Skip to main content
Log in

Targeted Delivery of Doxorubicin via CD147-Mediated ROS/pH Dual-Sensitive Nanomicelles for the Efficient Therapy of Hepatocellular Carcinoma

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Low accumulation in tumor sites and slow intracellular drug release remain as the obstacles for nanoparticles to achieve effective delivery of chemotherapeutic drugs. In this study, multifunctional micelles were designed to deliver doxorubicin (Dox) to tumor sites to provide more efficient therapy against hepatic carcinoma. The micelles were based on pH-responsive carboxymethyl chitosan (CMCh) modified with a reactive oxygen species (ROS)-responsive segment phenylboronic acid pinacol ester (BAPE) and an active targeted ligand CD147 monoclonal antibody. The Dox-loaded micelles provided rapid and complete drug release in pH 5.3 incubation conditions with 1 mM H2O2. In addition, an in vitro cell uptake study revealed that CD147 modification significantly enhanced cellular internalization due to the high affinity to CD147 receptors, which are overexpressed on tumor cells. An in vivo study revealed that CD147-modified micellar formulations exhibited high accumulation in tumor sites and markedly enhanced antiproliferation effects with fewer side effects than other formulations. In conclusion, this CD147 receptor targeted delivery system with ROS/pH dual sensitivity provides a promising strategy for the treatment of hepatic carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Maya S, Kumar LG, Sarmento B, Sanoj RN, Menon D, Nair SV, et al. Cetuximab conjugated O-carboxymethyl chitosan nanoparticles for targeting EGFR overexpressing cancer cells. Carbohydr Polym. 2013;93(2):661–9. https://doi.org/10.1016/j.carbpol.2012.12.032.

    Article  CAS  PubMed  Google Scholar 

  2. Kim DW, Kim SY, Kim HK, Kim SW, Shin SW, Kim JS, et al. Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann Oncol. 2007;18(12):2009–14. https://doi.org/10.1093/annonc/mdm374.

    Article  PubMed  Google Scholar 

  3. Nam JP, Park SC, Kim TH, Jang JY, Choi C, Jang MK, et al. Encapsulation of paclitaxel into lauric acid-O-carboxymethyl chitosan-transferrin micelles for hydrophobic drug delivery and site-specific targeted delivery. Int J Pharm. 2013;457(1):124–35. https://doi.org/10.1016/j.ijpharm.2013.09.021.

    Article  CAS  PubMed  Google Scholar 

  4. Gong XY, Yin YH, Huang ZJ, Lu B, Xu PH, Zheng H, et al. Preparation, characterization and in vitro release study of a glutathione-dependent polymeric prodrug Cis-3-(9H-purin-6-ylthio)-acrylic acid-graft-carboxymethyl chitosan. Int J Pharm. 2012;436(1–2):240–7. https://doi.org/10.1016/j.ijpharm.2012.06.043.

    Article  CAS  PubMed  Google Scholar 

  5. Prabhakar U, Maeda H, Jain RK, Sevick-Muraca EM, Zamboni W, Farokhzad OC, et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013;73(8):2412–7. https://doi.org/10.1158/0008-5472.CAN-12-4561.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Moosavian SA, Abnous K, Badiee A, Jaafari MR. Improvement in the drug delivery and anti-tumor efficacy of PEGylated liposomal doxorubicin by targeting RNA aptamers in mice bearing breast tumor model. Colloids Surf, B. 2016;139:228–36. https://doi.org/10.1016/j.colsurfb.2015.12.009.

    Article  CAS  Google Scholar 

  7. Li C, Li H, Wang Q, Zhou M, Li M, Gong T, et al. pH-sensitive polymeric micelles for targeted delivery to inflamed joints. J Control Release. 2017;246:133–41. https://doi.org/10.1016/j.jconrel.2016.12.027.

    Article  CAS  PubMed  Google Scholar 

  8. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8(7):579–91. https://doi.org/10.1038/nrd2803.

    Article  CAS  PubMed  Google Scholar 

  9. Khan M, Ong ZY, Wiradharma N, Attia AB, Yang YY. Advanced materials for co-delivery of drugs and genes in cancer therapy. Adv Healthc Mater. 2012;1(4):373–92. https://doi.org/10.1002/adhm.201200109.

