  PubMed  Google Scholar 

  46. Rowland RN, Woodley JF. The stability of liposomes in vitro to pH, bile salts and pancreatic lipase. Biochim Biophys Acta BBA - Lipids Lipid Metab. 1980;620(3):400–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Dubai Pharmacy College, for providing the necessary facilities for carrying out this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bazigha K. Abdul Rasool.

Ethics declarations

Conflict of Interest

The authors declare that have no conflict of interest to declare.

Electronic supplementary material

ESM 1

(DOCX 11 kb)

ESM 2

(DOCX 35 kb)

ESM 3

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalifa, AZ.M., Abdul Rasool, B.K. Optimized Mucoadhesive Coated Niosomes as a Sustained Oral Delivery System of Famotidine. AAPS PharmSciTech 18, 3064–3075 (2017). https://doi.org/10.1208/s12249-017-0780-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0780-7

KEY WORDS

Navigation