Skip to main content
Log in

Pluronic F68-Linoleic Acid Nano-spheres Mediated Delivery of Gambogic Acid for Cancer Therapy

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Gambogic acid (GA), a natural compound from gamboge resin, has been introduced as a promising antitumor drug contributing to its broad spectrum of antitumor activity. However, the poor aqueous solubility and short half-life hinder its clinical application. Pluronic F68 (F68) is a well-known amphiphilic block copolymer consisting of hydrophobic propylene oxide units and hydrophilic ethylene oxide. Although F68 has an amphiphilic structure, its short propylene oxide segment limits its dilution stability and drug-loading capacity. To overcome this limitation, we modified F68 by conjugating linoleic acid, a hydrophobic fatty acid, to increase the hydrophilic-hydrophobic interaction and thus improve the stability of F68 nano-spheres. This F68-linoleic acid (F68-LA) conjugate was synthesized and was used to load GA to improve its anticancer effects. GA-loaded F68-LA nano-spheres were stable for 6 days, with a mean diameter of 159.3 nm and zeta potential of −23.2 mV. The entrapment efficiency of GA in F68-LA nano-spheres was as high as 92.0%. Furthermore, F68-LA/GA nano-spheres exhibited an enhanced cytotoxic activity and proapoptotic effect against human ovarian cancer A2780 cells, compared with free GA. Our results showed that the F68-LA/GA nano-spheres might be a promising cancer-targeted drug delivery system in ovarian cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Duan DZ, Zhang BX, Yao J, Liu YP, Sun JY, Ge CP, et al. Gambogic acid induces apoptosis in hepatocellular carcinoma SMMC-7721 cells by targeting cytosolic thioredoxin reductase. Free Radic Biol Med. 2014;69:15–25.

    Article  CAS  PubMed  Google Scholar 

  2. Zhen YZ, Lin YJ, Li KJ, Yang XS, Zhao YF, Wei J, et al. Gambogic acid lysinate induces apoptosis in breast cancer MCF-7 cells by increasing reactive oxygen species. Evid Based Complement Alternat Med. 2015;2015:842091.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang HY, Lei YL, Yuan P, Li LJ, Luo C, Gao R, et al. ROS-mediated autophagy induced by dysregulation of lipid metabolism plays a protective role in colorectal cancer cells treated with gambogic acid. Plos One. 2014;9:e96418.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zou ZY, Wei J, Li XL, Yu LX, Wang TT, Qian XP, et al. Enhancement of anticancer efficacy of chemotherapeutics by gambogic acid against gastric cancer cells. Cancer Biother Radiopharm. 2012;27:299–306.

    Article  CAS  PubMed  Google Scholar 

  5. Yang LJ, Chen Y. New targets for the antitumor activity of gambogic acid in hematologic malignancies. Acta Pharmacol Sin. 2013;34:191–8.

    Article  CAS  PubMed  Google Scholar 

  6. Qiang L, Yang Y, You QD, Ma YJ, Yang L, Nie FF, et al. Inhibition of glioblastoma growth and angiogenesis by gambogic acid: an in vitro and in vivo study. Biochem Pharmacol. 2008;75:1083–92.

    Article  CAS  PubMed  Google Scholar 

  7. Yang Y, Yang L, You QD, Nie FF, Gu HY, Zhao L, et al. Differential apoptotic induction of gambogic acid, a novel anticancer natural product, on hepatoma cells and normal hepatocytes. Cancer Lett. 2007;256:259–66.

    Article  CAS  PubMed  Google Scholar 

  8. Yin DK, Yang Y, Cai HX, Wang F, Peng DY, He LQ. Gambogic acid-loaded electrosprayed particles for site-specific treatment of hepatocellular carcinoma. Mol Pharm. 2014;11:4107–17.

    Article  CAS  PubMed  Google Scholar 

  9. Liu YT, Hao K, Liu XQ, Wang GJ. Metabolism and metabolic inhibition of gambogic acid in rat liver microsomes. Acta Pharmacol Sin. 2006;27:1253–8.

