Skip to main content

Advertisement

Log in

Ocular Cubosome Drug Delivery System for Timolol Maleate: Preparation, Characterization, Cytotoxicity, Ex Vivo, and In Vivo Evaluation

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

ABSTRACT

Glaucoma is an ocular disease featuring increased intraocular pressure (IOP) and its primary treatment strategy is to lower IOP by medication. Current ocular drug delivery in treating glaucoma is confronting a variety of challenges, such as low corneal permeability and bioavailability due to the unique anatomical structure of the human eye. To tackle these challenges, a cubosome drug delivery system for glaucoma treatment was constructed for timolol maleate (TM) in this study. The TM cubosomes (liquid crystalline nanoparticles) were prepared using glycerol monooleate and poloxamer 407 via high-pressure homogenization. These constructed nanoparticles appeared spherical using transmission electron microscopy and had an average particle size of 142 nm, zeta potential of −6.27 mV, and over 85% encapsulation efficiency. Moreover, using polarized light microscopy and small-angle X-ray scattering (SAXS), it was shown that the TM cubosomes have cubic liquid crystalline D-type (Pn3m) structure, which provides good physicochemical stability and high encapsulation efficiency. Ex vivo corneal permeability experiments showed that the total amount of TM cubosomes penetrated was higher than the commercially available eye drops. In addition, in vivo studies revealed that TM cubosomes reduced the IOP in rabbits from 27.8∼39.7 to 21.4∼32.6 mmHg after 1-week administration and had a longer retention time and better lower-IOP effect than the commercial TM eye drops. Furthermore, neither cytotoxicity nor histological impairment in the rabbit corneas was observed. This study suggests that cubosomes are capable of increasing the corneal permeability and bioavailability of TM and have great potential for ocular disease treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311(18):1901–11.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fishman P, Cohen S, Bar-Yehuda S. Targeting the A3 adenosine receptor for glaucoma treatment (review). Mol Med Rep. 2013;7(6):1723–5.

    CAS  PubMed  Google Scholar 

  3. Hommer A, Hubatsch DA, Cano-Parra J. Safety and efficacy of adding fixed-combination brinzolamide/timolol maleate to prostaglandin therapy for treatment of ocular hypertension or glaucoma. J Ophthalmol. 2015;2015:131970.

    Article  PubMed  PubMed Central  Google Scholar 

  4. McAlinden C. Selective laser trabeculoplasty (SLT) vs other treatment modalities for glaucoma: systematic review. Eye. 2014;28(3):249–58.

    Article  CAS  PubMed  Google Scholar 

  5. Jung HJ, Abou-Jaoude M, Carbia BE, Plummer C, Chauhan A. Glaucoma therapy by extended release of timolol from nanoparticle loaded silicone-hydrogel contact lenses. J Control Release. 2013a;165(1):82–9.

    Article  CAS  PubMed  Google Scholar 

  6. Ishibashi T, Yokoi N, Kinoshita S. Comparison of the short-term effects on the human corneal surface of topical timolol maleate with and without benzalkonium chloride. J Glaucoma. 2003;12(6):486–90.

    Article  PubMed  Google Scholar 

  7. Mannermaa E, Vellonen KS, Urtti A. Drug transport in corneal epithelium and blood-retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliver Rev. 2006;58(11):1136–63.

    Article  CAS  Google Scholar 

  8. Jung HJ, Abou-Jaoude M, Carbia BE, Plummer C, Chauhan A. Glaucoma therapy by extended release of timolol from nanoparticle loaded silicone-hydrogel contact lenses. Journal of controlled release : official journal of the Controlled Release Society. 2013b;165(1):82–9.

    Article  CAS  Google Scholar 

  9. Volotinen M, Korjamo T, Tolonen A, Turpeinen M, Pelkonen O, Hakkola J, et al. Effects of selective serotonin reuptake inhibitors on timolol metabolism in human liver microsomes and cryo-preserved hepatocytes. Basic Clin Pharmacol Toxicol. 2010;106(4):302–9.

    Article  CAS  PubMed  Google Scholar 

  10. Tanihara H, Inoue T, Yamamoto T, Kuwayama Y, Abe H, Suganami H, et al. Additive intraocular pressure-lowering effects of the rho kinase inhibitor Ripasudil (K-115) combined with timolol or latanoprost: a report of 2 randomized clinical trials. JAMA Ophthalmol. 2015;133(7):755–61.

