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Abstract. Physiologically based pharmacokinetic (PBPK) models can over-predict maximum plasma
concentrations (Cy,ay) following intravenous administration. A proposed explanation is that invariably
PBPK models report the concentration in the central venous compartment, rather than the site where the
samples are drawn. The purpose of this study was to identify and validate potential corrective models
based on anatomy and physiology governing the blood supply at the site of sampling and incorporate
them into a PBPK platform. Four models were developed and scrutinised for their corrective potential.
All assumed the peripheral sampling site concentration could be described by contributions from
surrounding tissues and utilised tissue-specific concentration-time profiles reported from the full-PBPK
model within the Simcyp Simulator. Predicted concentrations for the peripheral site were compared to
the observed C,.x. The models results were compared to clinical data for 15 studies over seven
compounds (alprazolam, imipramine, metoprolol, midazolam, omeprazole, rosiglitazone and theophyl-
line). The final model utilised tissue concentrations from adipose, skin, muscle and a contribution from
artery. Predicted C,,,x values considering the central venous compartment can over-predict the observed
values up to 10-fold whereas the new sampling site predictions were within 2-fold of observed values. The
model was particularly relevant for studies where traditional PBPK models over-predict early time point
concentrations. A successful corrective model for Cy,ax prediction has been developed, subject to further
validation. These models can be enrolled as built-up modules into PBPK platforms and potentially

account for factors that may affect the initial mixing of the blood at the site of sampling.
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INTRODUCTION

It has been observed that physiologically based pharma-
cokinetic (PBPK) models can often report over-predicted
maximum plasma concentration (Cy,,y) values compared to
in vivo data. This is most obvious when administration is via
the intravenous (i.v.) route over a short time period, for
example, a fast infusion or bolus. It is suggested that this
discrepancy, apart from practical limitations in drawing blood
samples immediately after giving an i.v. dose, may be because
PBPK models traditionally report the concentration in the
central venous compartment, i.e. the “pooled venous return”,
whereas in clinical studies, sampling is usually taken from a
peripheral vein in the arm due to ethical and logistical
considerations (1). These two sites may not have the same
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concentrations, particularly at early time points where
distribution throughout the body tissues is ongoing, and
equilibration has not occurred.

With PBPK models increasingly used in assessments of
pharmacokinetics, pharmacodynamics and toxicology, this is an
issue that cannot be dismissed. PBPK approaches have been
used in toxicology for the development of exposure limits (1)
and to obtain predicted C,.x values to be utilised in the
assessment of potential adverse effects (2). These models are
also increasingly used in pharmaceutical regulatory submissions
(3-6). For modelling of pharmacodynamics, if arterial concen-
trations are considered to drive an observed effect, it is
important to understand how this concentration relates to that
observed from the clinical venous sampling. It is clearly critical
to know what is being reported from PBPK models and how the
underlying models relate to the in vivo situation.

The idea that over-prediction of C,,,x, when reporting from
the central venous compartment, is indicative of physiological
differences between the central venous compartment and the
peripheral sampling site is not new and not only theoretical;
evidence to support the concept of local differences in
distribution, mixing and concentration between potential
sampling sites in vivo has been published. Concentration
differences can be observed between arterial and venous
sampling and can also be dependent on the location of the
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specific vessels within the body as reviewed by Chiou (7, 8) as
early as 1989. This review highlighted numerous examples
where the choice of sampling site can lead to significant
differences in the observed concentrations, both in human and
in animal studies. The author also highlighted that utilising the
“wrong” observed concentration could have potentially serious
implications.

