
UC Berkeley
UC Berkeley Previously Published Works

Title
Auto-tuning stencil computations on multicore and accelerators

Permalink
https://escholarship.org/uc/item/65n6t7d9

ISBN
9781439825365

Authors
Datta, K
Williams, S
Volkov, V
et al.

Publication Date
2010

DOI
10.1201/b10376

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/65n6t7d9
https://escholarship.org/uc/item/65n6t7d9#author
https://escholarship.org
http://www.cdlib.org/

Jack Dongarra, David A. Bader, Jakub Kurzak

Scientific Computing with
Multicore and
Accelerators

2

List of Figures

1.1 CSR visualization . 3
1.2 Benchmark matrices used . 9
1.3 Nehalem performance . 18
1.4 Auto-tuned Nehalem performance 19
1.5 Cell performance . 21
1.6 GPU performance . 22
1.7 Architectural performance comparison 24

i

ii

List of Tables

1.1 Architectural characteristics 5
1.2 Data movement automation 6
1.3 Programming models employed by architecture 7
1.4 SpMV optimizations by architecture 11
1.5 Kernels implemented . 17

iii

iv

Contents

1 Sparse Matrix-Vector Multiplication on Multicore and Ac-
celerators 1
Samuel Williams, Nathan Bell, Jee Whan Choi, Michael Garland, Leonid

Oliker, and Richard Vuduc
1.1 Introduction . 2
1.2 Sparse Matrix-Vector Multiplication: Overview and Intuition 2
1.3 Architectures, Programming Models, and Matrices 4

1.3.1 Hardware Architectures 4
1.3.2 Parallel Programming Models 7
1.3.3 Matrices . 8

1.4 Implications of Architecture on SpMV 9
1.4.1 Memory Subsystem 9
1.4.2 Processor Core . 10

1.5 Optimization Principles for SpMV 11
1.5.1 Reorganization for Efficient Parallelization 11
1.5.2 Orchestrating Data Movement 13
1.5.3 Reducing Memory Traffic 14
1.5.4 Putting It All Together: Implementations 15

1.6 Results and Analysis . 17
1.6.1 Xeon X5550 (Nehalem) 18
1.6.2 QS22 PowerXCell 8i 20
1.6.3 GTX 285 . 21

1.7 Summary: Cross-Study Comparison 23
1.8 Acknowledgments . 25

Bibliography 27

v

vi

Chapter 1

Sparse Matrix-Vector Multiplication
on Multicore and Accelerators

Samuel Williams

Lawrence Berkeley National Laboratory

Nathan Bell

NVIDIA Research

Jee Whan Choi

Georgia Institute of Technology

Michael Garland

NVIDIA Research

Leonid Oliker

Lawrence Berkeley National Laboratory

Richard Vuduc

Georgia Institute of Technology

1.1 Introduction . 2
1.2 Sparse Matrix-Vector Multiplication:
Overview and Intuition . 2
1.3 Architectures, Programming Models, and Matrices . 4

1.3.1 Hardware Architectures . 4
1.3.2 Parallel Programming Models . 7
1.3.3 Matrices . 8

1.4 Implications of Architecture on SpMV . 8
1.4.1 Memory Subsystem . 9
1.4.2 Processor Core . 10

1.5 Optimization Principles for SpMV . 11
1.5.1 Reorganization for Efficient Parallelization . 11
1.5.2 Orchestrating Data Movement . 13
1.5.3 Reducing Memory Traffic . 14
1.5.4 Putting It All Together: Implementations . 15

1.6 Results and Analysis . 17
1.6.1 Xeon X5550 (Nehalem) . 17
1.6.2 QS22 PowerXCell 8i . 20
1.6.3 GTX 285 . 21

1.7 Summary: Cross-Study Comparison . 23
1.8 Acknowledgments . 25

1

2 Scientific Computing with Multicore and Accelerators

1.1 Introduction

This chapter consolidates recent work on the development of high-
performance multicore and accelerator-based implementations of sparse
matrix-vector multiplication (SpMV). As an object of study, SpMV is an inter-
esting computation for two key reasons. First, it appears widely in applications
in scientific and engineering computing, financial and economic modeling, and
information retrieval, among others, and is therefore of great practical interest.
Secondly, it is both simple to describe but challenging to implement well, since
its performance is limited by a variety of factors, including low computational
intensity, potentially highly irregular memory access behavior, and a strong
input dependence that be known only at run time. Thus, we believe SpMV is
both practically important and provides important insights for understanding
the algorithmic and implementation principles necessary to making effective
use of state-of-the-art systems.

The key findings and results of this chapter are primarily the direct re-
sult of three recent publications [5,7,15]. This chapter focuses on synthesizing
the main findings from across the three studies, emphasizing high-level design
and implementation principles. Some of the data in this chapter are new, as
they include recent hardware platforms not available in prior work (e.g., In-
tel Nehalem, STI PowerXCell 8i, and NVIDIA GeForce GTX 285). However,
we also must necessarily omit discussion of some platform-specific implemen-
tation details, as well as a more in-depth discussion of some of the research
issues explored in the original studies (e.g., autotuning). For such details, we
recommend that the interested reader consult the original studies.

1.2 Sparse Matrix-Vector Multiplication:
Overview and Intuition

Sparse matrix-vector multiplication (SpMV) operations are of particular
importance in computational science. They represent the dominant cost in
many iterative methods for solving large-scale linear systems and eigenvalue
problems which arise in a wide variety of scientific and engineering applica-
tions. In the course of solving a sparse linear system Ax = b, such methods
generally require the computation of hundreds or perhaps thousands of SpMV
operations with the matrix A. Sparse matrix-vector multiplication is the foun-
dation of a broad class of solvers, including notable examples such as the conju-
gate gradients method (CG), the generalized minimum residual method (GM-
RES), and the biconjugate gradients stabilized method (BiCGstab), among
many others [11]. The remaining components of these methods reduce to dense

Sparse Matrix-Vector Multiplication on Multicore and Accelerators 3

linear algebra operations that are readily handled by optimized BLAS imple-
mentations.

