Skip to main content

Advertisement

Log in

Preparation Nanocrystals of Poorly Soluble Plant Compounds Using an Ultra-Small-Scale Approach

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The usage of downscaling technology for producing nanosuspensions/nanocrystals can be beneficial for formulation development, which has attracted increased attention recently. An ultra-small bead milling method (5 mg compound per batch, smallest scale to date) was tested to produce nanocrystals of four poorly soluble plant compounds, i.e., quercetin, rutin, resveratrol, and hesperidin. A particle size of ranged from 200 to 500 nm was obtained for nanosuspensions of four compounds and the stabilizer selection could be achieved within 2 h by using this ultra-small bead milling method. Six months stability was observed for selected samples. In addition, the scalability of the ultra-small lab-scale milling was confirmed when it was conducted under optimal conditions. A simple and fast ultra-small-scale approach for nanosuspension production was established. Freeze-drying was applied to convert nanosuspensions into solid forms. Finally, freeze-dried intermediates with good redispersity and physical stability were obtained, which could be used for further application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu T, Muller RH, Moschwitzer JP. Effect of drug physico-chemical properties on the efficiency of top-down process and characterization of nanosuspension. Expert Opin Drug Deliv. 2015;12(11):1741–54. doi:10.1517/17425247.2015.1057566.

    Article  CAS  PubMed  Google Scholar 

  2. Sinha B, Muller RH, Moschwitzer JP. Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size. Int J Pharm. 2013;453(1):126–41. doi:10.1016/j.ijpharm.2013.01.019.

    Article  CAS  PubMed  Google Scholar 

  3. Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;3(9):785–96. doi:10.1038/nrd1494.

    Article  CAS  PubMed  Google Scholar 

  4. Merisko-Liversidge E, Liversidge GG. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev. 2011;63(6):427–40. doi:10.1016/j.addr.2010.12.007.

    Article  CAS  PubMed  Google Scholar 

  5. Ghosh I, Bose S, Vippagunta R, Harmon F. Nanosuspension for improving the bioavailability of a poorly soluble drug and screening of stabilizing agents to inhibit crystal growth. Int J Pharm. 2011;409(1-2):260–8. doi:10.1016/j.ijpharm.2011.02.051.

    Article  CAS  PubMed  Google Scholar 

  6. Van Eerdenbrugh B, Van den Mooter G, Augustijns P. Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm. 2008;364(1):64–75. doi:10.1016/j.ijpharm.2008.07.023.

    Article  PubMed  Google Scholar 

  7. Liedtke S, Wissing S, Muller RH, Mader K. Influence of high pressure homogenisation equipment on nanodispersions characteristics. Int J Pharm. 2000;196(2):183–5.

    Article  CAS  PubMed  Google Scholar 

  8. Lestari ML, Muller RH, Moschwitzer JP. Systematic screening of different surface modifiers for the production of physically stable nanosuspensions. J Pharm Sci. 2015;104(3):1128–40. doi:10.1002/jps.24266.

    Article  CAS  Google Scholar 

  9. Kesisoglou F, Panmai S, Wu Y. Nanosizing--oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev. 2007;59(7):631–44. doi:10.1016/j.addr.2007.05.003.

    Article  CAS  PubMed  Google Scholar 

  10. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, et al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science. 1997;275(5297):218–20.

    Article  CAS  PubMed  Google Scholar 

  11. Lin JP, Yang JS, Lin JJ, Lai KC, Lu HF, Ma CY, et al. Rutin inhibits human leukemia tumor growth in a murine xenograft model in vivo. Environ Toxicol. 2012;27(8):480–4. doi:10.1002/tox.20662.

    Article  CAS  PubMed  Google Scholar 

  12. Murakami A, Ashida H, Terao J. Multitargeted cancer prevention by quercetin. Cancer Lett. 2008;269(2):315–25. doi:10.1016/j.canlet.2008.03.046.

    Article  CAS  PubMed  Google Scholar 

  13. Etcheverry SB, Ferrer EG, Naso L, Rivadeneira J, Salinas V, Williams PA. Antioxidant effects of the VO(IV) hesperidin complex and its role in cancer chemoprevention. J Biol Inorg Chem. 2008;13(3):435–47. doi:10.1007/s00775-007-0332-9.

    Article  CAS  PubMed  Google Scholar 

  14. Liu T, Muller RH, Moschwitzer JP. Systematical investigation of a combinative particle size reduction technology for production of resveratrol nanosuspensions. AAPS PharmSciTech. 2016. doi:10.1208/s12249-016-0612-1.

    Google Scholar 

  15. Mauludin R, Muller RH, Keck CM. Development of an oral rutin nanocrystal formulation. Int J Pharm. 2009;370(1-2):202–9. doi:10.1016/j.ijpharm.2008.11.029.