Differences between the arterial and venous concentra-
tions and potential models for inter-conversion of reported data
have been described by a number of investigators (9-14). Many
of these publications focus on the implications of these
concentration differences for modelling of pharmacodynamics,
and these models are generally empirical or compartmental in
structure and are not easily applied to PBPK models. In
addition, some published models require prior knowledge of
in vivo concentration-time or pharmacokinetic data, and/or
parameter fitting, meaning that they could not be applied in a
predictive scenario such as the estimation of first-in-man
pharmacokinetics. A physiologically based recirculatory model
for fentanyl was constructed and presented by Upton et al. (15).
However, a number of the parameters were determined using
prior knowledge of the compound distribution and hence are
not applicable in a generic “bottom-up” PBPK model. Levitt
(16) provides the most pragmatic method to address the
problem, by using an approach of creating a PBPK model for
the arm to describe a peripheral sampling site. This model was
developed to describe and predict the kinetics of organic
solvents and may not be relevant for a wider variety of
pharmaceutical compounds; although it does provide a useful
starting point for model development.

The objective of this study was to develop and evaluate a
potential corrective model to describe the C,., at a periph-
eral sampling site, utilising the full PBPK model within the
Simeyp population-based Simulator. A number of different
options were assessed and compared to observed in vivo data.
The model giving the best performance was selected for
further validation and future development.

MATERIALS AND METHODS
Model Definitions

The base model in this study follows the assumption that the
tissues surrounding a peripheral sampling site contribute, to
varying degrees, to the observed venous concentration at that
location. A similar approach was suggested by Levitt (16), where
“flow fractions” were used to describe the contribution of each
tissue to the final overall concentration at the sampling site.
These flow fractions were determined using a fitting approach
where the values were adjusted within the PBPK model to
recover the observed experimental data. The model described
herein utilises the tissue concentration profiles predicted by the
Simeyp Simulator full PBPK model (17), which allows simulation
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of tissue concentration data for all organs incorporated within
the model. These tissue profiles, which are commonly reported
with respect to blood, in combination with the tissue:plasma
partition coefficient (Kps), can be used to calculate the emergent
concentrations which leave the tissues. These can then be used in
combination with drug data and the defined fractions to describe
an overall concentration-time profile at a peripheral sampling
site where a corrected C,,, value can be observed. The fractions
determined by Levitt (16) provided the initial estimates that
were incorporated in the model for validation.

The tissue concentrations selected for incorporation in the
model were skin, adipose, muscle and a “shunt” compartment.
These tissues are logical selections since they can be found in the
vicinity of the antecubital vein in the forearm, the most common
clinical sampling site. The “shunt” compartment describes the
arterio-venous anastomoses in the skin of the hand, where there
is a direct connection of arterioles to the venules (18). The
model published by Levitt includes these tissues; however, they
describe the shunt as a new tissue and state “it is assumed the
tissue supplied by the Shunt has the same pharmacokinetic
properties as skin”, whereas for one of the models validated in
this study a direct arterial contribution has been considered in
combination with the skin contribution. In addition, the Levitt
model also incorporates an “other” compartment, representing
the subcutaneous space and connective tissue, which was not
available in the Simulator model. Assuming the summation of
all fractions in the model is equal to a total of 1; different options
were explored to assess the implications of assigning this fraction
to components available in the current PBPK model. A
schematic of the model is shown in Fig. 1.

Four different model options were evaluated, three of which
were variations of the fractions provided in the publication by
Levitt (16). In the following equations, adipose/muscle/skin/lung
conc refers to the tissue concentration observed in the simulation
results and (f) refers to each time point where a predicted
concentration has been output for the simulation. As the arterial
concentration is not a standard output from the simulator, the
lung concentration was converted, by dividing by Kpy y,,/BP and
used as a surrogate for the purposes of this exercise (Eq. 7). Kp is
the tissue:plasma partition coefficient for the specified tissue
which can be predicted using either the corrected Poulin and
Theil (19-21), or Rodgers and Rowland (22-24) methods or
measured data can be used directly. BP is the blood to plasma
ratio required for the conversion of tissue concentration data to
the concentration of drug exiting each tissue and entering the
venous plasma at the peripheral sampling site.

A. Modified Levitt arm (LAC) model
In this model, the fractions were based on those
reported in the Levitt publication with the 10%
assigned to ‘other’ being split equally between the
skin, adipose, muscle and shunt:

Peripheral Site Concentration (¢) with respect to plasma

Adipose Conc(¢)

= (01- Kpadipose +0.075- Kp

/BP D muscle /BP

Muscle Conc(z) L 0275.

