Skip to main content

Advertisement

Log in

Using Supercritical Fluid Technology (SFT) in Preparation of Tacrolimus Solid Dispersions

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Tacrolimus is an immunosuppressant agent that suffers from poor and variable bioavailability. This can be related to limited solubility and dissolution. The main objective of this study is to use SFT to prepare solid dispersions of tacrolimus in order to enhance its dissolution. SFT was selected since it offers several advantages over conventional techniques such as efficiency and stability. Several solid dispersions of tacrolimus were prepared using SFT to enhance its dissolution. The selected polymers included soluplus, PVP, HPMC, and porous chitosan. TPGS was used as a surfactant additive with chitosan, HPMC, and PVP. Soluplus dispersions were used to study the effect of processing parameters (time, temperature, and pressure) on loading efficiency (LE) and dissolution of the preparation. Physicochemical characterization was performed using DSC, X-ray diffraction, FTIR analysis, SEM, and in vitro drug release. Stability testing was evaluated after 3 months for selected dispersions. Significant improvement for the release profile was achieved for the prepared dispersions. Better release achieved in the soluplus dispersions which reached maximum cumulative release equal to 98.76% after 24 h. Drug precipitated in its amorphous form in all prepared dispersions except those prepared from chitosan. All dispersions were physically stable except for PVP preparations that contained TPGS which started to re-crystallize after one month. Prepared dispersions were proved to be affected by supercritical processing parameters. In conclusion, SFT was successfully used to prepare dispersions of tacrolimus that exhibited higher dissolution than raw drug. Dissolution rate and stability are affected by the type of the polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Watts AB, Cline AM, Saad AR, Johnson SB, Peters JI, Williams RO. Characterization and pharmacokinetic analysis of tacrolimus dispersion for nebulization in a lung transplanted rodent model. Int J Pharm. 2010;384(1):46–52.

    Article  CAS  PubMed  Google Scholar 

  2. Park YJ, Ryu DS, Li DX, Quan QZ, Oh DH, Kim JO, et al. Physicochemical characterization of tacrolimus-loaded solid dispersion with sodium carboxylmethyl cellulose and sodium lauryl sulfate. Arch Pharm Res. 2009;32(6):893–8.

    Article  CAS  PubMed  Google Scholar 

  3. Shin SB, Cho HY, Kim DD, Choi HG, Lee YB. Preparation and evaluation of tacrolimus-loaded nanoparticles for lymphatic delivery. Eur J Pharm Biopharm. 2010;74(2):164–71.

    Article  CAS  PubMed  Google Scholar 

  4. Sinswat P, Overhoff KA, McConville JT, Johnston KP, Williams RO. Nebulization of nanoparticulate amorphous or crystalline tacrolimus–single-dose pharmacokinetics study in mice. Eur J Pharm Biopharm. 2008;69(3):1057–66.

    Article  CAS  PubMed  Google Scholar 

  5. Tamura S, Ohike A, Ibuki R, Amidon GL, Yamashita S. Tacrolimus is a class II low‐solubility high‐permeability drug: the effect of P‐glycoprotein efflux on regional permeability of tacrolimus in rats. J Pharm Sci. 2002;91(3):719–29.

    Article  CAS  PubMed  Google Scholar 

  6. Pandya P, Gattani S, Jain P, Khirwal L, Surana S. Co-solvent evaporation method for enhancement of solubility and dissolution rate of poorly aqueous soluble drug simvastatin: in vitro–in vivo evaluation. AAPS PharmSciTech. 2008;9(4):1247–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shinde SS, Patil SS, Mevekari FI, Satpute AS. An approach for solubility enhancement: solid dispersion. Int J Adv Pharm Sci. 2010;1(3):299–308.

    CAS  Google Scholar 

  8. Sinha S, Ali M, Baboota S, Ahuja A, Kumar A, Ali J. Solid dispersion as an approach for bioavailability enhancement of poorly water-soluble drug ritonavir. AAPS PharmSciTech. 2010;11(2):518–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sarode AL, Sandhu H, Shah N, Malick W, Zia H. Hot melt extrusion (HME) for amorphous solid dispersions: predictive tools for processing and impact of drug–polymer interactions on supersaturation. Eur J Pharm Sci. 2013;48(3):371–84.