    Article  CAS  PubMed  Google Scholar 

  10. Kim KS, Lee D, Song CG, Kang PM. Reactive oxygen species-activated nanomaterials as theranostic agents. Nanomedicine. 2015;10(17):2709–23. https://doi.org/10.2217/nnm.15.108.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Li N, Cai H, Jiang L, Hu J, Bains A, Hu J, et al. Enzyme-sensitive and amphiphilic PEGylated dendrimer-paclitaxel prodrug-pased nanoparticles for enhanced stability and anticancer efficacy. ACS Appl Mater Interfaces. 2017;9(8):6865–77. https://doi.org/10.1021/acsami.6b15505.

    Article  CAS  PubMed  Google Scholar 

  12. Chen WL, Yang SD, Li F, Li JZ, Yuan ZQ, Zhu WJ, et al. Tumor microenvironment-responsive micelles for pinpointed intracellular release of doxorubicin and enhanced anti-cancer efficiency. Int J Pharm. 2016;511(2):728–40. https://doi.org/10.1016/j.ijpharm.2016.07.060.

    Article  CAS  PubMed  Google Scholar 

  13. Singh B, Jiang T, Kim YK, Kang SK, Choi YJ, Cho CS. Release and cytokine production of bmpb from bmpb-loaded pH-sensitive and mucoadhesive thiolated eudragit microspheres. J Nanosci Nanotechnol. 2015;15(1):606–10. https://doi.org/10.1166/jnn.2015.8781.

    Article  CAS  PubMed  Google Scholar 

  14. Yuan F, Wang S, Chen G, Tu K, Jiang H, Wang LQ. Novel chitosan-based pH-sensitive and disintegrable polyelectrolyte nanogels. Colloids Surf, B. 2014;122:194–201. https://doi.org/10.1016/j.colsurfb.2014.06.042.

    Article  CAS  Google Scholar 

  15. Chen WL, Li F, Tang Y, Yang SD, Li JZ, Yuan ZQ, et al. Stepwise pH-responsive nanoparticles for enhanced cellular uptake and on-demand intracellular release of doxorubicin. Int J Nanomedicine. 2017;12:4241–56. https://doi.org/10.2147/IJN.S129748.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Liu X, Xiang J, Zhu D, Jiang L, Zhou Z, Tang J, et al. Fusogenic reactive oxygen species triggered charge-reversal vector for effective gene delivery. Adv Mater. 2016;28(9):1743–52. https://doi.org/10.1002/adma.201504288.

    Article  CAS  PubMed  Google Scholar 

  17. Luo CQ, Xing L, Cui PF, Qiao JB, He YJ, Chen BA, et al. Curcumin-coordinated nanoparticles with improved stability for reactive oxygen species-responsive drug delivery in lung cancer therapy. Int J Nanomedicine. 2017;12:855–69. https://doi.org/10.2147/IJN.S122678.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Zhang D, Wei Y, Chen K, Zhang X, Xu X, Shi Q, et al. Biocompatible reactive oxygen species (ROS)-responsive nanoparticles as superior drug delivery vehicles. Adv Healthc Mater. 2015;4(1):69–76. https://doi.org/10.1002/adhm.201400299.

    Article  CAS  PubMed  Google Scholar 

  19. Wang F, Chen Y, Zhang D, Zhang Q, Zheng D, Hao L, et al. Folate-mediated targeted and intracellular delivery of paclitaxel using a novel deoxycholic acid-O-carboxymethylated chitosan-folic acid micelles. Int J Nanomedicine. 2012;7:325–37. https://doi.org/10.2147/IJN.S27823.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Guo H, Zhang D, Li C, Jia L, Liu G, Hao L, et al. Self-assembled nanoparticles based on galactosylated O-carboxymethyl chitosan-graft-stearic acid conjugates for delivery of doxorubicin. Int J Pharm. 2013;458(1):31–8. https://doi.org/10.1016/j.ijpharm.2013.10.020.