Skin Conc(¢)

Kb /p + 0.55-Shunt Conc(t)} /

BP
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Fig. 1. Current full-PBPK model in Simcyp with schematic representation of the peripheral sampling site model. The term
Conc. fraction represents the fraction applied to each tissue concentration in the model

The Levitt model assigns the same distribution
parameters and volume/blood flow ratio to the shunt
as the skin and therefore the skin concentration was
initially used as a surrogate for the shunt:

_ Skin Conc(r)

Shunt Conc(t) =
Kpsin /
BP

2)

B.

Peripheral Site Concentration (¢) with respect to plasma

Adipose Conc(t)

= 10.075- +0.05-

Muscle Conc(t)

+0.25-

Modified Levitt “skin” (LAS) model
In this instance, the 10% of the arm concentration
assigned to ‘other’ by Levitt was assigned completely
to the shunt (as skin concentration):

Skin Conc(¢) 3)

KPadipose / BP KPprmuscle / BP

+ 0.625-Shunt Conc(l)} /

Kpgin / BP BP

The shunt equation is the same in this model as
described in the LAC model.

. Modified Levitt arm “arterial” (LAA) model

The lack of arterial contribution in the shunt for the
LAC and LAS model was not considered to be

physiologically representative, so in the third model,
the fraction for “other” was assigned to the shunt but
used arterial concentration, as shown in Eq. 6. This
10% was removed from the skin fraction that was
representing the shunt in the LAS model.
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D. Physiological arm concentration (PAC) model
Literature searches were used to identify relevant
physiological data that could describe the tissue concen-
tration fractions required for this model. These fractions
were derived from reported relative blood flows in the
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forearm (25-29). Unfortunately, these data are limited
and no description of the contribution of the anastomo-
ses to the antecubital vein blood flow could be obtained.
The described fractions for this model therefore only
refer to the adipose, muscle and skin concentrations:

Peripheral Site Concentration (¢) with respect to plasma

_lo1. Adipose Conc(?)

6 Muscle Conc(?)

403 Skin Conc(?)

KPadipose /BP

Kpmuscie /BP

Kpgin /gp ]/BP

Since the sampling volume is usually small in relation
to the total blood volume, it was assumed to be
negligible in this case, and therefore mass balance is
maintained in the underlying PBPK model. Calculations
of the peripheral site profile were performed in
Microsoft Excel 2010 (Microsoft Corporation, Redmond,
WA, USA) using the mean concentration-time profiles
for each tissue.

Following the initial validation steps of these
models, the arterial contributing fraction in the
LAA was varied from 0.02 to 0.625, with skin
fraction in the shunt being increased/decreased to
maintain a total shunt fraction of 0.625, to assess the
impact on C,,,x prediction and potentially further
refine the model.

Compound Data and Simulations

Literature searches for drugs with an available Simcyp
Simulator compound dataset were conducted to identify
clinical studies where the dose was administered by i.v.
infusion, and in vivo concentration-time data were avail-
able. Data extracted from the publications included the
reported steady-state volume of distribution (Vss), in
addition to the in vivo concentration-time data and study
details. Where concentration-time data were only presented
in figures, the data were extracted using the GetData graph
digitiser version 2.22 (Get Data Graph Digitizer, 2012,
http://getdata-graph-digitizer.com/) for comparative pur-
poses. Where Vss was not reported for a specific study,
this was obtained by non-compartmental analysis using
Phoenix version 1.3 (Pharsight), utilising the extracted
concentration-time profile data. Physicochemical and elimina-
tion data already present in the Simcyp compound file were
utilised.

It was assumed that reasonable prediction of Vss can
be used as an indication of the correctness of the predicted
Kp values used in the PBPK model. However, clearly this is
necessary but may not guarantee that all Kp values are
correct. Since Vss is a description of the distribution under
steady-state conditions, it should theoretically be unaffected
by early distribution differences. For the purposes of these
simulations, Kp values and the overall Vss were initially
predicted using “Method 2” within the simulator. In some
cases, the predicted Vss did not match the observed values;

therefore, all tissue Kp values were scaled up or down to
recover the observed Vss prior to the simulations being
performed. Suitable values for the universal Kp scalar were
determined using the inbuilt sensitivity analysis or parameter
estimation tools within the platform.