    Article  PubMed  Google Scholar 

  11. Gan L, Wang J, Jiang M, Bartlett H, Ouyang D, Eperjesi F, et al. Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers. Drug Discov Today. 2013;18(5–6):290–7.

    Article  CAS  PubMed  Google Scholar 

  12. Hathout RM, Mansour S, Mortada ND, Guinedi AS. Liposomes as an ocular delivery system for acetazolamide: in vitro and in vivo studies. Aaps Pharmscitech. 2007;8(1).

  13. Shafaa MW, Sabra NM, Fouad RA. The extended ocular hypotensive effect of positive liposomal cholesterol bound timolol maleate in glaucomatous rabbits. Biopharm Drug Dispos. 2011;32(9):507–17.

    Article  CAS  PubMed  Google Scholar 

  14. Yu SH, Wang QM, Wang X, Liu DD, Zhang WJ, Ye TT, et al. Liposome incorporated ion sensitive in situ gels for opthalmic delivery of timolol maleate. Int J Pharm. 2015;480(1–2):128–36.

    Article  CAS  PubMed  Google Scholar 

  15. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8

  16. Randles EG, Bergethon PR. A photodependent switch of liposome stability and permeability. Langmuir. 2013;29(5):1490–7.

    Article  CAS  PubMed  Google Scholar 

  17. Ruozi B, Tosi G, Forni F, Fresta M, Vandelli MA. Atomic force microscopy and photon correlation spectroscopy: two techniques for rapid characterization of liposomes. Eur J Pharm Sci. 2005;25(1):81–9.

    Article  CAS  PubMed  Google Scholar 

  18. Rizwan SB, McBurney WT, Young K, Hanley T, Boyd BJ, Rades T, et al. Cubosomes containing the adjuvants imiquimod and monophosphoryl lipid A stimulate robust cellular and humoral immune responses. J Control Release. 2013;165(1):16–21.

    Article  CAS  PubMed  Google Scholar 

  19. Muller F, Salonen A, Glatter O. Phase behavior of phytantriol/water bicontinuous cubic Pn3m cubosomes stabilized by laponite disc-like particles. J Colloid Interface Sci. 2010;342(2):392–8.

    Article  CAS  PubMed  Google Scholar 

  20. Rarokar NR, Saoji SD, Raut NA, Taksande JB, Khedekar PB, Dave VS. Nanostructured cubosomes in a thermoresponsive depot system: an alternative approach for the controlled delivery of docetaxel. AAPS PharmSciTech. 2016;17(2):436–45.

    Article  CAS  PubMed  Google Scholar 

  21. Salonen A, Moitzi C, Salentinig S, Glatter O. Material transfer in cubosome-emulsion mixtures: effect of alkane chain length. Langmuir. 2010;26(13):10670–6.

    Article  CAS  PubMed  Google Scholar 

  22. Nguyen TH, Hanley T, Porter CJ, Boyd BJ. Nanostructured liquid crystalline particles provide long duration sustained-release effect for a poorly water soluble drug after oral administration. Journal of controlled release : official journal of the Controlled Release Society. 2011;153(2):180–6.

    Article  CAS  Google Scholar 

  23. Gordon S, Young K, Wilson R, Rizwan S, Kemp R, Rades T, et al. Chitosan hydrogels containing liposomes and cubosomes as particulate sustained release vaccine delivery systems. J Liposome Res. 2012;22(3):193–204.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang J, Wang SL. Topical use of coenzyme Q (10)-loaded liposomes coated with trimethyl chitosan: tolerance, precorneal retention and anti-cataract effect. Int J Pharm. 2009;372(1–2):66–75.

    Article  CAS  PubMed  Google Scholar 

  25. Rattanapak T, Young K, Rades T, Hook S. Comparative study of liposomes, transfersomes, ethosomes and cubosomes for transcutaneous immunisation: characterisation and in vitro skin penetration. J Pharm Pharmacol. 2012;64(11):1560–9.

    Article  CAS  PubMed  Google Scholar 

  26. Karami Z, Hamidi M. Cubosomes: remarkable drug delivery potential. Drug Discov Today. 2016;21(5):789–801.

    Article  CAS  PubMed  Google Scholar 

  27. Murgia S, Bonacchi S, Falch AM, Lampis S, Lippolis V, Meli V, et al. Drug-loaded fluorescent cubosomes: versatile nanoparticles for potential theranostic applications. Langmuir. 2013;29(22):6673–9.