    Article  CAS  PubMed  Google Scholar 

  21. Qi X, Qin J, Fan Y, Qin X, Jiang Y, Wu Z. Carboxymethyl chitosan-modified polyamidoamine dendrimer enables progressive drug targeting of tumors via pH-sensitive charge inversion. J Biomed Nanotechnol. 2016;12(4):667–78. https://doi.org/10.1166/jbn.2016.2206.

    Article  CAS  PubMed  Google Scholar 

  22. Kuang Y, Balakrishnan K, Gandhi V, Peng X. Hydrogen peroxide inducible DNA cross-linking agents: targeted anticancer prodrugs. J Am Chem Soc. 2011;133(48):19278–81. https://doi.org/10.1021/ja2073824.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Broaders KE, Grandhe S, Frechet JM. A biocompatible oxidation-triggered carrier polymer with potential in therapeutics. J Am Chem Soc. 2011;133(4):756–8. https://doi.org/10.1021/ja110468v.

    Article  CAS  PubMed  Google Scholar 

  24. Wang M, Sun S, Neufeld CI, Perez-Ramirez B, Xu Q. Reactive oxygen species-responsive protein modification and its intracellular delivery for targeted cancer therapy. Angew Chem Int Ed Engl. 2014;53(49):13444–8. https://doi.org/10.1002/anie.201407234.

    Article  CAS  PubMed  Google Scholar 

  25. Naito M, Ishii T, Matsumoto A, Miyata K, Miyahara Y, Kataoka K. A phenylboronate-functionalized polyion complex micelle for ATP-triggered release of siRNA. Angew Chem Int Ed Engl. 2012;51(43):10751–5. https://doi.org/10.1002/anie.201203360.

    Article  CAS  PubMed  Google Scholar 

  26. Zhu R, Zhang CG, Liu Y, Yuan ZQ, Chen WL, Yang SD, et al. CD147 monoclonal antibody mediated by chitosan nanoparticles loaded with alpha-hederin enhances antineoplastic activity and cellular uptake in liver cancer cells. Sci Rep. 2015;5(1):17904. https://doi.org/10.1038/srep17904.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Zhu S, Qian L, Hong M, Zhang L, Pei Y, Jiang Y. RGD-modified PEG-PAMAM-DOX conjugate: in vitro and in vivo targeting to both tumor neovascular endothelial cells and tumor cells. Adv Mater. 2011;23(12):H84–9. https://doi.org/10.1002/adma.201003944.

    Article  CAS  PubMed  Google Scholar 

  28. Wu FL, Zhang J, Li W, Bian BX, Hong YD, Song ZY, et al. Enhanced antiproliferative activity of antibody-functionalized polymeric nanoparticles for targeted delivery of anti-miR-21 to HER2 positive gastric cancer. Oncotarget. 2017;8(40):67189–202. https://doi.org/10.18632/oncotarget.18066.

    PubMed Central  PubMed  Google Scholar 

  29. Kocbek P, Obermajer N, Cegnar M, Kos J, Kristl J. Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J Control Release. 2007;120(1–2):18–26. https://doi.org/10.1016/j.jconrel.2007.03.012.

    Article  CAS  PubMed  Google Scholar 

  30. Chen ZN, Mi L, Xu J, Song F, Zhang Q, Zhang Z, et al. Targeting radioimmunotherapy of hepatocellular carcinoma with iodine (131I) metuximab injection: clinical phase I/II trials. Int J Radiat Oncol Biol Phys. 2006;65(2):435–44. https://doi.org/10.1016/j.ijrobp.2005.12.034.

    Article  CAS  PubMed  Google Scholar 

  31. Sun H, Meng F, Cheng R, Deng C, Zhong Z. Reduction-responsive polymeric micelles and vesicles for triggered intracellular drug release. Antioxid Redox Signal. 2014;21(5):755–67. https://doi.org/10.1089/ars.2013.5733.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Zhu WJ, Yang SD, Qu CX, Zhu QL, Chen WL, Li F, et al. Low-density lipoprotein-coupled micelles with reduction and pH dual sensitivity for intelligent co-delivery of paclitaxel and siRNA to breast tumor. Int J Nanomedicine. 2017;12:3375–93. https://doi.org/10.2147/IJN.S126310.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Zhu R. Study on the preparation and the liver cancer targeting of CD147 antibody-mediated α-Hederin chitosan nanoparticle [dissertation]. Soochow (China): Soochow University; 2014.