    Article  CAS  PubMed  Google Scholar 

  10. Betageri GV, Makarla KR. Enhancement of dissolution of glyburide by solid dispersion and lyophilization techniques. Int J Pharm. 1995;126(1):155–60.

    Article  CAS  Google Scholar 

  11. Seo A, Holm P, Kristensen HG, Schæfer T. The preparation of agglomerates containing solid dispersions of diazepam by melt agglomeration in a high shear mixer. Int J Pharm. 2003;259(1):161–71.

    Article  CAS  PubMed  Google Scholar 

  12. Jung JY, Yoo SD, Lee SH, Kim KH, Yoon DS, Lee KH. Enhanced solubility and dissolution rate of itraconazole by a solid dispersion technique. Int J Pharm. 1999;187(2):209–18.

    Article  CAS  PubMed  Google Scholar 

  13. Yang G, Zhao Y, Feng N, Zhang Y, Liu Y, Dang B. Improved dissolution and bioavailability of silymarin delivered by a solid dispersion prepared using supercritical fluids. Asian J Pharm Sci. 2015;10:194–202.

    Article  Google Scholar 

  14. Kim MS, Kim JS, Park HJ, Cho WK, Cha KH, Hwang SJ. Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process. Int J Nanomedicine. 2011;6:2997–3009.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Singh MC, Sayyad AB, Sawant SD. Review on various techniques of solubility enhancement of poorly soluble drugs with special emphasis on solid dispersion. J Pharm Res. 2010;3(10):2494–501.

    CAS  Google Scholar 

  16. Das SK, Roy S, Kalimuthu Y, Khanam J, Nanda A. Solid dispersions: an approach to enhance the bioavailability of poorly water-soluble drugs. Int J Pharm Pharm Technol. 2012;1(1):37–46.

    Google Scholar 

  17. Sridhar I, Doshi A, Joshi B, Wankhede V, Doshi J. Solid dispersions: an approach to enhance solubility of poorly water soluble drug. J Sci Innov Res. 2013;2(3):685–94.

    Google Scholar 

  18. Nakamichi K, Yasuura H, Kukui H, Oka M, Izumi S, Andou T, et al. New preparation method of solid dispersion by twin screw extruder. Pharm Technol Jpn. 1996;12:715–29.

    CAS  Google Scholar 

  19. Obaidat RM, Tashtoush BM, Bayan MF, Al Bustami RT, Alnaief M. Drying using supercritical fluid technology as a potential method for preparation of chitosan aerogel microparticles. AAPS PharmSciTech. 2015;16(6):1235–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Berche B, Henkel M, Kenna R. Critical phenomena: 150 years since Cagniard de la Tour. J Phys Stud. 2009;13(3):3201–9.

    Google Scholar 

  21. Hannay JB, Hogarth J. On the solubility of solids in gases. Sci Am. 1880;9:3585–6.

    Article  Google Scholar 

  22. Yasuji T, Takeuchi H, Kawashima Y. Particle design of poorly water-soluble drug substances using supercritical fluid technologies. Adv Drug Deliv Rev. 2008;60(3):388–98.

    Article  CAS  PubMed  Google Scholar 

  23. Pasquali I, Bettini R, Giordano F. Supercritical fluid technologies: an innovative approach for manipulating the solid-state of pharmaceuticals. Adv Drug Deliv Rev. 2008;60(3):399–410.

    Article  CAS  PubMed  Google Scholar 

  24. Lim RT, Ng WK, Tan RB. Amorphization of pharmaceutical compound by co-precipitation using supercritical anti-solvent (SAS) process (Part I). J Supercrit Fluids. 2010;53(1):179–84.

    Article  CAS  Google Scholar 

  25. Prajapati D, Gohain M. Recent advances in the application of supercritical fluids for carbon–carbon bond formation in organic synthesis. Tetrahedron. 2004;60(4):815–33.