Simulations were performed using the Simcyp Simulator
(Version 13 release 1) (Simcyp, Sheffield, UK), with the
provided healthy volunteer population and concentration
time points equally divided over 2000 time points for the
length of the simulation period. Study design and dosing
regimen were matched to the published trial design for all
studies.

Analysis and Comparisons

Visual comparisons of reported in vivo and predicted
concentration-time profiles were made. Predicted C,., values
were compared with observed values. As the time point of the
highest concentration (T,,y) in simulations can differ from the
reported T, predicted and observed concentrations were
compared at the in vivo Ty, This is due to the fact that the
simulation reports 2000 time points whereas in clinical studies, a
finite number of samples can be taken. The fold difference
between these observed and predicted values for C,., was
calculated as a measure of prediction accuracy, with the number
of results between 0.8- and 1.25-fold or within +2-fold
recorded. Predicted Cp,,x values within 2-fold of reported
in vivo values were considered to be reasonable predic-
tions. The prediction accuracy of all the models described
above was compared for selection of the most suitable
peripheral site model.

RESULTS

Compound Data

A total of 15 studies with i.v. administration via infusion
were identified from the published literature, covering seven
compounds, where the relevant compound data were avail-
able in the Simcyp Simulator. The compounds investigated
were alprazolam, imipramine, metoprolol, midazolam, omep-
razole, rosiglitazone and theophylline (n=4, 3, 1, 2,2, 1 and 2
sets of observed data, respectively). The studies investigated
are summarised in Table I.
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Table I. Summary of Studies Identified for Validation

Infusion First sampling Observed Predicted Study Study
Drug length (min) time (min) LogP  Vss(L/kg) Vss® (L/kg) Dose reference identifier

Alprazolam 2 16 212 0.57 1.56 0.5 mg Kroboth 1988 (40) 1

2 20 0.55 2 mg Kroboth 1988 (40) 2

1 12 0.86" 0.5 mg Lin 1988 (35) 3

30 30 1.14¢ 1 mg Venkatakrishnan 2005 (41) 4
Imipramine 30 68 4.8 23.6° 8.19 12.5 mg Abernethy 1984 (42) 5

30 65 19.8 12.5 mg Abernethy 1984 (43) 6

30 30 17.3* 12.5 mg Ciraulo 1988 (44) 7
Metoprolol 5 5 1.88 3.68" 3.12 11.5 mg Richard 1994 (45) 8
Midazolam 2 15 3.53 2.1 4.56 0.05 mg/kg  Palkama 1999 (46) 9

2 43 1.2 0.05 mg/kg  Saari 2006 (47) 10
Omeprazole 5 5 223 0.5 0.36 40 mg Oosterhuis 1992 (48) 11

5 5 0.43 80 mg Oosterhuis 1992 (48) 12
Rosiglitazone 60 60 2.6 0.19 0.09 2 mg Cox 2000 (34) 13
Theophylline 20 20 -0.02 0.47 0.31 5 mg/kg Aslaksen 1981 (49) 14

5 10 0.33 197 mg Jackson 1986 (50) 15

“ Obtained from extracted concentration-time data by non-compartmental analysis using Phoenix

b Prior to correction with a Kp scalar
Vss steady-state volume of distribution

Comparison of Models

A visual comparison was made of the early-stage
concentration-time profiles from published studies with
predicted profiles using the different models described
above. Selected key profiles are shown in Fig. 2, with
results for all studies available in the supplementary
material. Clear improvements in predictions can be seen
for a number of studies, metoprolol and omeprazole in
particular, with the LAA simulated C,,,x generally closest
to the observed C,,.x. However, it can be noted from the
profiles (see supplementary material) that in a number of
cases, the simulated profiles for all of the models have
converged at an earlier time point than an observation
has been made in the in vivo studies. This is true even
when a difference was predicted between the initial phase
of the peripheral sampling site and central venous profiles
and makes validation of the models difficult. The fold
difference between the observed and predicted concentra-
tions at the observed T..x for all models is shown in
Table II, with summary statistics in Table III and a
graphical summary of the prediction accuracy for the
LAA is given in Fig. 3. The LAA is considered to be the
most accurate model, with all of the predicted concentra-
tions within 2-fold of the observed values. This comparison