The specific SpMV operation we consider is y ← y + Ax, where A is an
M ×N sparse matrix, and x, y are dense vectors. We refer to x as the source
vector and y as the destination vector. By “sparse,” we mean that most of
the entries of A are zero, and therefore compact representations of A can
eliminate unnecessary storage and computation. However, the cost of a sparse
representation is a more complex data structure since, unlike the dense case,
it must explicitly track which non-zero entries are stored. As an example,
Figure 1.1 illustrates the most common sparse matrix representation, called
compressed sparse row (CSR) storage, and provides a base-line sequential
SpMV implementation.

// Basic SpMV implementation,

// y <- y + A*x, where A is in CSR.

for (i = 0; i < m; ++i) {

double y0 = y[i];

for (k = ptr[i]; k < ptr[i+1]; ++k)

y0 += val[k] * x[ind[k]];

y[i] = y0;

}

FIGURE 1.1: Compressed sparse row (CSR) storage, and a basic CSR-based
SpMV implementation.

To gain some intuition for SpMV performance, we make two observations.
First, SpMV requires just two floating point operations (flops) per non-zero
entry of A—namely one multiplication and one addition. By comparison, the
code given in Figure 1.1 will execute many more instructions on secondary
tasks such as integer indexing, resulting in a relatively high overhead. Second,
SpMV has relatively little reuse and is memory intensive. Temporal data lo-
cality is limited to the accesses of x and y; every element of A is used exactly
once. Indeed, a first order estimate on SpMV performance is simply that it will
be bounded from below by the time to read A, which in effect amounts to the
time required to stream the matrix data structure from memory through the
processor. On a modern processor, whose peak computational throughput is

4 Scientific Computing with Multicore and Accelerators

substantially higher than its peak memory bandwidth, we thus expect its com-
putational efficiency to be low and ultimately limited by memory bandwidth.
Consequently, much of the effort to optimize SpMV performance focuses on
changing loop and data structures to maximize parallelism and reduce non-
flop instruction overheads, to regularize memory access patterns, to minimize
memory traffic, and to maximize locality. We discuss how this intuition, given
current multicore and accelerator architectures described in Section 1.3, in-
forms specific design principles and optimization techniques in Sections 1.4
and 1.5, respectively.

1.3 Architectures, Programming Models, and Matrices

Our SpMV optimizations are driven by the diversity in available hardware
architectures, parallel programming models, and input matrices that arise in
practice. This section summarizes the main characteristics of these platforms
and inputs that influence the process of optimizing and tuning SpMV.

1.3.1 Hardware Architectures

We consider SpMV optimization in the context of three diverse multicore
and accelerator platforms: a dual-socket quad-core server based on Intel’s
Xeon X5550 multicore processor (“Nehalem”); a dual-socket blade based on
IBM’s QS22 PowerXCell 8i processor; and NVIDIA’s GeForce GTX 285 GPU.
Table 1.1 summarizes the specifications of these systems.

These architectures differ along several dimensions, perhaps the most sig-
nificant of which is the programmer’s view of the memory system, as summa-
rized by Table 1.2. In particular, we may broadly classify these architectures
by the number of levels of memory (address spaces) and the nature or degree
of software control. Differences in these design aspects affect how the program-
mer must (a) orchestrate data movement and (b) restructure the computation
to achieve good spatial and temporal locality within each level of memory.

For example, our Intel Nehalem platform, typical of conventional cache-
based mulitcore processors, uses an explicit two-level memory hierarchy:
DRAM and registers. Programmers (often via compilers) will control the
movement of data from DRAM to registers (through explicit loads and stores)
and then from registers to functional units (other instructions). Cache hier-
archies are often instantiated between DRAM and registers to accelerate per-
formance, largely through automated placement of demand memory accesses
within the caches. Automated caching simplifies programming, at the cost of
a loss of transparency in when and how data moves through the hierarchy as
well as the cost of data movement. For the most part, programmers may mod-

Sparse Matrix-Vector Multiplication on Multicore and Accelerators 5

Core Intel IBM NVIDIA
Architecture Nehalem Cell SPE GT200 SM

SMT dual-issue SIMTType
out-of-order in-order in-order

Clock (GHz) 2.66 3.20 1.47
DP Peak (GFlop/s) 10.66 12.80 2.96
Register File 16×128b 128×128b 512×1024b
Local Store — 256 KB 16 KB
L1 Data Cache 32 KB — —
L2 Cache 256 KB — —

Socket Xeon X5550 PowerXCell 8i GTX 285
Architecture Nehalem Cell Blade GeForce
Cores per Socket 4 8 (+PPE) 30
Last Level Cache 8 MB L3 — —
Primary memory
parallelism paradigm

HW prefetch DMA Multithreading

Node Xeon X5550 PowerXCell 8i GTX 285
Architecture Nehalem Cell Blade GeForce
Sockets per SMP 2 2 1 (+CPU)
DP Peak
(GFlop/s)

85.33 76.80 88.84

DRAM Pin Bandwidth
(GB/s)

51.20 51.20 159.00

TABLE 1.1: Architectural summary of evaluated platforms. Note, all per-
formance numbers are theoretical peak.

ify their programs to elicit better cache behavior, though caches and hardware
prefetchers try to render such modifications unnecessary.

