Skip to main content

Advertisement

Log in

Studies on Core-Shell Nanocapsules of Felodipine: In Vitro-In Vivo Evaluations

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The present study aimed for in vitro-in vivo-in silico simulation studies of experimentally designed (32-factorial) Capmul PG-8-cored, Eudragit RSPO-Lutrol F 127 nanocapsules to ferry felodipine using GastroPlus™. The in silico parameter sensitivity analysis for pharmacokinetic parameters was initially assessed to justify the preparation of felodipine-loaded nanocapsules (FLNs) with enhanced solubility to overcome the bioavailability issues of felodipine. The overall integrated desirability ranged between 0.8187 and 0.9488 for three optimized FLNs when analyzed for mean particle size, zeta potential, encapsulation efficiency, and in vitro dissolution parameters. The morphological evaluation (SEM, TEM, and AFM) demonstrated spherical nanoparticles (200–300 nm). Validated LC-MS/MS analysis demonstrated enhanced relative bioavailability (13.37-fold) of optimized FLN as compared to suspension. The simulated regional absorption of the FLN presented significant absorption from the cecum (26.3%) and ascending colon (20.1%) with overall absorption of 67.4% from the GIT tract. Furthermore, in vitro-in vivo correlation demonstrated the Wagner-Nelson method as the preferred model as compared to mechanistic and numerical deconvolution on the basis of least mean absolute prediction error, least standard error of prediction, least mean absolute error, and maximum correlation coefficient (r 2 = 0.920). The study demonstrated enhanced oral absorption of felodipine-loaded nanocapsules, and GastroPlus™ was found to be an efficient simulation tool for in vitro-in vivo-in silico simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm. 2010;385(1–2):113–42.

    Article  CAS  PubMed  Google Scholar 

  2. Limayem Blouza I, Charcosset C, Sfar S, Fessi H. Preparation and characterization of spironolactone-loaded nanocapsules for paediatric use. Int J Pharm. 2006;325(1–2):124–31.

    Article  CAS  PubMed  Google Scholar 

  3. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55(1):R1–4.

    Article  CAS  Google Scholar 

  4. George JK, Singh SK, Verma PRP. Morphological and in vitro investigation of core–shell nanostructures of carvedilol using quality by design. J Pharma Investig. 2015;45(6):561–78.

    Article  CAS  Google Scholar 

  5. Ferranti V, Marchais H, Chabenat C, Orecchioni AM, Lafont O. Primidone-loaded poly-ε-caprolactone nanocapsules: incorporation efficiency and in vitro release profiles. Int J Pharm. 1999;193(1):107–11.

    Article  CAS  PubMed  Google Scholar 

  6. Chauhan N, Dilbaghi N, Gopal M, Kumar R, Kim KH, Kumar S. Development of chitosan nanocapsules for the controlled release of hexaconazole. Int J Biol Macromol. 2016;97:616–24.

    Article  PubMed  Google Scholar 

  7. Hatahet T, Morille M, Shamseddin A, Aubert-Pouessel A, Devoisselle JM, Begu S. Dermal quercetin lipid nanocapsules: influence of the formulation on antioxidant activity and cellular protection against hydrogen peroxide. Int J Pharm. 2016;518(1–2):167–76.

    PubMed  Google Scholar 

  8. Lagarce F, Passirani C. Nucleic-acid delivery using lipid nanocapsules. Curr Pharm Biotechnol. 2016;17(8):723–7.

    Article  CAS  PubMed  Google Scholar 

  9. Nasr M, Abdel-Hamid S. Lipid based nanocapsules: a multitude of biomedical applications. Curr Pharm Biotechnol. 2015;16(4):322–32.

    Article  CAS  PubMed  Google Scholar 

  10. Wibowo D, Hui Y, Middelberg AP, Zhao CX. Interfacial engineering for silica nanocapsules. Adv Colloid Interface Sci. 2016;236:83–100.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Hsu BY, Ren C, Li X, Wang J. Silica-based nanocapsules: synthesis, structure control and biomedical applications. Chem Soc Rev. 2015;44(1):315–35.

    Article  PubMed  Google Scholar 

  12. Frank LA, Contri RV, Beck RC, Pohlmann AR, Guterres SS. Improving drug biological effects by encapsulation into polymeric nanocapsules. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(5):623–39.