confirms the utility of the corrective model, particularly for
those compounds identified previously where early sampling
time points are available. The final model selected based on
these results was the LAA, which incorporates the arterial
fraction in the shunt.

Systematic Alteration of the Arterial Contribution

Changing the fractional contribution of the arterial
concentration to the shunt resulted in an improvement for
some compounds, bringing the C,., predictions within a
0.8- to 1.25-fold range, while other compounds moved
outside the 2-fold range (Table IV). A Cp,x prediction
within 2-fold of the in vivo value was observed for all
studies when using the LAA with a fraction of 0.1 for the
arterial contribution. Figure 4 gives a graphical represen-
tation of the consequences of changing this fraction,
though due to extremely poor results, the arterial fraction
of 0.625 is excluded from this figure. These observations
suggest that the original fraction of 0.1 for arterial
contribution was preferable and should be maintained in
the final model. However, further validation with a larger
observed dataset is required.

The final selected fractions for use in the LAA are shown
in Table V, and the final equations are shown below.

Peripheral Site Concentration (¢) with respect to plasma

Adipose Conc(¢) Muscle Conc(¢) Skin Conc(¢) }
= 10075 —/————=+0.05-——— >+ 0.25- ——————= + Shunt Conc(¢ 5
KPadipose /BP Kpmuscie /BP Kpsiin /BP ( ) /BP ( )
Shunt Conc(t) = 0.525- SI(LLOHC(O
o Arterial Conc(t) = Lung Conc(r) (7)
+0.1-Arterial Conc(t) (6) Kb /pp
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Fig. 2. Observed and predicted concentration-time profiles for all models studied for a selection of studies. Black diamonds represent observed
in vivo data. Red and blue lines represent the predicted arterial and central venous profiles, respectively. The tested models are represented by
green line (LAC), yellow line (PAC), purple dash (LAS) and green dots (LAA)

DISCUSSION

A systematic validation and comparison of a number
of methods to improve the prediction of Cp,,x from PBPK
models has been performed and reported. Models that
were evaluated were based on the full PBPK model in the
Simcyp Simulator (Version 13 Release 1) and include
standard tissue concentration outputs to describe the
concentration-time profile for venous plasma at a periph-
eral sampling site, ie. the antecubital vein. While the
consideration was made at the inception of this model
that construction of a PBPK model or compartment for
arm might be a possible solution, the model selected
allows the use of the existing physiologically based model
as implemented in the Simulator and the associated
outputs. This model provides an elegant solution where
mass balance is maintained in the original model, and
comparisons can be easily drawn between the concentra-
tions in the central venous compartment and at the new
peripheral sampling site. It is important to note that all of

the validation is performed based on peripheral sampling
data. The perfect scenario to validate this model would be
the use of both peripheral and central venous or arterial
sampling data for comparative purposes; however, such
data are experimentally difficult and ethically questionable
to obtain in humans.