  34. Oh BM, Lee SJ, Cho HJ, Park YS, Kim JT, Yoon SR, et al. Cystatin SN inhibits auranofin-induced cell death by autophagic induction and ROS regulation via glutathione reductase activity in colorectal cancer. Cell Death Dis. 2017;8(3):e2682. https://doi.org/10.1038/cddis.2017.446.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Moon IJ, Kim KR, Chu HS, Kim SH, Chung WH, Cho YS, et al. N-acetylcysteine and N-nitroarginine methyl ester attenuate carboplatin-induced ototoxicity in dissociated spiral ganglion neuron cultures. Clin Exp Otorhinolaryngol. 2011;4(1):11–7. https://doi.org/10.3342/ceo.2011.4.1.11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Sun CY, Liu Y, Du JZ, Cao ZT, Xu CF, Wang J. Facile generation of tumor-pH-labile linkage-bridged block copolymers for chemotherapeutic delivery. Angew Chem Int Ed Engl. 2016;55(3):1010–4. https://doi.org/10.1002/anie.201509507.

    Article  CAS  PubMed  Google Scholar 

  37. Zha Q, Wang X, Cheng X, Fu S, Yang G, Yao W, et al. Acid-degradable carboxymethyl chitosan nanogels via an ortho ester linkage mediated improved penetration and growth inhibition of 3-D tumor spheroids in vitro. Mater Sci Eng, Proc Conf. 2017;78:246–57. https://doi.org/10.1016/j.msec.2017.04.098.

    Article  CAS  Google Scholar 

  38. Liu M, Min L, Zhu C, Rao Z, Liu L, Xu W, et al. Preparation, characterization and antioxidant activity of silk peptides grafted carboxymethyl chitosan. Int J Biol Macromol. 2017;104(Pt A):732–8. https://doi.org/10.1016/j.ijbiomac.2017.06.071.

    Article  CAS  PubMed  Google Scholar 

  39. Yhee JY, Lee S, Kim K. Advances in targeting strategies for nanoparticles in cancer imaging and therapy. Nano. 2014;6(22):13383–90. https://doi.org/10.1039/c4nr04334k.

    CAS  Google Scholar 

  40. Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev. 2011;63(3):131–5. https://doi.org/10.1016/j.addr.2010.03.011.

    Article  CAS  PubMed  Google Scholar 

  41. He Y, Su Z, Xue L, Xu H, Zhang C. Co-delivery of erlotinib and doxorubicin by pH-sensitive charge conversion nanocarrier for synergistic therapy. J Control Release. 2016;229:80–92. https://doi.org/10.1016/j.jconrel.2016.03.001.

    Article  CAS  PubMed  Google Scholar 

  42. Hinrichs MJ, Dixit R. Antibody drug conjugates: nonclinical safety considerations. AAPS J. 2015;17(5):1055–64. https://doi.org/10.1208/s12248-015-9790-0.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Yang SD, Zhu WJ, Zhu QL, Chen WL, Ren ZX, Li F, et al. Binary-copolymer system base on low-density lipoprotein-coupled N-succinyl chitosan lipoic acid micelles for co-delivery MDR1 siRNA and paclitaxel, enhances antitumor effects via reducing drug. J Biomed Mater Res, Part B. 2017;105(5):1114–25. https://doi.org/10.1002/jbm.b.33636.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 81773183 and 81571788), Jiangsu Province Science and Technology Support Plan (BE2011670), and Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuenong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, C., Li, J., Zhou, Y. et al. Targeted Delivery of Doxorubicin via CD147-Mediated ROS/pH Dual-Sensitive Nanomicelles for the Efficient Therapy of Hepatocellular Carcinoma. AAPS J 20, 34 (2018). https://doi.org/10.1208/s12248-018-0195-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-018-0195-8

KEY WORDS

Navigation