    Article  CAS  PubMed  Google Scholar 

  13. Musyanovych A, Landfester K. Polymer micro- and nanocapsules as biological carriers with multifunctional properties. Macromol Biosci. 2014;14(4):458–77.

    Article  CAS  PubMed  Google Scholar 

  14. Yurgel V, Collares T, Seixas F. Developments in the use of nanocapsules in oncology. Braz J Med Biol Res. 2013;46(6):486–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Talevi A, Gantner ME, Ruiz ME. Applications of nanosystems to anticancer drug therapy (part I. Nanogels, nanospheres, nanocapsules). Recent Pat Anticancer Drug Discov. 2014;9(1):83–98.

    Article  CAS  PubMed  Google Scholar 

  16. Bryde S, de Kroon AI. Nanocapsules of platinum anticancer drugs: development towards therapeutic use. Future Med Chem. 2009;1(8):1467–80.

    Article  CAS  PubMed  Google Scholar 

  17. Landfester K, Mailander V. Nanocapsules with specific targeting and release properties using miniemulsion polymerization. Expert Opin Drug Del. 2013;10(5):593–609.

    Article  CAS  Google Scholar 

  18. Rong X, Xie Y, Hao X, Chen T, Wang Y, Liu Y. Applications of polymeric nanocapsules in field of drug delivery systems. Curr Drug Disc Technol. 2011;8(3):173–87.

    Article  CAS  Google Scholar 

  19. Jung J, Kasuya T, Tanizawa K, Kuroda S. Bio-nanocapsules for in vivo pinpoint drug delivery. Yakugaku Zasshi. 2007;127(5):797–805.

    Article  CAS  PubMed  Google Scholar 

  20. Yu D, Fukuda T, Kuroda S, Tanizawa K, Kondo A, et al. Engineered bio-nanocapsules, the selective vector for drug delivery system. IUBMB life. 2006;58(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  21. Mayer C. Nanocapsules as drug delivery systems. Int J Artif Organs. 2005;28(11):1163–71.

    CAS  PubMed  Google Scholar 

  22. Kreuter J. Nanoparticles and nanocapsules—new dosage forms in the nanometer size range. Pharm Acta Helv. 1978;53(2):33–9.

    CAS  PubMed  Google Scholar 

  23. Pohlmann AR, Fonseca FN, Paese K, Detoni CB, Coradini K, Beck RC, et al. Poly(-caprolactone) microcapsules and nanocapsules in drug delivery. Expert Opin Drug Del. 2013;10(5):623–38.

    Article  CAS  Google Scholar 

  24. Chang TM. Blood replacement with nanobiotechnologically engineered hemoglobin and hemoglobin nanocapsules. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(4):418–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Verma S, Singh SK, Verma PR, Ahsan MN. Formulation by design of felodipine loaded liquid and solid self nanoemulsifying drug delivery systems using Box-Behnken design. Drug Dev Ind Pharm. 2014;40(10):1358–70.

    Article  CAS  PubMed  Google Scholar 

  26. Dunselman PH, Edgar B. Felodipine clinical pharmacokinetics. Clin Pharmacokinet. 1991;21(6):418–30.

    Article  CAS  PubMed  Google Scholar 

  27. Kim SH, Jackson AJ, Hunt CA. In silico, experimental, mechanistic model for extended-release felodipine disposition exhibiting complex absorption and a highly variable food interaction. PLoS One. 2014;9(9):e108392.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jing B, Wang Z, Yang R, Zheng X, Zhao J, Tang S, et al. Enhanced oral bioavailability of felodipine by novel solid self-microemulsifying tablets. Drug Dev Ind Pharm. 2016;42(3):506–12.

    Article  CAS  PubMed  Google Scholar 

  29. Fasinu P, Choonara YE, Kumar P, du Toit LC, Bijukumar D, Khan RA, et al. Enhancement of the oral bioavailability of felodipine employing 8-arm-poly(ethylene glycol): in vivo, in vitro and in silico evaluation. AAPS PharmSciTech. 2016:1–12.

  30. Bazzo GC, Caetano DB, Boch ML, Mosca M, Branco LC, Zetola M, et al. Enhancement of felodipine dissolution rate through its incorporation into Eudragit(R) E-PHB polymeric microparticles: in vitro characterization and investigation of absorption in rats. J Pharm Sci. 2012;101(4):1518–23.