    Article  CAS  PubMed  Google Scholar 

  16. Romero GB, Chen R, Keck CM, Muller RH. Industrial concentrates of dermal hesperidin smartCrystals(R)—production, characterization & long-term stability. Int J Pharm. 2015;482(1-2):54–60. doi:10.1016/j.ijpharm.2014.11.039.

    Article  CAS  PubMed  Google Scholar 

  17. Sahoo NG, Kakran M, Shaal LA, Li L, Muller RH, Pal M, et al. Preparation and characterization of quercetin nanocrystals. J Pharm Sci. 2011;100(6):2379–90. doi:10.1002/jps.22446.

    Article  CAS  PubMed  Google Scholar 

  18. Hao J, Gao Y, Zhao J, Zhang J, Li Q, Zhao Z, et al. Preparation and optimization of resveratrol nanosuspensions by antisolvent precipitation using Box-Behnken design. AAPS PharmSciTech. 2015;16(1):118–28. doi:10.1208/s12249-014-0211-y.

    Article  CAS  PubMed  Google Scholar 

  19. Lee MK, Kim MY, Kim S, Lee J. Cryoprotectants for freeze drying of drug nano-suspensions: effect of freezing rate. J Pharm Sci. 2009;98(12):4808–17. doi:10.1002/jps.21786.

    Article  CAS  PubMed  Google Scholar 

  20. Gao L, Zhang D, Chen M, Duan C, Dai W, Jia L, et al. Studies on pharmacokinetics and tissue distribution of oridonin nanosuspensions. Int J Pharm. 2008;355(1-2):321–7. doi:10.1016/j.ijpharm.2007.12.016.

    Article  CAS  PubMed  Google Scholar 

  21. Lee J, Cheng Y. Critical freezing rate in freeze drying nanocrystal dispersions. J Control Release. 2006;111(1-2):185–92. doi:10.1016/j.jconrel.2005.12.003.

    Article  CAS  PubMed  Google Scholar 

  22. Van Eerdenbrugh B, Vermant J, Martens JA, Froyen L, Van Humbeeck J, Augustijns P, et al. A screening study of surface stabilization during the production of drug nanocrystals. J Pharm Sci. 2009;98(6):2091–103. doi:10.1002/jps.21563.

    Article  PubMed  Google Scholar 

  23. Moschwitzer JP. Drug nanocrystals in the commercial pharmaceutical development process. Int J Pharm. 2013;453(1):142–56. doi:10.1016/j.ijpharm.2012.09.034.

    Article  PubMed  Google Scholar 

  24. Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci. 2003;18(2):113–20.

    Article  CAS  PubMed  Google Scholar 

  25. Ain-Ai A, Gupta PK. Effect of arginine hydrochloride and hydroxypropyl cellulose as stabilizers on the physical stability of high drug loading nanosuspensions of a poorly soluble compound. Int J Pharm. 2008;351(1-2):282–8. doi:10.1016/j.ijpharm.2007.09.029.

    Article  CAS  PubMed  Google Scholar 

  26. Van Eerdenbrugh B, Froyen L, Van Humbeeck J, Martens JA, Augustijns P, Van den Mooter G. Drying of crystalline drug nanosuspensions-the importance of surface hydrophobicity on dissolution behavior upon redispersion. Eur J Pharm Sci. 2008;35(1-2):127–35. doi:10.1016/j.ejps.2008.06.009.

    Article  PubMed  Google Scholar 

  27. Keck CM. Particle size analysis of nanocrystals: improved analysis method. Int J Pharm. 2010;390(1):3–12. doi:10.1016/j.ijpharm.2009.08.042.

    Article  CAS  PubMed  Google Scholar 

  28. Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev. 2006;58(15):1688–713. doi:10.1016/j.addr.2006.09.017.

    Article  CAS  PubMed  Google Scholar 

  29. Salazar J, Muller RH, Moschwitzer JP. Performance comparison of two novel combinative particle-size-reduction technologies. J Pharm Sci. 2013;102(5):1636–49. doi:10.1002/jps.23475.

    Article  CAS  PubMed  Google Scholar 

  30. Kayaert P, Van den Mooter G. Is the amorphous fraction of a dried nanosuspension caused by milling or by drying? A case study with Naproxen and Cinnarizine. Eur J Pharm Biopharm. 2012;81(3):650–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the Shandong Provincial Natural Science Foundation, China (No. ZR2014HP023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Yao, G., Liu, X. et al. Preparation Nanocrystals of Poorly Soluble Plant Compounds Using an Ultra-Small-Scale Approach. AAPS PharmSciTech 18, 2610–2617 (2017). https://doi.org/10.1208/s12249-017-0742-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0742-0

KEY WORDS

Navigation