    Article  CAS  Google Scholar 

  26. Alavi SH, Rizvi SS, Harriott P. Process dynamics of starch-based microcellular foams produced by supercritical fluid extrusion. I: model development. Food Res Int. 2003;36(4):309–19.

    Article  CAS  Google Scholar 

  27. Gross J, Coronado PR, Hrubesh LW. Elastic properties of silica aerogels from a new rapid supercritical extraction process. J Non-Cryst Solids. 1998;225:282–6.

    Article  CAS  Google Scholar 

  28. Park J, Cho W, Cha KH, Ahn J, Han K, Hwang SJ. Solubilization of the poorly water soluble drug, telmisartan, using supercritical anti-solvent (SAS) process. Int J Pharm. 2013;441(1):50–5.

    Article  CAS  PubMed  Google Scholar 

  29. Lim RT, Ng WK, Widjaja E, Tan RB. Comparison of the physical stability and physicochemical properties of amorphous indomethacin prepared by co-milling and supercritical anti-solvent co-precipitation. J Supercrit Fluids. 2013;79:186–201.

    Article  CAS  Google Scholar 

  30. Edwards AD, Shekunov BY, Kordikowski A, Forbes RT, York P. Crystallization of pure anhydrous polymorphs of carbamazepine by solution enhanced dispersion with supercritical fluids (SEDS™). J Pharm Sci. 2001;90(8):1115–24.

    Article  CAS  PubMed  Google Scholar 

  31. Van den Mooter G, Augustijns P, Blaton N, Kinget R. Physico-chemical characterization of solid dispersions of temazepam with polyethylene glycol 6000 and PVP K30. Int J Pharm. 1998;164(1):67–80.

    Article  Google Scholar 

  32. Sethia S, Squillante E. Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int J Pharm. 2004;272(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  33. Frizon F, de Oliveira EJ, Donaduzzi CM, Mitsui ML, Marchetti JM. Dissolution rate enhancement of loratadine in polyvinylpyrrolidone K-30 solid dispersions by solvent methods. Powder Technol. 2013;235:532–9.

    Article  CAS  Google Scholar 

  34. Pham AT, Lee PI. Probing the mechanisms of drug release from hydroxypropylmethyl cellulose matrices. Pharm Res. 1994;11(10):1379–84.

    Article  CAS  PubMed  Google Scholar 

  35. Oh MJ, Shim JB, Yoo H, Lee GY, Jo H, Jeong SM, et al. The dissolution property of raloxifene HCl solid dispersion using hydroxypropyl methylcellulose. Macromol Res. 2012;20(8):835–41.

    Article  CAS  Google Scholar 

  36. Nagy ZK, Balogh A, Vajna B, Farkas A, Patyi G, Kramarics Á, et al. Comparison of electrospun and extruded soluplus®‐based solid dosage forms of improved dissolution. J Pharm Sci. 2012;101(1):322–32.

    Article  CAS  PubMed  Google Scholar 

  37. Hardung H, Djuric D, Ali S. Combining HME & solubilization: Soluplus®—the solid solution. Drug Deliv Technol. 2010;10(3):20–7.

    CAS  Google Scholar 

  38. Portero A, Remunan-Lopez C, Vila-Jato JL. Effect of chitosan and chitosan glutamate enhancing the dissolution properties of the poorly water soluble drug nifedipine. Int J Pharm. 1998;175(1):75–84.

    Article  CAS  Google Scholar 

  39. Fukuda M, Peppas NA, McGinity JW. Properties of sustained release hot-melt extruded tablets containing chitosan and xanthan gum. Int J Pharm. 2006;310(1):90–100.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Z, Tan S, Feng SS. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials. 2012;33(19):4889–906.

    Article  CAS  PubMed  Google Scholar 

  41. Shin SC, Kim J. Physicochemical characterization of solid dispersion of furosemide with TPGS. Int J Pharm. 2003;251(1):79–84.