    Article  CAS  PubMed  Google Scholar 

  31. Basalious EB, El-Sebaie W, El-Gazayerly O. Rapidly absorbed orodispersible tablet containing molecularly dispersed felodipine for management of hypertensive crisis: development, optimization and in vitro/in vivo studies. Pharm Dev Technol. 2013;18(2):407–16.

    Article  CAS  PubMed  Google Scholar 

  32. Sahu BP, Das MK. Preparation and in vitro/in vivo evaluation of felodipine nanosuspension. Eur J Drug Metab Pharmacokinet. 2014;39(3):183–93.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu A, Pan Y, Dai S, Li F, Shen J. Preparation of N-maleoylchitosan nanocapsules for loading and sustained release of felodipine. Biomacromolecules. 2009;10(7):1997–2002.

    Article  CAS  PubMed  Google Scholar 

  34. Khan KA, Rhodes CT. Effect of compaction pressure on the dissolution efficiency of some direct compression systems. Pharmaceutica acta Helvetiae. 1972;47(10):594–607.

    CAS  PubMed  Google Scholar 

  35. Singh N, Verma SM, Singh SK, Verma PR. Evidence for bactericidal activities of lipidic nanoemulsions against Pseudomonas aeruginosa. Antonie Van Leeuwenhoek. 2015;107(6):1555–68.

    Article  CAS  PubMed  Google Scholar 

  36. Verma S, Singh SK, Verma PRP. Solidified SNEDDS of loratadine: formulation using hydrophilic and hydrophobic grades of Aerosil®, pharmacokinetic evaluations and in vivo–in silico predictions using GastroPlus™. RSC Advances. 2016;6(4):3099–116.

    Article  CAS  Google Scholar 

  37. Saini R, Singh SK, Verma PRP. Evaluation of carvedilol-loaded microsponges with nanometric pores using response surface methodology. J Exp Nanosci. 2012;9(8):831–50.

    Article  Google Scholar 

  38. Singh R, Lillard Jr JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86(3):215–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gandhi A, Jana S, Sen KK. In-vitro release of acyclovir loaded Eudragit RLPO((R)) nanoparticles for sustained drug delivery. Int J Biol Macromol. 2014;67:478–82.

    Article  CAS  PubMed  Google Scholar 

  40. Yousry C, Elkheshen SA, El-laithy HM, Essam T, Fahmy RH. Studying the influence of formulation and process variables on vancomycin-loaded polymeric nanoparticles as potential carrier for enhanced ophthalmic delivery. Eur J Pharm Sci. 2017;100:142–54.

    Article  CAS  PubMed  Google Scholar 

  41. Couvreur P, Barratt G, Fattal E, Vauthier C. Nanocapsule technology: a review. Crit Rev Ther Drug Carrier Syst. 2002;19(2):36.

    Article  Google Scholar 

  42. Sharma UK, Verma A, Prajapati SK, Pandey H, Pandey AC. In vitro, in vivo and pharmacokinetic assessment of amikacin sulphate laden polymeric nanoparticles meant for controlled ocular drug delivery. Appl Nanosci. 2014;5(2):143–55.

    Article  Google Scholar 

  43. Molpeceres J, Guzman M, Aberturas MR, Chacon M, Berges L. Application of central composite designs to the preparation of polycaprolactone nanoparticles by solvent displacement. J Pharm Sci. 1996;85(2):206–13.

    Article  CAS  PubMed  Google Scholar 

  44. Lee JH, Yeo Y. Controlled drug release from pharmaceutical nanocarriers. Chem Eng Sci. 2015;125:75–84.

    Article  CAS  PubMed  Google Scholar 

  45. Kallakunta VR, Eedara BB, Jukanti R, Ajmeera RK, Bandari S. A Gelucire 44/14 and labrasol based solid self emulsifying drug delivery system: formulation and evaluation. J Pharma Investig. 2013;43(3):185–96.

    Article  CAS  Google Scholar 

  46. Alexandridis P, Alan HT. Poly(ethylene oxide) poly(propylene oxide) poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids Surf Physicochem Eng Aspects. 1995;96(1):1–46.

    Article  CAS  Google Scholar 

  47. Bhagav P, Upadhyay H, Chandran S. Brimonidine tartrate-eudragit long-acting nanoparticles: formulation, optimization, in vitro and in vivo evaluation. AAPS PharmSciTech. 2011;12(4):1087–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mennini N, Furlanetto S, Cirri M, Mura P. Quality by design approach for developing chitosan-Ca-alginate microspheres for colon delivery of celecoxib-hydroxypropyl-beta-cyclodextrin-PVP complex. Eur J Pharm Biopharm. 2012;80(1):67–75.

