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PRIMALITY AND FACTORIZATION

H.W. Lenstra, Jr.*

This is a brief summary of two lectures on primality testing
and factorization methods, with an annotated bibliography.

1, INTRODUCTION

Two fundamental problems from algorithmic number theory are the
following:
A. given an integer =n > 1, how to determine whether n is a
prime number or not?
B. if n 1is not prime, how to find integers a, b > 1 such that
n = ab?
The interest of these problems for cryptography stems from a scheme
introduced by Rivest, Shamir and Adleman. For this scheme it is
essential that problem A is easy and that B is hard. In these

lectures we shall gee to which extent this is actually the case.

2, PRIMALITY

All modern primality testing methods depend on generalizations of
Fermat's theorem, which asserts that

n prime = a” = amod n for all a e Z.
The corverse of this theorem is wrong; but even if one uses a
version that does admit a converse the problem presents itself that
not all integers a (mod n) can be tried. In probabilistic primal-
ity tests this problem is overcome by trying a random sample of
values of a., Such tests are practically feasible for numbers n
of thousands of decimal digits, and they suffice for cryptographic
purposes; on the other hand, they yield no mathematical certainty.
Mathematically rigorous tests depend on generalizations of Fermat's
theorem to algebraic number fields. They can be used to provide

rigorous primality proofs for arbitrary prime numbers of up to

* Mathematisch Instituut, Universiteit van Amsterdam,
Roetersstraat 15, 1018 WB Amsterdam, The Netherlands.




several hundreds of decimal digits.

3. FACTORIZATION

1f n fails to pass a primality test, e.g. because an integer a
is found for which a” # amod n, then n is certainly not prime,
but we do not know a factorization n = ab of n. The best known
practical methods to factor n are of a probabilistic nature, but
in a way that is different from the probabilistic primality tests:
the lack of cerrainty concerns the running time of the algorithm,
not the final result,

At the moment the best performing factorization algorithms are the
corzlnued fraction meihod of Morrison and Brillhart and the quad-
raziz sieve method of Pomerance. These methods can factor numbers
of up to 50 decimal digits approximately, Theoretically the clasgs
gro.p method of Shanks, in the version of Schnorr and Lenstra, is
better, but its practical merits are still unclear. The latter
method has several special features that may be relevant for cryp-

tography.
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yote. Tyis bibliography is by no means complete. Further references,
in particular to the older literature, can be found in the papers
mentioned above.