    Article  CAS  PubMed  Google Scholar 

  42. Obaidat R, Al-Jbour N, Al-Sou’d K, Sweidan K, Al-Remawi M, Badwan A. Some physico-chemical properties of low molecular weight chitosans and their relationship to conformation in aqueous solution. J Solut Chem. 2010;39(4):575–88.

    Article  CAS  Google Scholar 

  43. Fule R, Meer T, Sav A, Amin P. Solubility and dissolution rate enhancement of lumefantrine using hot melt extrusion technology with physicochemical characterisation. J Pharm Invest. 2013;43(4):305–21.

    Article  CAS  Google Scholar 

  44. Yamashita K, Nakate T, Okimoto K, Ohike A, Tokunaga Y, Ibuki R, et al. Establishment of new preparation method for solid dispersion formulation of tacrolimus. Int J Pharm. 2003;267(1):79–91.

    Article  CAS  PubMed  Google Scholar 

  45. Shi Q, Li J, Ding F. Development and validation of method for the determination of related substances of Tacrolimus in Tacrolimus capsules and degradation studies. Int J ChemTech Res. 2012;4:1543–52.

    CAS  Google Scholar 

  46. Shoaib MH, Tazeen J, Merchant HA, Yousuf RI. Evaluation of drug release kinetics from ibuprofen matrix tablets using HPMC. Pak J Pharm Sci. 2006;19(2):119–24.

    CAS  PubMed  Google Scholar 

  47. Parize AL, Stulzer HK, Laranjeira MC, Brighente IM, Souza TC. Evaluation of chitosan microparticles containing curcumin and crosslinked with sodium tripolyphosphate produced by spray drying. Quim Nova. 2012;35(6):1127–32.

    Article  CAS  Google Scholar 

  48. Riekes MK, Kuminek G, Rauber GS, de Campos CE, Bortoluzzi AJ, Stulzer HK. HPMC as a potential enhancer of nimodipine biopharmaceutical properties via ball-milled solid dispersions. Carbohydr Polym. 2014;99:474–82.

    Article  CAS  PubMed  Google Scholar 

  49. Goddeeris C, Willems T, Houthoofd K, Martens JA, Van den Mooter G. Dissolution enhancement of the anti-HIV drug UC 781 by formulation in a ternary solid dispersion with TPGS 1000 and Eudragit E100. Eur J Pharm Biopharm. 2008;70(3):861–8.

    Article  CAS  PubMed  Google Scholar 

  50. Patel PV, Panchal SS, Mehta TA. Improvement of dissolution rate of tacrolimus by solid dispersion technique. J Pharm Investig. 2013;43(1):45–53.

    Article  CAS  Google Scholar 

  51. Silva SML, Braga CRC, Fook MVL, Raposo CMO, Carvalho LH, Canedo EL. Application of infrared spectroscopy to analysis of chitosan/clay nanocomposites. In: Theophanides T, editor. Infrared spectroscopy - materials science, engineering and technology. Croatia: InTech; 2012. p. 43–62.

  52. Islam MM, Masum SM, Rahman MM, Molla MA, Shaikh AA, Roy SK. Preparation of chitosan from shrimp shell and investigation of its properties. Int J Basic Appl Sci. 2011;11(1):116–30.

    Google Scholar 

  53. Yu H, Xia D, Zhu Q, Zhu C, Chen D, Gan Y. Supersaturated polymeric micelles for oral cyclosporine A delivery. Eur J Pharm Biopharm. 2013;85(3):1325–36.

    Article  CAS  PubMed  Google Scholar 

  54. Joe JH, Lee WM, Park YJ, Joe KH, Oh DH, Seo YG, et al. Effect of the solid-dispersion method on the solubility and crystalline property of tacrolimus. Int J Pharm. 2010;395(1):161–6.