    Article  CAS  PubMed  Google Scholar 

  10. Saeed LM, Mahmood M, Pyrek SJ, Fahmi T, Xu Y, Mustafa T, et al. Single-walled carbon nanotube and graphene nanodelivery of gambogic acid increases its cytotoxicity in breast and pancreatic cancer cells. J Appl Toxicol. 2014;34:1188–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li JY, Wu CY, Xu PP, Shi LX, Chen BA, Selke M, et al. Multifunctional effects of Cys-CdTe QDs conjugated with gambogic acid for cancer cell tracing and inhibition. Rsc Adv. 2013;3:6518–25.

    Article  CAS  Google Scholar 

  12. Yao J, Li YK, Sun XJ, Dahmani FZ, Liu HP, Zhou JP. Nanoparticle delivery and combination therapy of gambogic acid and all-trans retinoic acid. Int J Nanomedicine. 2014;9:3313–24.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pang X, Yang XY, Zhai GX. Polymer-drug conjugates: recent progress on administration routes. Expert Opin Drug Deliv. 2014;11:1075–86.

    Article  CAS  PubMed  Google Scholar 

  14. Reddy BPK, Yadav HKS, Nagesha DK, Raizaday A, Karim A. Polymeric nano-spheres as novel carriers for poorly soluble drugs-a review. J Nanosci Nanotechnol. 2015;15:4009–18.

    Article  PubMed  Google Scholar 

  15. Batrakova EV, Kabanov AV. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release. 2008;130:98–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kabanov AV, Batrakova EV, Alakhov VY. Pluronic (R) block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release. 2002;82:189–212.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang W, Shi YA, Chen YZ, Ye JA, Sha XY, Fang XL. Multifunctional Pluronic P123/F127 mixed polymeric nano-spheres loaded with paclitaxel for the treatment of multidrug resistant tumors. Biomaterials. 2011;32:2894–906.

    Article  CAS  PubMed  Google Scholar 

  18. Batrakova EV, Li S, Brynskikh AM, Sharma AK, Li YL, Boska M, et al. Effects of pluronic and doxorubicin on drug uptake, cellular metabolism, apoptosis and tumor inhibition in animal models of MDR cancers. J Control Release. 2010;143:290–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kulthe SS, Inamdar NN, Choudhari YM, Shirolikar SM, Borde LC, Mourya VK. Mixed micelle formation with hydrophobic and hydrophilic Pluronic block copolymers: implications for controlled and targeted drug delivery. Colloids Surf B Biointerfaces. 2011;88:691–6.

    Article  CAS  PubMed  Google Scholar 

  20. Cai YE, Sun ZQ, Fang XB, Fang XF, Xiao F, Wang YT, Chen MW. Synthesis, characterization and anti-cancer activity of Pluronic F68-curcumin conjugate micelles. Drug Delivery. Int J Pharm. 2015;1–9. doi:10.3109/10717544.2015.1037970.

  21. Fite A, Goua M, Wahle KWJ, Schofield AC, Hutcheon AW, Heys SD. Potentiation of the anti-tumour effect of docetaxel by conjugated linoleic acids (CLAs) in breast cancer cells in vitro. Prostaglandins Leukot Essent Fat Acids. 2007;77:87–96.

    Article  CAS  Google Scholar 

  22. Rakib MA, Kim YS, Jang WJ, Jang JS, Kang SJ, Ha YL. Preventive effect of t, t-conjugated linoleic acid on 12-O-tetradecanoylphorbol-13-acetate-induced inhibition of gap junctional intercellular communication in human mammary epithelial MCF-10A cells. J Agric Food Chem. 2011;59:4164–70.

    Article  CAS  PubMed  Google Scholar 

  23. Ke XY, Zhao BJ, Zhao X, Wang Y, Huang Y, Chen XM, et al. The therapeutic efficacy of conjugated linoleic acid - paclitaxel on glioma in the rat. Biomaterials. 2010;31:5855–64.

    Article  CAS  PubMed  Google Scholar 

  24. Kuang Y, Liu J, Liu ZL, Zhuo RX. Cholesterol-based anionic long-circulating cisplatin liposomes with reduced renal toxicity. Biomaterials. 2012;33:1596–606.