Based on the current validation, the LAA model was
considered to give the best performance of all of the models
investigated, with the predicted C,,x closest to the observed
values, and within the specified 2-fold range for all studies.
This 2-fold range is a commonly used criterion for assessing
the accuracy of predictions in in vitro—in vivo extrapolation
and has recently been subject to some debate, with additional
models for success criteria being proposed, though there is no
consensus on the most appropriate method for validation
(30). The LAA model is also considered to be the most
physiologically accurate, where the shunt considers a contri-
bution from the arterial blood in line with the role of the
arterio-venous anastomoses in the skin of the hand, this is
consistent with descriptions of the circulatory physiology of
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Table II. Results from Model Comparison
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the skin (18). This contributing factor is absent from all other
models investigated in this study (LAC, LAS and PAC). The
lack of physiological data, particularly relating to the shunt,
that could be identified in the literature when building the
alternative PAC model is disappointing. This factor poten-
tially contributes to the poor performance of this model in
comparison to the LAA. The final variations of the arterial
fractions made some improvement to the selected model for
specific compounds, but led to a worsening prediction for
others. Overall, it was considered that a model giving a
reasonable prediction for all studies was preferred to
improving the prediction of one or two compounds at the
expense of accuracy for others, potentially skewing the
model. Usually, over-fitting of a model for one or two
cases can reduce its generalisation ability. In addition, the
final value selected is in line with observed data cited by
Chiou (7) where arterio-venous shunting in dog leg is
observed to be approximately 4% of blood flow, which
gives confidence that the final value of 10% is physiolog-
ically reasonable in the absence of any observed human
data.

An assumption of the current approach is that accurate
prediction of Vss means the Kp values are correct, so a
drawback to the model is that it relies on the accurate
prediction of Vss values within the underlying PBPK model.
On this basis and using the in vivo Vss values, a fitting
strategy was used to ensure the distribution volume was
reasonably described (by an accurate Vss prediction) before
proceeding to predict the peripheral sampling site concentra-
tion. Scaling of Kp values was required for all compounds
apart from metoprolol. However, if in vivo data are
lacking to validate the Vss or Kp values or if a bottom-
up approach is intended, the confidence in the prediction
of distribution cannot be validated. If animal data are
available, these can be utilised within the model to ensure
the distribution is reasonably described or the physico-
chemical properties of the compound can be used to guide
the selection of a predictive model ((31-33), personal
communication from Tain Gardner).

In the initial stages of this project, the use of
different fractions in the models for compounds with
different Vss values or physicochemical parameters was
considered. This was ultimately dismissed, as the reason
for the differences in the central venous and the
peripheral sampling site concentrations depends on both
the compound and physiological parameters, and there-
fore, the model structure should not be compound
dependent. However, compound-specific differences may
be evident in the concentration-time profiles, as lipophilic
drugs will be expected to distribute more extensively into
tissues leading to bigger site-specific concentration differ-
ences at early times after drug administration (7). These
compound-specific differences are already incorporated in
the underlying PBPK model, with lipophilicity and
protein-binding considered as contributing factors for
the prediction of Kp values. The resultant differences
can be observed in the profiles provided in Fig. 2 and in
the supplementary material, e.g. theophylline with low
logP and Vss values has minimal differences between the
concentration profiles for the central venous compart-
ment and the peripheral sampling site model, whereas
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Table III. Summary Statistics for Evaluated Models

Venous plasma Atrterial Conc LAC LAS LAA PAC
Average simulated C,,, /observed Cyax 2.01 2.11 0.91 0.93 1.04 0.69
N within 0.8-1.25 observed 2 2 6 7 6 2
N>2-fold different to observed 4 4 1 1 0 5

Total number of datasets evaluated for all models=15

LAC Modified Levitt arm model, LAS Modified Levitt “skin” model, LAA Modified Levitt arm “arterial” model, PAC physiological arm

concentration model

imipramine with both high Vss and logP shows significant
differences. For other compounds, the contributions of
these factors are less clear. The lack of reported early
time points in the observed data for these compounds
limits the conclusions that can be drawn as the convergence of
predicted concentration profiles prior to the observed data
hinders the determination of which model fits best in these
circumstances. It is worth noting that omeprazole does not have
a particularly high logP or Vss, and significant differences
are noted in the profiles—suggesting other factors may
also be contributing to this phenomenon (e.g. charge/
compound type). With such a limited clinical dataset, it is
challenging to explore the potential causes further and
draw any strong conclusions. It should also be noted that
no consideration was given to the accuracy of clearance
values in this study, and the elimination phase of each
simulated profile was not compared to the in vivo
situation. The assumption is made that for low and
moderate clearance compounds, there will be little impact
on the C.x value, meaning the simulated results remain
valid for all of the compounds that were investigated in
this study.