To better support performance-oriented programming, accelerator archi-
tectures have tried to provide more explicit control of the memory hierarchy.
Architectures like Cell’s SPEs take a three-level approach with the addition of
a software-controlled local store memory seated between DRAM and registers.
For correct execution, the programmer must explicitly regiment transfers of
data from DRAM to the local store (via DMA transfers), with the ability to
rely on compilers to control data movement from local store to registers.

GPU architectures have also adopted a three-level memory hierarchy. Pro-
grams access data from external DRAM (device memory) and store values in
registers. They may also work with data in on-chip local store (shared mem-
ory), although unlike Cell’s SPEs, this is not required. GPU’s may also cache
(device) DRAM to register transfers, although for this generation of GPU ar-
chitecture these caches are for read-only data. For discrete GPU cards, such as
those we benchmark here, the GPU DRAM is separate from the CPU DRAM

6 Scientific Computing with Multicore and Accelerators

Xeon X5550 PowerXCell 8i GTX 285
Data Movement Nehalem Cell Blade T10P
LS↔regs N/A Compiler Compiler2

DRAM↔LS N/A User3 Compiler2

DRAM↔regs Compiler1 N/A Compiler
Host↔DRAM N/A N/A User3

TABLE 1.2: Automation of the movement of data between address spaces.
1Cached and prefetch accelerated. 2Guided via language attributes. 3functions
to interface with DMA engines.

(host memory) on the motherboard. Programs may transfer data between
these memory systems via explicit DMA or memory mapping. For mother-
board GPUs, both host and device memory are provided by the motherboard
DRAM.

Intel Xeon X5550 (Nehalem): The recently released Nehalem includes
minor enhancements to the Core microarchitecture, but dramatic changes to
the cache and memory architecture. Each core supports 2-way multithread-
ing. When the per-thread instruction-level parallelism is low, running two
threads per core can more efficiently utilize functional units. Cores implement
2-way SIMD and separate add and multiply functional units, yielding a peak
throughput of 4 double-precision flops per cycle per core.

Nehalem implements an inclusive (content of L2 cache includes that of the
L1) cache hierarchy. In particular, each core has a private 32 KB L1 and as well
as a private 256 KB L2 cache. Moreover, all cores on a socket share an 8 MB L3
cache, in contrast to the previous processor generation’s use of private 4 MB
caches kept coherent via a snoopy (a cache coherency mechanism) frontside
bus. Critically, Intel has integrated three DDR3 memory controllers on each
chip and implemented a inter-chip network (QuickPath) that carries snoop
and remote node access requests. Unfortunately, this non-uniform memory
access (NUMA) architecture may suffer poor scalability on some challenging
problems.

IBM QS22 PowerXCell 8i (Cell Blade): The IBM Cell processors
used in this chapter represent the enhanced double-precision (eDP) vari-
ant of the Cell processor found in Sony’s PlayStation3 game console. The
Cell is based on a single-chip heterogeneous core design. In particular, each
chip has one dual-threaded, dual-issue, conventional cache-based PowerPC
core (the PPE) and eight, efficiency-optimized, local store-based SPEs. Each
SPE executes all code from a small 256 KB, DMA-filled, local store and
can execute one double-precision SIMD fused multiply add (FMA) per cy-
cle. As such, the aggregate SPE performance greatly exceeds that of the PPE,
meaning performance-critical and performance-intensive routines should be re-
implemented for the SPE architecture. Like Nehalem, all memory controllers
are integrated on-chip, and the servers are dual-socket NUMA SMPs.

Sparse Matrix-Vector Multiplication on Multicore and Accelerators 7

Programming Xeon X5550 PowerXCell 8i GTX 285
Model Nehalem Cell Blade GeForce
OpenMP X — —
PThreads X X† —
CUDA — — X

TABLE 1.3: Programming models used by platforms. †Only in conjunction
with libspe2.

There are two principle differences between the QS22 blades and prior gen-
erations (e.g., IBM’s QS20). First, each SPE’s double-precision performance
has been dramatically improved to be half of single-precision performance.
Secondly, the 512 MB of XDR DRAM per processor has been replaced with
16 GB of DDR2-800 DRAM per socket. In principle, both DRAM types should
deliver the same bandwidth (25.6 GB/s per socket), but we have observed that
this is rarely true. Rather, sustained bandwidth is often less than 20 GB/s per
socket. Consequently, we expect better performance for large or floating-point
intensive problems on QS22 than QS20, whereas we expect worse performance
on small (less than 1 GB) memory-intensive problems.

NVIDIA GeForce GTX 285: The NVIDIA GPU considered in this
chapter is based on the GT200 processor architecture. It differs markedly from
the other systems in its direct support for massive fine-grained multithreading
as the primary mechanism for hiding memory latency. This current-generation
GPU consists of 30 streaming multiprocessors (SMs), each supporting up to
1024 co-resident threads, for a total of up to 30,720 threads per chip. Each
SM has a very large 64 KB register file, providing 16,384 32-bit registers
for its resident threads, and a 16 KB on-chip local store that can be shared
amongst them. It schedules and executes its threads in SIMD groups of 32
called “warps”. The on-board GDDR3 memory is connected to the GPU by
a wide data path that delivers extremely high bandwidth, with a theoretical
peak of 159 GB/s on the GTX 285.

1.3.2 Parallel Programming Models

As architectures continue to diversify, they have mandated specialized pro-
gramming models. Thus, as shown in Table 1.3, our SpMV experiments employ
three distinct shared memory parallel programming models, depending on the
platform: OpenMP (Nehalem only), POSIX Threads (Nehalem and Cell), and
CUDA (GTX 285 only).

OpenMP: OpenMP [3] is a pragma controlled, fork-join, shared memory
parallel programming model. Its simplicity derives from the common use-
case of just identifying the key parallelizable loops and annotating them with
a pragma. Although OpenMP provides some speedup for SpMV, we show

8 Scientific Computing with Multicore and Accelerators

that in practice a considerable amount of additional work can and must be
performed in order to achieve high performance.