    Article  CAS  PubMed  Google Scholar 

  25. Luo LM, Huang Y, Zhao BX, Zhao X, Duan Y, Du R, et al. Anti-tumor and anti-angiogenic effect of metronomic cyclic NGR-modified liposomes containing paclitaxel. Biomaterials. 2013;34:1102–14.

    Article  CAS  PubMed  Google Scholar 

  26. Zheng DH, Li XL, Xu HE, Lu XW, Hu Y, Fan WX. Study on docetaxel-loaded nanoparticles with high antitumor efficacy against malignant melanoma. Acta Biochim Biophys Sin. 2009;41:578–87.

    Article  CAS  PubMed  Google Scholar 

  27. Kuang HH, Wu SH, Xie ZG, Meng FB, Jing XB, Huang YB. Biodegradable amphiphilic copolymer containing nucleobase: synthesis, self-assembly in aqueous solutions, and potential use in controlled drug delivery. Biomacromolecules. 2012;13:3004–12.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao XB, Liu P. Reduction-responsive core-shell-corona micelles based on triblock copolymers: novel synthetic strategy, characterization, and application as a tumor microenvironment-responsive drug delivery system. ACS Appl Mater Interfaces. 2015;7:166–74.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang XW, Zhang TP, Ye YH, Chen HQ, Sun H, Zhou XT, Ma ZG, Wu BJ. Phospholipid-stabilized mesoporous carbon nanospheres as versatile carriers for systemic delivery of amphiphobic SNX-2112 (a Hsp90 inhibitor) with enhanced antitumor effect. Eur J Pharm Biopharm. 2015;94:30–41.

    Article  CAS  PubMed  Google Scholar 

  30. Saxena V, Hussain MD. Poloxamer 407/TPGS mixed nano-spheres for delivery of gambogic acid to breast and multidrug-resistant cancer. Int J Nanomedicine. 2012;7:713–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim KS, Park SJ. Effect of porous silica on sustained release behaviors of pH sensitive pluronic F127/poly(acrylic acid) hydrogels containing tulobuterol. Colloids Surf B Biointerfaces. 2010;80:240–6.

    Article  CAS  PubMed  Google Scholar 

  32. Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012;45:487–98.

    Article  CAS  PubMed  Google Scholar 

  33. Croy SR, Kwon GS. Polymeric nano-spheres for drug delivery. Curr Pharm Des. 2006;12:4669–84.

    Article  CAS  PubMed  Google Scholar 

  34. Suksiriworapong J, Rungvimolsin T, A-gomol A, Junyaprasert VB, Chantasart D. Development and characterization of lyophilized diazepam-loaded polymeric nano-spheres. Aaps Pharmscitech. 2014;15:52–64.

    Article  CAS  PubMed  Google Scholar 

  35. Khullar P, Singh V, Mahal A, Kumar H, Kaur G, Bakshi MS. Block copolymer micelles as nanoreactors for self-assembled morphologies of gold nanoparticles. J Phys Chem B. 2013;117:3028–39.

    Article  CAS  PubMed  Google Scholar 

  36. Wang X, Chen WT. Gambogic acid is a novel anti-cancer agent that inhibits cell proliferation, angiogenesis and metastasis. Anti Cancer Agents Med Chem. 2012;12:994–1000.

    Article  CAS  Google Scholar 

  37. Qi Q, You QD, Gu HY, Zhao L, Liu W, Lu N, et al. Studies on the toxicity of gambogic acid in rats. J Ethnopharmacol. 2008;117:433–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Macao Science and Technology Development Fund (077/2011/A3), the Research Fund of the University of Macau (MYRG2014-00033-ICMS-QRCM, MYRG2014-00051-ICMS-QRCM, MYRG2015-00171-ICMS-QRCM), and the National Natural Science Foundation of China (81403120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiwan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Xu, Y., Wang, S. et al. Pluronic F68-Linoleic Acid Nano-spheres Mediated Delivery of Gambogic Acid for Cancer Therapy. AAPS PharmSciTech 18, 147–155 (2017). https://doi.org/10.1208/s12249-015-0473-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-015-0473-z

Key words

Navigation