    Article  CAS  PubMed  Google Scholar 

  55. Yoshida T, Kurimoto I, Yoshihara K, Umejima H, Ito N, Watanabe S, et al. Aminoalkyl methacrylate copolymers for improving the solubility of tacrolimus. I: evaluation of solid dispersion formulations. Int J Pharm. 2012;428(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  56. Zidan AS, Rahman Z, Sayeed V, Raw A, Yu L, Khan MA. Crystallinity evaluation of tacrolimus solid dispersions by chemometric analysis. Int J Pharm. 2012;423(2):341–50.

    Article  CAS  PubMed  Google Scholar 

  57. Ha JM, Kang SY, Park CW, Bin SA, Rhee YS, Seo JW, et al. Effect of poloxamer on physicochemical properties of tacrolimus solid dispersion improving water solubility and dissolution rate. J Pharm Investig. 2012;42(4):171–6.

    Article  CAS  Google Scholar 

  58. Kittur FS, Prashanth KH, Sankar KU, Tharanathan RN. Characterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry. Carbohydr Polym. 2002;49(2):185–93.

    Article  CAS  Google Scholar 

  59. Zhang CH, Zhao BX, Huang Y, Wang Y, Ke XY, Zhao BJ, et al. A novel domperidone hydrogel: preparation, characterization, pharmacokinetic, and pharmacodynamic properties. J Drug Deliv. 2011;2011:1–9.

    Article  Google Scholar 

  60. Kiss D, Zelkó R, Novák C, Éhen Z. Application of DSC and NIRS to study the compatibility of metronidazole with different pharmaceutical excipients. J Therm Anal Calorim. 2006;84(2):447–51.

    Article  CAS  Google Scholar 

  61. Gong K, Rehman IU, Darr JA. Characterization and drug release investigation of amorphous drug–hydroxypropyl methylcellulose composites made via supercritical carbon dioxide assisted impregnation. J Pharm Biomed Anal. 2008;48(4):1112–9.

    Article  CAS  PubMed  Google Scholar 

  62. Gong K, Darr JA, Rehman IU. Supercritical fluid assisted impregnation of indomethacin into chitosan thermosets for controlled release applications. Int J Pharm. 2006;315(1):93–8.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang K, Yu H, Luo Q, Yang S, Lin X, Zhang Y, et al. Increased dissolution and oral absorption of itraconazole/Soluplus extrudate compared with itraconazole nanosuspension. Eur J Pharm Biopharm. 2013;85(3):1285–92.

    Article  CAS  PubMed  Google Scholar 

  64. Shamma RN, Basha M. Soluplus®: a novel polymeric solubilizer for optimization of Carvedilol solid dispersions: formulation design and effect of method of preparation. Powder Technol. 2013;237:406–14.

    Article  CAS  Google Scholar 

  65. Thakral NK, Ray AR, Majumdar DK. Eudragit S-100 entrapped chitosan microspheres of valdecoxib for colon cancer. J Mater Sci Mater Med. 2010;21(9):2691–9.

    Article  CAS  PubMed  Google Scholar 

  66. Linn M, Collnot EM, Djuric D, Hempel K, Fabian E, Kolter K, et al. Soluplus® as an effective absorption enhancer of poorly soluble drugs in vitro and in vivo. Eur J Pharm Sci. 2012;45(3):336–43.

    Article  CAS  PubMed  Google Scholar 

  67. Mendiratta C, Kadam V, Pokharkar V. Lansoprazole solid dispersion using a novel amphiphillic polymer Soluplus®. J Chem Pharm Res. 2011;3:536–43.

    CAS  Google Scholar 

  68. Hughey JR, Keen JM, Miller DA, Kolter K, Langley N, McGinity JW. The use of inorganic salts to improve the dissolution characteristics of tablets containing Soluplus®-based solid dispersions. Eur J Pharm Sci. 2013;48(4):758–66.

    Article  CAS  PubMed  Google Scholar 

  69. Uzun İN, Sipahigil O, Dinçer S. Coprecipitation of Cefuroxime Axetil–PVP composite microparticles by batch supercritical antisolvent process. J Supercrit Fluids. 2011;55(3):1059–69.