POSIX Threads: POSIX threads (or pthreads) [1] is a function-driven,
fork-join, shared memory parallel programming model. For our purposes, when
using pthreads, threads are created at the beginning of the application and
used throughout in a bulk-synchronous SPMD model. Indeed, we created and
used a number of fast, low-overhead, spin barriers designed to work in such a
style.

Cell’s SPEs are programmed using libspe. However, in many ways, it be-
haves like pthreads. Essentially, for every SPE thread, one creates a PPE
thread. Often, that thread immediately spawns an SPE thread and promptly
yields. As such in practice it is common for each application to have one
pthread and 16 SPE threads running simultaneously.

CUDA: The CUDA platform [2] provides a simple and direct model
for programming the GPU. A CUDA program consists of a one or more host
threads, running on the CPU, that may launch parallel “kernels” on the GPU.
Each kernel is a blocked SPMD computation: it executes a single sequential
program across many parallel threads, which are additionally grouped into
thread blocks. Threads within a block may synchronize freely at barriers,
but separate blocks may not directly synchronize with each other. The de-
composition of parallel work into kernels provides the only means for bulk
synchronization between separate blocks.

Matching the hierarchical organization of threads is a hierarchy of disjoint
memory spaces, including: (a) thread-private memory, which is typically stored
in registers, (b) per-block shared memory, which is stored in fast on-chip
local store, and (c) device memory visible to all threads, which is stored in
external DRAM. GPU hardware provides a number of caching mechanisms for
device memory. The read-only texture cache, utilized via language attributes,
provides read-only caching of data optimized for access patterns typical in
graphics applications. Future generations of GPU hardware will provide full
read-write caching of device memory [9].

1.3.3 Matrices

SpMV performance depends strongly on the properties of the input matrix.
The most influential factors include the matrix dimension, non-zero density
(e.g., non-zeros per row), variance in the number of non-zeros per row/column,
and the specific non-zero pattern (e.g., small dense subblocks, diagonal sub-
structure, randomly distributed). In our experiments, we consider a variety of
matrices that arise in real applications and that also vary with respect to these
attributes, taken from various sources (see Vuduc [13, App. B]). Figure 1.2
summarizes this matrix benchmark set, and includes small “spyplots” of the
non-zero pattern.

Sparse Matrix-Vector Multiplication on Multicore and Accelerators 9

D
en

se

Pr
ot

ei
n

Sp
he

re
s

C
an

til
ev

er

W
in

d
Tu

nn
el

H
ar

bo
r

Q
C

D

Sh
ip

Ec
on

om
ic

s

Ep
id

em
io

lo
gy

A
cc

el
er

at
or

C
ir

cu
it

w
eb

ba
se

LP

Spyplot

Rows

Cols

2K

2K

36K

36K

83K

83K

62K

62K

218K

218K

47K

47K

49K

49K

141K

141K

207K

207K

526K

526K

121K

121K

171K

171K

1M

1M

4K

1M

NNZ
 4.0M
 4.3M
 6.0M
 4.0M
 11.6M
 2.4M
 1.9M
 4.0M
 1.3M
 2.1M
 2.6M
 0.9M
 3.1M
 11.3M

average

NNZ/Row
 2000
 119
 72
 65
 53
 50
 39
 28
 6
 4
 22
 6
 3
 2825

Symmetric
 -
 
 
 
 
 -
 -
 
 -
 -
 
 -
 -
 -

FIGURE 1.2: Set of matrices used across all three platforms. Note: NNZ
is the number of nonzeros. Although some matrices are symmetric, no imple-
mentation in this chapter exploits that property.

1.4 Implications of Architecture on SpMV

Given the diversity of architectural approaches and the sensitivity of SpMV
performance on the input matrix (possibly known only at run time), we might
reasonably conclude that there is not likely to be a single “best” SpMV im-
plementation. In this section, we explore how some of the major architectural
features will influence the design of an SpMV implementation.

1.4.1 Memory Subsystem

The reference CSR implementation of SpMV in Figure 1.1 is dominated
by three memory access patterns: (a) a unit-stride read of the matrix nonzero
values and column indices; (b) a matrix-dependent, and potentially random
gather from the source vector; and (c) a unit-stride write of the destination
vector. In principle, these are all memory demand requests, and although
caches can filter many of them, in practice restructuring these accesses is
essential to good performance.

Recall from Section 1.2 that in the best case of perfect temporal reuse
of the source and destination vectors, a lower bound on the time to execute
an SpMV is simply the time to read (stream) the matrix data structure. In
double-precision CSR, this means roughly 8 bytes for the non-zero value plus
4 bytes for the integer column index, assuming a 32-bit int, or 12 bytes of
traffic per non-zero. These requests will be compulsory misses on a cached
memory hierarchy. At two flops per non-zero, performance in flops per second
will be at most (DRAM bandwidth) divided by (12 bytes) times (2 flops),
or bandwidth

6 . The main solution is to further compress the matrix data

10 Scientific Computing with Multicore and Accelerators

structure through smaller indices, exploiting symmetry, or alternative matrix
formats that can reduce indices (e.g., exploiting dense block substructure via
register blocking [8]).

If the source and destination vector working sets exceed the cache capac-
ity, performance will be further diminished by capacity misses. Additionally,
a highly irregular distribution of non-zeros will reduce the spatial locality
of vector or cache line accesses, implying wasted bandwidth. In either case,
careful orchestration of source and destination vector accesses is essential. Re-
ordering rows and columns or use of explicit cache-level blocking of the matrix
data structure (akin to cache blocking or tiling in the case of dense matrix
operations), can help. Moreover, these techniques are applicable regardless of
whether a particular architecture is actually cache-based or instead uses a
software-controlled local-store.