The selection of the predicted concentration at the time
point of the highest observed concentration for the

Fold C,,,, predicted/C,,,, observed

calculation of fold differences is a key factor in understanding
the results. Comparisons can be drawn between the highest
observed and predicted concentrations, but these could be
potentially meaningless as the T..x reported from the
simulation can differ substantially from that observed. Over
the course of each simulation in this study, 2000 data points
are reported whereas the clinical/observed data is usually
limited to around 10-20 samples over several hours. This can
be particularly problematic for comparisons when the first
sampling time point is much later than the end of infusion
and/or the Ty, observed in the simulation, as there is no way
of knowing what is happening in vivo where there are no
reported observations. While all compounds showed an
improvement in terms of fold error in C,,,x prediction when
using the LAA model, it is obvious from the comparison of
the observed and simulated concentration-time profiles that
the utility of the model can only be fully tested when
concentration data for early sampling time points are
available. This is in agreement with Chiou (7) and
Shankaran (1) who highlighted the differences occurring in
the initial phases of the concentration-time profiles. These
time points are expected to be within the initial distribution
phase (e.g. 5-10 min after administration), and samples taken
at >30 min after administration are too late to observe the

Study

Fig. 3. Fold differences between predicted/observed C,,,x concentration for the central venous
(grey bars) and LAA (white bars) models. Solid line represents the line of unity; dashed lines

represent a 2-fold difference from observed values
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Table IV. Results from Changing the Arterial Fraction

Simulated/observed concentration at observed Ty,ax

Arterial contribution to peripheral sampling site concentration

Drug Study Venous plasma 0.02 0.05 0.1 0.15 0.2 0.625
Alprazolam 1 1.48 1.73 1.72 1.70 1.69 1.67 1.52
2 1.36 1.56 1.55 1.54 1.52 1.51 1.40
3 0.95 1.06 1.05 1.04 1.03 1.02 0.94
4 1.43 0.93 0.95 0.97 0.99 1.01 1.21
Imipramine 5 0.59 0.66 0.65 0.64 0.64 0.63 0.57
6 0.58 0.63 0.62 0.62 0.61 0.60 0.56
7 3.55 0.86 0.97 1.14 1.32 1.49 2.98
Metoprolol 8 2.78 0.40 0.48 0.62 0.76 0.90 2.08
Midazolam 9 1.02 1.19 1.18 1.17 1.15 1.14 1.01
10 0.63 0.81 0.81 0.79 0.78 0.77 0.68
Omeprazole 11 10.0 1.15 1.42 1.87 2.32 2.77 6.61
12 2.56 0.61 0.67 0.76 0.86 0.96 1.79
Rosiglitazone 13 1.25 1.14 1.14 1.15 1.15 1.16 1.21
Theophylline 14 1.28 0.86 0.87 0.89 0.91 0.93 1.11
15 0.71 0.73 0.73 0.73 0.73 0.72 0.70
Average simulated Cp,ax/0bs Cpax 2.01 0.95 0.99 1.04 1.10 1.15 1.62
N within 0.8-1.25 observed 3 8 7 6 6 7 5
N>2-fold different to observed 4 1 1 0 1 1 3

Total number of datasets evaluated for all models=15

expected differences in the central venous and peripheral studies, for metoprolol and omeprazole, had early enough
sampling site concentrations. Comparing the simulated pro- time points to fully illustrate the benefit of using the
files to the in vivo data (Fig. 2), it seems that only three corrective model and in most of these cases, only one point
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Fig. 4. Effect of varying the arterial contribution to the peripheral sampling site concentration on fold difference in
predicted and observed C,,x using the LAA model. Individual markers represent each study investigated; solid line
represents the line of unity; dot-dash lines represent 0.8- to 1.25-fold difference from observed values; dashed lines represent
a 2-fold difference from observed values
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Table V. Final Selected Fractions