    Article  CAS  Google Scholar 

  70. Shavi GV, Kumar AR, Usha YN, Armugam K, Ranjan O, Ginjupalli K, et al. Enhanced dissolution and bioavailability of gliclazide using solid dispersion techniques. Int J Drug Deliv. 2010;2(1):49–57.

    Article  CAS  Google Scholar 

  71. Ha ES, Baek IH, Cho W, Hwang SJ, Kim MS. Preparation and evaluation of solid dispersion of atorvastatin calcium with Soluplus® by spray drying technique. Chem Pharm Bull. 2014;62(6):545–51.

    Article  CAS  PubMed  Google Scholar 

  72. Gong K, Viboonkiat R, Rehman IU, Buckton G, Darr JA. Formation and characterization of porous indomethacin‐PVP coprecipitates prepared using solvent‐free supercritical fluid processing. J Pharm Sci. 2005;94(12):2583–90.

    Article  CAS  PubMed  Google Scholar 

  73. Braga ME, Costa VP, Pereira MJ, Fiadeiro PT, Gomes AP, Duarte CM, et al. Effects of operational conditions on the supercritical solvent impregnation of acetazolamide in Balafilcon A commercial contact lenses. Int J Pharm. 2011;420(2):231–43.

    Article  CAS  PubMed  Google Scholar 

  74. Kikic I. Polymer–supercritical fluid interactions. J Supercrit Fluids. 2009;47(3):458–65.

    Article  CAS  Google Scholar 

  75. Durling NE, Catchpole OJ, Tallon SJ, Grey JB. Measurement and modelling of the ternary phase equilibria for high pressure carbon dioxide–ethanol–water mixtures. Fluid Phase Equilib. 2007;252(1):103–13.

    Article  CAS  Google Scholar 

  76. Hussein Kh, Türk M, Wahl M. Preparation and evaluation of drug / ß-Cyclodextrin solid inclusion complexes by supercritical fluid technology. Proceedings of the 9th Meeting on SCF’s, Trieste, Italy, June 13–16, 2004.

  77. Díez-Municio M, Montilla A, Herrero M, Olano A, Ibáñez E. Supercritical CO 2 impregnation of lactulose on chitosan: a comparison between scaffolds and microspheres form. J Supercrit Fluids. 2011;57(1):73–9.

    Article  Google Scholar 

  78. Yañez F, Martikainen L, Braga ME, Alvarez-Lorenzo C, Concheiro A, Duarte CM, et al. Supercritical fluid-assisted preparation of imprinted contact lenses for drug delivery. Acta Biomater. 2011;7(3):1019–30.

    Article  PubMed  Google Scholar 

  79. Sambath L, Muthu AK, Kumar MA. Soluplus complexation influence the release of lovastatin from porous osmotic pump tablet. World J Pharm Pharm Sci. 2013;2(5):3506–21.

    CAS  Google Scholar 

  80. Khan AW, Kotta S, Ansari SH, Sharma RK, Ali J. Enhanced dissolution and bioavailability of grapefruit flavonoid Naringenin by solid dispersion utilizing fourth generation carrier. Drug Dev Ind Pharm. 2015;41(5):772–9.

    Article  CAS  PubMed  Google Scholar 

  81. Mitra A, Dey B. Chitosan microspheres in novel drug delivery systems. Ind J Pharm Sci. 2011;73(4):355–66.

    CAS  Google Scholar 

  82. Mi FL, Wong TB, Shyu SS, Chang SF. Chitosan microspheres: modification of polymeric chem‐physical properties of spray‐dried microspheres to control the release of antibiotic drug. J Appl Polym Sci. 1999;71(5):747–59.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Jordan University of Science and Technology (Grant number 140/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rana M. Obaidat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obaidat, R.M., Tashtoush, B.M., Awad, A.A. et al. Using Supercritical Fluid Technology (SFT) in Preparation of Tacrolimus Solid Dispersions. AAPS PharmSciTech 18, 481–493 (2017). https://doi.org/10.1208/s12249-016-0492-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0492-4

KEY WORDS

Navigation