Analogous to the locality-enduced partitioning challenges in the dis-
tributed memory world, NUMA architectures warrant careful allocation and
placement of data. Again, block-based organization of the matrix data struc-
ture, and allocation and placement of data accordingly are essential. (Even
for cacheable workloads, we may observe the same effects due to non-uniform
cache architectures.

Finally, there are frequently additional memory (and even cache) latency
tolerance mechanisms available, many of which can be controlled in a well-
designed SpMV implementation. These mechanisms include hardware and
software prefetchers, hardware multithreading, out-of-order execution, and
DMA.

1.4.2 Processor Core

Though we intuitively expect the memory system to be the main bottle-
neck, it might not be for every combination of processor and matrix. In fact,
modern efficiency-oriented cores may falter when dealing with the irregular
computational structure associated with SpMV. In particular, consider that
the reference SpMV implementation in Figure 1.1 has little or no instruction-
or data-level parallelism (ILP and DLP, respectively); worse, its instruction
mix is dominated by non-floating-point instructions. Attaining peak perfor-
mance on conventional processor architectures requires just the opposite: high
ILP, high DLP, and floating-point intensity. For example, on a Nehalem-class
processor, one must express 5-way ILP and 2-way DLP collectively among
the two threads per core. Clearly, one may trade ILP for DLP and thus ex-
press 10-way DLP via 5 instructions. Achieving peak performance on a GPU
typically requires thousand-way thread-level parallelism (TLP) to fully utilize
each SM and 32-way DLP within a SIMD warp to avoid divergence. On either
machine, reorganization of loop structure (e.g., segmented scan) as well as the
data structure (e.g., register blocking) may express more parallelism and en-
sure core performance is not an impediment to SpMV performance. Moreover,

Sparse Matrix-Vector Multiplication on Multicore and Accelerators 11

Xeon X5550 PowerXCell 8i GTX 285
Optimization Nehalem Cell Blade GeForce
Partitioned Storage X X X
Register Blocking X X X
Index Compression X 16b only —
Format Exploration X BCOO only X
Cache Blocking X X X
TLB Blocking X X —
SW Prefetch X — —
DMA — X —

TABLE 1.4: Programming models used by platforms. †Only in conjunction
with libspe2.

techniques like register blocking can asymptotically amortize the instruction
or operation overhead to one load, multiply and add per nonzero.

1.5 Optimization Principles for SpMV

Given the architectures and intuition about SpMV outlined in previous
sections, this section describes specific and effective performance optimiza-
tion techniques. We organize these optimizations into three broad categories,
based on their expected benefit: (a) efficient parallelization, (b) reducing mem-
ory traffic, or (c) orchestrating data movement. Table 1.4 summarizes these
optimizations. There are many possible techniques within each category, of
which we discuss only a subset in this chapter; refer to the original reference
studies for additional details [5, 7, 15].

1.5.1 Reorganization for Efficient Parallelization

Multicore and accelerators are becoming massively parallel compute plat-
forms. Although SpMV exhibits inherent loop-level parallelism, we must
rescast this parallelism as thread-, data-, or instruction-level parallelism and
quite possibly, restructure the algorithm to express even more parallelism.

Näıve Parallelization: The simplest approach to parallelization is to
simply allocate one or more rows to each thread. In such a scheme, there is
typically far more thread-level parallelism than there is hardware support, and
we might expect a thread scheduler to perform effective load balancing. This
expection does indeed hold on GPU platforms, but for the Cell and Nehalem
processors, thread creation and management is a relatively expensive opera-
tion. Consequently, on those platforms, we are driven to the other extreme

12 Scientific Computing with Multicore and Accelerators

where we match the expressed degree of software thread-level parallelism to
available hardware thread-level parallelism. However, this thread-centric ap-
proach requires programmers perform explicit load balancing, which we do.

Segmented scan: An alternative approach to parallelization is to treat
each non-zero (or groups of consecutive non-zeros) as the unit of parallelism,
rather than a row or rows. This so-called segmented scan implementation
typically creates much more parallelism and obviates the load balancing prob-
lem [6]. Although this parallelism may be cast as thread-, data-, or instruction-
level parallelism, they all require efficient conditional execution, which is a
major challenge on the Cell and Nehalem platforms. As such, it was only
implemented on the GPU platform.

SIMDization: All of the platforms provide some hardware mechanism
to support short-vector oriented data parallelism. Although compilers can in
principle extract and generate the code to exploit such SIMD units, we find
that the state-of-practice in what the compiler provides lags what is possi-
ble. Therefore, we consider explicit SIMDization on the Cell and Nehalem
platforms. Explicit SIMDization replaces pairs of memory or arithmetic oper-
ations on consecutive elements with a compiler intrinsic (e.g. mm mul pd()).
Clearly this manual process is extremely intrusive and should be used spar-
ingly. On GPU platforms, in contrast, SIMDization is provided implicitly by
the hardware, which packs consecutive threads of a block into 32-thread SIMD
warps. Instead of using explicit vector operations, the programmer organizes
the execution of threads to minimize execution and memory access divergence
within warps.

Equivalent Representations: Rather than simply reorganizing loop
structures to efficiently parallelize the kernel, we may also reorganize the ma-
trix data structure itself. One approach is the ELLPACK/ITPACK [10] (ELL)
storage format. This format organizes an M × N matrix having at most K
nonzeros per row as two dense M ×K arrays stored in column-major order,
padding rows with fewer than K nonzeros with zeros. Parallelizing across rows
is free of load imbalance, but at the cost of wasting work on the zero values
inserted for padding. Clearly, matrices for which the maximum number of
nonzeros per row is significantly larger than the average will perform poorly.
For each architecture and matrix combination, one must analyze the potential
benefit. Due to the massive parallelism demanded by the GPUs, ELLPACK
(including our customized variants) was only considered for that platform.