Tissue Concentration fraction
Adipose 0.075

Skin 0.25

Muscle 0.05
Shunt-skin 0.525
Shunt-arterial 0.1

is relevant. As can be seen in Fig. 2 and also in the
supplementary material, most studies have clearly reached
an equilibration point before the first in vivo sampling time
and the predicted profiles have converged. The differences
between the models are mainly limited to the initial
distribution phase, which is in line with the observations
made by others in this arena (1, 7). A few exceptions arise in
this dataset; in study 4 for alprazolam and study 7 for
imipramine, the first sampling point is not until 30 min after
infusion, yet a significant correction using the peripheral
sampling site model was still observed at this time, suggesting
that in some cases, distribution differences can persist for
longer than the initial 5-10 min.

Another consideration is variability, as the model has
been compared only to the highest concentration point
extracted digitally from the mean concentration-time profile
for each dataset. C,.x may not be at the same time for all
individuals, hence biasing the C,,x of the mean concentration
profile. Out of the 15 datasets studied, only two (34, 35) had
tabulated C,.x and Tp,ax data for the i.v. study with a measure
of variability (range or standard deviation) available.
Variability in the reported C,,.x values was <30%, and the
reported mean Cp,.x (taken as the mean of individual Cy,.x
values) was similar to the Cp,,, value determined from the
mean concentration profile (12.6 vs 12.6 ng/mL and 146 vs
115 ng/mL for alprazolam and rosiglitazone, respectively).
In addition, the numbers of subjects considered in the
studies are relatively low (n values range from 1 to 14).
Both of these issues could lead to uncertainty in the
validation of the model. This is due to a paucity of data;
in an ideal scenario, individual data for a large number of
subjects would be available, ensuring that variability
within the wider population is fully captured with best-
and worst-case scenarios fully represented. This is a
general problem with validating models and does not only
apply to this study, but it becomes more pertinent when
dealing with such a limited number of datasets. The
Simulator reports concentration-time points for each
simulated individual within a virtual trial for plasma and
individual tissues, so if clinical data were available, further
validation in this area would be feasible.

Expansion of the underlying models could also be
considered in the future to include the effect of certain drugs
on the cardiovascular system or the impact of the application
of heat on the distribution at the sampling site. An example of
this is metoprolol, which alters heart rate, cardiac output and
consequently tissue blood flows (36, 37). If metoprolol
distribution is perfusion-limited then it could be affected
by the action of the drug on the blood flows. Similarly,
the arterial contribution could be increased to mimic the
effect of a temperature increase in the vicinity of the
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sampling site. While in the current study, it is assumed, in
the absence of further information, that the conditions of
a standard temperature and a sedentary subject are met,
the use of a heat-box to induce an “arterialised concentration” at
a venous site have been documented previously (38, 39).
However, the development of such models is outside the scope
of the current study.

The initial constraints of this investigation include the
availability of both a library compound within the
Simulator and an in vivo study utilising an infusion
administration, the validation was therefore limited by
the sampling points in those studies. Further i.v. infusion
studies with relevant sampling time points have been
identified for compounds not currently available in the
Simcyp Simulator. This extended validation requires the
development of additional compound files which was
outside the scope of this initial study. As proof of concept,
the improvement shown in this report seems to be
adequate and allows a basis for further validation as well
as investigation into potential applications within a num-
ber of different arenas.

CONCLUSION

A peripheral sampling site model that improves the
prediction of C,,,x values has been developed and validated
in this study. The tissue fractions that constitute the sampling
site concentration were tested for seven compounds and
provide a good concordance between the observed and
predicted C,,,x values. Further validation is required with
more compounds and clinical studies, particularly those with
early sampling time points, to confirm the utility of the model.
However, the potential for the use of such a model has been
adequately illustrated herein. It is envisaged these models can
be enrolled as built-up modules within PBPK platforms to
address potential affections and variability of the initial
mixing of the blood at the site of sampling (such as effect of
heat, variation in adipose and muscle content of the body),
and hence, they may give a more realistic simulated drug
concentrations in blood or plasma at early time points.
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