    Article  CAS  PubMed  Google Scholar 

  49. Scholz A, Abrahamsson B, Diebold SM, Kostewicz E, Polentarutti BI, Ungell AL, et al. Influence of hydrodynamics and particle size on the absorption of felodipine in labradors. Pharm Res. 2002;19(1):42–6.

    Article  CAS  PubMed  Google Scholar 

  50. Kumar N, Chaurasia S, Patel RR, Khan G, Kumar V, Mishra B. Atorvastatin calcium encapsulated eudragit nanoparticles with enhanced oral bioavailability, safety and efficacy profile. Pharm Dev Technol. 2015:1–12.

  51. Ubrich N, Schmidt C, Bodmeier R, Hoffman M, Maincent P. Oral evaluation in rabbits of cyclosporin-loaded Eudragit RS or RL nanoparticles. Int J Pharm. 2005;288(1):169–75.

    Article  CAS  PubMed  Google Scholar 

  52. Kim YI, Fluckiger L, Hoffman M, Lartaud-Idjouadiene I, Atkinson J, Maincent P. The antihypertensive effect of orally administered nifedipine-loaded nanoparticles in spontaneously hypertensive rats. Br J Pharmacol. 1997;120(3):399–404.

    Article  CAS  PubMed  Google Scholar 

  53. Stolnik S, Daudali B, Arien A, Whetstone J, Heald CR, Garnett MC, et al. The effect of surface coverage and conformation of poly(ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers. Biochim Biophys Acta. 2001;1514(2):261–79.

    Article  CAS  PubMed  Google Scholar 

  54. Jiang Y, Wang F, Xu H, Liu H, Meng Q, Liu W. Development of andrographolide loaded PLGA microspheres: optimization, characterization and in vitro–in vivo correlation. Int J Pharm. 2014;475(1–2):475–84.

    Article  CAS  PubMed  Google Scholar 

  55. Kytariolos J, Dokoumetzidis A, Macheras P. Power law IVIVC: an application of fractional kinetics for drug release and absorption. Eur J Pharm Sci. 2010;41(2):299–304.

    Article  CAS  PubMed  Google Scholar 

  56. Dutta S, Qiu Y, Samara E, Cao G, Granneman GR. Once-a-day extended-release dosage form of divalproex sodium III: development and validation of a level A in vitro-in vivo correlation (IVIVC). J Pharm Sci. 2005;94(9):1949–56.

    Article  CAS  PubMed  Google Scholar 

  57. GastroPlus™ simulation sofware for drug discovery and development, version 9.0. Simulation Plus Inc., Lancaster, CA, USA. 2015.

  58. Pestieau A, Lebrun S, Cahay B, Brouwers A, Streel B, Cardot J-M, et al. Evaluation of different in vitro dissolution tests based on level A in vitro–in vivo correlations for fenofibrate self-emulsifying lipid-based formulations. Eur J Pharm Biopharm. 2017;112:18–29.

    Article  CAS  PubMed  Google Scholar 

  59. Langenbucher F. Handling of computational in vitro/in vivo correlation problems by Microsoft Excel: III. Convolution and deconvolution. Eur J Pharm Biopharm. 2003;56(3):429–37.

    Article  CAS  PubMed  Google Scholar 

  60. Veng-Pedersen P. Noncompartmentally-based pharmacokinetic modeling. Adv Drug Deliv Rev. 2001;48(2–3):265–300.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Vice Chancellor of the Birla Institute of Technology for providing the facilities and acknowledge the Birla Institute of Technology for providing the senior research fellowship and the Department of Biotechnology (BT/PR5653/MED/29/561/2012) for the research facility generated. Sandeep Kumar Singh acknowledges the Pukyong National University (National Research Foundation of Korea, Ministry of Education; 2012R1A6A1028677), Busan, South Korea, for providing the postdoctoral fellowship and BIT Mesra for granting the study leave.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Se-Kwon Kim or Sandeep Kumar Singh.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geroge, J.K., Verma, P.R.P., Venkatesan, J. et al. Studies on Core-Shell Nanocapsules of Felodipine: In Vitro-In Vivo Evaluations. AAPS PharmSciTech 18, 2871–2888 (2017). https://doi.org/10.1208/s12249-017-0770-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0770-9

Keywords

Navigation