Partitioned Storage: Nominally, in CSR one implements the sparse
matrix on a shared memory architecture as three large arrays (one for values,
one for column indices, one for row pointers). However, on NUMA and shared
cache architectures such storage may be inefficient. Allocating the matrix all at
once can lead to it being pinned to one set of memory controllers. Idle memory
controllers can impair performance. Even applying the appropriate OpenMP
pragma to the initialization of the matrix (for NUMA issues) can still result in
suboptimal performance given bank and cache conflicts. An alternate solution,
implemented on the Cell and Nehalem platforms is to partition the matrix into

Sparse Matrix-Vector Multiplication on Multicore and Accelerators 13

submatrices and store each contiguously with the appropriate array padding
to mitigate conflicts arising from thread contention in the cache and memory
subsystem [16].

1.5.2 Orchestrating Data Movement

Across architectures, there are a variety of hardware mechanisms for or-
chestrating data movement, by which we mean placing or moving data in
order to satisfy current or future demand accesses (loads and stores). The
data reorganization techniques related to parallelism, such as partitioned stor-
age (Section 1.5.1), can also influence these hardware-based data movement
mechanisms. Beyond these, we can use additional hardware-specific operations
or methods, namely prefetch and vector instructions, to explicity orchestrate
data movement.

Hardware Stream Prefetching: Hardware stream prefetchers are an
architectural component designed to hide memory latency. Typically, upon de-
tection of a stream of cache misses (i.e. misses to consecutive cache lines), the
prefetcher will engage and speculatively load the next lines. In doing so, the
prefetcher can hide the true latency of a cache miss. Unfortunately, to min-
imize overhead, prefetchers use very simple heuristics and detect relatively
simple unit-stride and strided patterns. Moreover, as they are outside of the
core, they typically don’t have access to a TLB and thus cannot cross a TLB
page boundary. Eliciting good prefetcher behavior is essential to high perfor-
mance on memory-intensive kernels. To that end, we often restructure access
patterns into a limited (few per thread) number of unit-stride accesses. This
is relatively easy for matrix and destination vector accesses when using CSR.

Software Prefetching: Occasional discontinuities in the address stream
can halt a hardware stream prefetcher. Although such patterns are uncommon
in purely streaming applications, SpMV contains a mix of streaming and ran-
dom access behavior (e.g., to the source vector) that can lead to cache misses
or disruptions to the hardware prefetcher. To minimize these effects, we may
insert a software prefetch (an instruction) for each cache line of the nonzero
arrays. We may then tune to find the optimal prefetch distance — far enough
ahead to hide memory latency but not so far as to evict useful data from the
cache.

Direct Memory Access (DMA): Analogous to software prefetch, we
may generate a DMA command to load a number of nonzeros or vector el-
ements. Typically, we double-buffer these operations as to hide (rather than
simply amortize) and latency or overhead. Just as software prefetch required
tuning so as not to pollute the cache, on Cell, we were forced to balance
nonzero, source vector, and destination vector buffer sizes to maximize per-
formance.

Vector: Vector instruction sets permit bulk loads and stores with a single
instruction. Similarly, multiple loads to consecutive memory addresses may be
coalesced into a single memory transaction. For SpMV, reorganizing memory

14 Scientific Computing with Multicore and Accelerators

accesses so that they may be coalesced will substantially improve performance.
For example, utilizing a column-major layout for the 2D arrays in the ELL-
PACK format ensures that consecutive threads, which process consecutive
matrix rows, access memory in a coalesced manner.

1.5.3 Reducing Memory Traffic

When bandwidth-constrained, one may improve SpMV performance by
reducing memory traffic through additional data and loop structure reorgani-
zation. This section summarizes these techniques.

Cache Blocking: As noted in Section 1.4, the source or destination
vectors could exhibit poor spatial and temporal locality. We can improve this
behavior by translating cache blocking or tiling techniques commonly used for
dense matrix computations to SpMV. However, where this technique amounts
to loop restructuring in the dense case, the sparse case requires both loop
restructuring and a change in data structure. In particular, we may partition
the matrix into submatrices and store these submatrices individually. The
most näıve solution would be to ensure that each submatrix spans a fixed
number of columns — the cache block size. However, such technique can be
very inefficient and underutilize the cache (or local store) as not all source
vector elements within that span may be used. Rather, we individually tune
the size of each submatrix so that it touches a fixed number of source vector
cache lines. That is, only non-empty columns count towards cache capacity.
On a cache-based architecture, we may now perform SpMV on the submatrix
and can ensure the working set size never exceeds cache capacity.

On Cell, a small change is performed. Rather than storing each column
index in its entirety, we may separate out the cache block’s column offset as
well as high and low bits of the remainder. Within a cache block, there will
be many duplicates of the high bits. As such, we may eliminate the duplicates
from the volume of memory traffic and encode a list of unique cache lines
that must be loaded. Prior to performing the submatrix SpMV operation, we
use a DMA get list (mfc getl) to gather these cache lines and pack them
contiguously in the local store. Unlike the traditional DMA which operates
only on contiguous data, a list DMA defines a list of disjoint addresses and
stanza lengths that should be read from DRAM and packed contiguously
in the local store. In essence they perform gather/scatter on arbitrary sized
elements. As the offsets required to access the local store copy of the relevant
source vector elements index the now packed elements, the offsets (column
indices) are dramatically different, and guaranteed to be less than 256KB. As
such, when storing the matrix, not only may we encode the local store offsets
instead of the DRAM offsets, but we may always use a 16-bit column index
(the high 16 bits have been encapsulated into the DMA list). Thus, on Cell
we maintain two copies of the matrix: the generic DRAM representation, and
the local store optimized representation.