    Article  CAS  PubMed  Google Scholar 

  28. Dong YX, Dong P, Huang D, Mei LL, Xia YW, Wang ZH, et al. Fabrication and characterization of silk fibroin-coated liposomes for ocular drug delivery. Eur J Pharm Biopharm. 2015;91:82–90.

    Article  CAS  PubMed  Google Scholar 

  29. Falchi AM, Rosa A, Atzeri A, Incani A, Lampis S, Meli V, et al. Effects of monoolein-based cubosome formulations on lipid droplets and mitochondria of HeLa cells. Toxicol Res-Uk. 2015;4(4):1025–36.

    Article  CAS  Google Scholar 

  30. Huang D, Wang LL, Dong YX, Pan X, Li G, Wu CB. A novel technology using transscleral ultrasound to deliver protein loaded nanoparticles. Eur J Pharm Biopharm. 2014;88(1):104–15.

    Article  CAS  PubMed  Google Scholar 

  31. Baba K, Tanaka Y, Kubota A, Kasai H, Yokokura S, Nakanishi H, et al. A method for enhancing the ocular penetration of eye drops using nanoparticles of hydrolyzable dye. J Control Release. 2011;153(3):278–87.

    Article  CAS  PubMed  Google Scholar 

  32. Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems—a review (part 2). Trop J Pharm Res. 2013;12(2):265–73.

    Google Scholar 

  33. Pople PV, Singh KK. Development and evaluation of topical formulation containing solid lipid nanoparticles of vitamin A. Aaps Pharmscitech. 2006;7(4).

  34. Bhalekar MR, Pokharkar V, Madgulkar A, Patil N, Patil N. Preparation and evaluation of miconazole nitrate-loaded solid lipid nanoparticles for topical delivery. AAPS PharmSciTech. 2009;10(1):289–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li J, Wu L, Wu W, Wang B, Wang Z, Xin H, et al. A potential carrier based on liquid crystal nanoparticles for ophthalmic delivery of pilocarpine nitrate. Int J Pharm. 2013;455(1–2):75–84.

    Article  CAS  PubMed  Google Scholar 

  36. Yang ZW, Tan YH, Chen MW, Dian LH, Shan ZY, Peng XS, et al. Development of amphotericin B-loaded cubosomes through the SolEmuls technology for enhancing the oral bioavailability. AAPS PharmSciTech. 2012;13(4):1483–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fong WK, Hanley T, Boyd BJ. Stimuli responsive liquid crystals provide “on-demand” drug delivery in vitro and in vivo. J Control Release. 2009;135(3):218–26.

    Article  CAS  PubMed  Google Scholar 

  38. Han S, Shen JQ, Gan Y, Geng HM, Zhang XX, Zhu CL, et al. Novel vehicle based on cubosomes for ophthalmic delivery of flurbiprofen with low irritancy and high bioavailability. Acta Pharmacol Sin. 2010;31(8):990–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Siekmann B, Bunjes H, Koch MH, Westesen K. Preparation and structural investigations of colloidal dispersions prepared from cubic monoglyceride-water phases. Int J Pharm. 2002;244(1–2):33–43.

    Article  CAS  PubMed  Google Scholar 

  40. Li X, Nie SF, Kong J, Li N, Ju CY, Pan WS. A controlled-release ocular delivery system for ibuprofen based on nanostructured lipid carriers. Int J Pharm. 2008;363(1–2):177–82.

    Article  CAS  PubMed  Google Scholar 

  41. Zhen GL, Hinton TM, Muir BW, Shi SN, Tizard M, McLean KM, et al. glycerol monooleate-based nanocarriers for siRNA delivery in vitro. Mol Pharm. 2012;9(9):2450–7.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

We thank Chen Li, Thien Tran, and Maizbha Uddin Ahmed (Monash University) for their critical discussion and manuscript revision and Yanjie Chen, Songfeng Chen, Bingyi Chen, and Kangyan Chen (Sun Yat-sen University) for their experimental assistance. This work is supported by the Science and Technology Foundation, Guangzhou, China (Grant No. 201509030006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Huang or Xin Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Peng, T., Li, Y. et al. Ocular Cubosome Drug Delivery System for Timolol Maleate: Preparation, Characterization, Cytotoxicity, Ex Vivo, and In Vivo Evaluation. AAPS PharmSciTech 18, 2919–2926 (2017). https://doi.org/10.1208/s12249-017-0763-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0763-8

KEY WORDS

Navigation