Cache blocking can also be applied on a GPU, either explicitly for each

Sparse Matrix-Vector Multiplication on Multicore and Accelerators 15

SM’s local store, or implicitly for the texture cache available in current gen-
eration NVIDIA GPUs. The texture cache mechanism permits tagging of ar-
bitrary regions of device memory as read-only cacheable data. Accesses to
texture locations by multiple threads may be satisfied by a single memory
transaction, thus reducing external bandwidth demand, although it may not
reduce memory fetch latency. Unlike local store, the texture cache can ag-
gregate requests from threads even when they are not in the same thread
block.

TLB Blocking: In many ways the performance impacts of cache misses
translate to page cache (TLB) misses. As such, we may apply our cache block-
ing techniques to the TLB in which we mandate that each submatrix may
touch not only a finite number of cache lines, but also a finite number of
TLB pages. This technique often provides a performance boost on matrices
for which cache blocking already benefited performance.

Index Compression: As cache blocking restricts the range of column
indices for each submatrix, we only need to encode the offset from the first
column for all indices and shift the pointer to the source vector. This results in
column indices encoded with fewer bits and a reduction in memory traffic. This
technique is implemented when possible on CPUs, but is always implemented
on Cell due to fact that it is the local store offset that is being encoded.

Register Blocking: Register blocking exploits 2D similarity among col-
umn indices (geometric proximity in the sparsity pattern of nonzers) to ag-
gregate nonzeros into small dense matrices in which some elements are zero.
Almost invariably, these matrices (blocks) are less than 16×16 and in this
chapter they are always powers of two less than 8×8. The principal advantage
of register blocking when memory-bound is that the matrix structure requires
only one index per block rather than one per nonzero. Asymptotically, this
can reduce memory traffic by 33%, and thus boost performance by 50%.

Matrix Formats: In addition to the ubiquitous CSR and ELLPACK
matrix storage formats, we also explored the simpler coordinate (COO) for-
mat. In coordinate, each nonzero is accompanied with both a column index
and a row index. Nominally, nonzeros can appear in any order. As such, the
resultant read/increment/write data dependency limits loop parallelization or
software pipelining. However, we may optimize the format by sorting nonzeros
by row. This allows for elimination of the data dependency in favor of a simple
loop terminated when consecutive nonzeros have different row indices. The re-
sult resembles CSR, but is more amenable to segmented scan and conditional
execution.

1.5.4 Putting It All Together: Implementations

In this chapter we present 8 different SpMV kernels spanning 5 basic ma-
trix formats (Table 1.5). We did not implement all 15 (5 formats × 3 archi-
tectures) because some combinations were inappropriate for certain architec-
tures. For each kernel, we implemented a different subset of the optimizations

16 Scientific Computing with Multicore and Accelerators

described in Sections 1.5.1–1.5.3. When we apply cache blocking-like opti-
mizations (CPU, Cell, and the GPU’s hybrid format), each submatrix may be
individually optimized. In this section, we describe the architecture-specific
peculiarities of each implementation grouped by format.

BCOO (CPU/Cell/GPU): Block coordinate (BCOO) was the most
widely used matrix format. We implemented an SpMV kernel for each ar-
chitecture. However, there were some differences. The CPU and Cell imple-
mentations were most similar. Both explored register blocks in powers of two
from 1×1 to 8×8. The CPU implementation included exploration of prefetch-
ing as well as cache and TLB blocking. The Cell implementation uses DMA
instead of prefetching, and always cache blocks for the maximum available
local store capacity. When parallelized, one thread was created per hardware
thread context or SPE. Cache and TLB blocking occur after parallelization
based on nonzeros. Cell implements a degenerate form of segmented scan in
which conditional stores are emulated in software via SIMD muxing.

The GPU implementation was somewhat different. It only implements
1×1 COO, has no need for prefetching, uses the texture cache for implicit
exploitation of source vector temporal locality, and maximizes parallelism by
individually assigning one CUDA thread to each nonzero. It then uses a seg-
mented reduction reminiscent of Blelloch, et al. [6] on the CM-2 and Cray C90
and the CUDA-based segmented scan implementation by Sengupta et al. [12].

BCSR (CPU/GPU): CSR flavors were implemented both on CPUs
and GPUs. They were not implemented on Cell as the benefit would have
been small and challenging to implement a fast 1×1 variant. The CPU im-
plementation incorporates the same optimizations as its BCOO brethren, but
the GPU implementations (there were two) are quite different. The first GPU
CSR implementation, hereafter referred to as CSR(scalar), uses the standard
loop and data structures. It parallelizes the computation by assigning one
thread to process each row. Unfortunately, this simple approach is generally
inefficient as threads within a warp do not access contiguous memory loca-
tions, thus preventing memory coalescing and degrading memory bandwidth
efficiency. The second implementation, CSR(vector), assigns one 32-thread
warp to each row, effectively strip mining the inner loop of the sequential
SpMV computation. This method allows for memory coalescing at the cost
of an intra-warp reduction at the end of each row. Independently, Baskaran
and Bordawekar [4] implemented a similar approach, although they assign
one half-warp to each row and pad each row to be a multiple of 16 in length.
Their padding guarantees alignment, and hence slightly higher degrees of co-
alescing, albeit at the cost of potentially significant additional storage. This
may incrementally improve performance in some cases, but shares the same
fundamental performance characteristics.

GCSR (CPU): GCSR is a variant on BCSR and an alternative to
BCOO. It is only beneficial when cache blocking produces submatrices with
many empty rows distributed at random (i.e. hypersparse). GCSR augments
the BCSR data structure with a row coordinate associated with each row

Sparse Matrix-Vector Multiplication on Multicore and Accelerators 17

Xeon X5550 PowerXCell 8i GTX 285
Implementation Nehalem Cell Blade GeForce
BCOO X X X
BCSR X — X†

GCSR X — —
Hybrid — — X
BELLPACK — — X

TABLE 1.5: Implementations as a function of machine. †Only 1×1 CSR.

pointer. This coordinate is conceptually similar to column indices but as
nonzeros are sorted by rows, far fewer are required.

Hybrid (GPU): Unlike the CPU/Cell implementations where hybrid
implementations arise from local specialization based on individually opti-
mized cache blocks, the “Hybrid GPU” implementation merges ELLPACK
and COO to attain ELLPACK’s high performance potential with the perfor-
mance invariability of COO. Given a parameter K, the matrix is partitioned
into two portions. The first submatrix is stored in ELLPACK form with K
nonzeros per row, padding rows with fewer than K nonzeros. The second sub-
matrix is stored in COO form and holds the excess entries from rows with
greater than K nonzeros. The splitting parameter K can be specified di-
rectly, or chosen automatically using an empirical heuristic which is currently
K = max(4096, M/3).

BELLPACK (GPU): BELLPACK is a GPU-only implementation that
applies one-dimensional row blocking, row permutation, and register blocking
to ELLPACK. In CUDA terms, one-dimensional row blocking means that we
assign one thread block per block row of the matrix, where the block row size is
tunable. Combining 1-D row blocking and row permutation effectively reduces
the padding required relative to conventional ELLPACK storage. Within a
row block, warps are assigned to consecutive register-block rows. To achieve
coalesced accesses, elements from different blocks within the same warp are
interleaved. The register block size is tunable. There are no restrictions on the
register block size, though a “poor” choice will lead to poor performance.

1.6 Results and Analysis

In this section, we present SpMV performance for our three platforms as a
function of input (matrix), optimization (e.g., register blocking), and approach
to parallelization (e.g., OpenMP vs. Pthreads). We then examine performance
by architecture, to give both implementation and architectural insight.

18 Scientific Computing with Multicore and Accelerators

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0

D
en

se

Pr
ot

ei
n

S
ph

er
es

C
an

ti
le

ve
r

W
in

dT
un

ne
l

H
ar

bo
r

Q
C
D

S
hi

p
Ec

on
om

ic
s

Ep
id

em
io

lo
gy

A
cc

el
er

at
or

C
ir
cu

it

W
eb

ba
se

LP

G
Fl

o
p

/
s

Xeon X5550
(untuned OpenMP)

dual-socket
single-socket

(a)

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0

D
en

se

Pr
ot

ei
n

S
ph

er
es

C
an

ti
le

ve
r

W
in

dT
un

ne
l

H
ar

bo
r

Q
C
D

S
hi

p
Ec

on
om

ic
s

Ep
id

em
io

lo
gy

A
cc

el
er

at
or

C
ir
cu

it

W
eb

ba
se

LP

G
Fl

o
p

/
s

Xeon X5550
(untuned Pthreads)

dual-socket
single-socket

(b)

FIGURE 1.3: Untuned SpMV performance as a function of threading model,
hardware concurrency, and matrix.

1.6.1 Xeon X5550 (Nehalem)

Figure 1.3(a) presents CSR SpMV performance as a function of thread-
ing model (OpenMP vs. Pthreads), matrix, and hardware (using one or both
sockets of the dual-socket SMP). We observe that using one socket (via the
OpenMP affinity environment variable) always delivers less than 1.5 GFlop/s.
Intuitively, we expect the matrices with few nonzeros per row or large dimen-
sions to deliver lower performance as a larger fraction of memory bandwidth
is tasked with reading in row pointers and source vector elements. Never-
theless, the performance variability is quite low. Given this kernel should
be bandwidth-limited (ignore the 42.66 GFlop/s peak) with a per socket
STREAM bandwidth less than 18 GB/s, one would näıvely expect perfor-
mance less than 3 GFlop/s (2 flops per 12 byte nonzero). The delivered per-
formance is substantially less than this bound. Moreover, when the second
socket is employed, performance improves by just 50% on some matrices and
none on others.

This lack of socket scalability can well be explained by two facets of SpMV
on this NUMA SMP. When the matrix was read from disk, it was done so
by one thread. The underlying first-touch policy placed data on the DIMMs
with affinity to the core on which that thread was running. Unfortunately,
this means that when SpMV is parallelized via OpenMP, only the memory
controllers attached to those DIMMs were used. Thus half the SMP’s band-
width was thrown away. The lack of scalability for the simplest matrices is
thus an artifact of limited bandwidth and high inter-socket latency. For the
more challenging matrices (Epidemiology through Linear Programming), the
fact that the vectors were allocated via the same first-touch policy similarly

Sparse Matrix-Vector Multiplication on Multicore and Accelerators 19

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

D
en

se

Pr
ot

ei
n

S
ph

er
es

C
an

ti
le

ve
r

W
in

dT
un

ne
l

H
ar

bo
r

Q
C
D

S
hi

p
Ec

on
om

ic
s

Ep
id

em
io

lo
gy

A
cc

el
er

at
or

C
ir
cu

it

W
eb

ba
se

LP

G
Fl

o
p

/
s

Xeon X5550
(auto-tuned Pthreads)

Auto-tuned
PThreads
OpenMP

FIGURE 1.4: Nehalem pthread performance before and after auto-tuning.
OpenMP included as reference.

limits performance. Finally, some matrices (e.g., webbase) are particularly
poorly suited to iterative sparse methods because a näıve parallelization will
induce all-to-all communication. That is, each socket updates its respective
half of the vector, but on the next iteration each socket will need both halves.
This forces an implicit data broadcast and exposes the limited inter-socket
bandwidth.

In Figure 1.3(b) We observe that the pthreads implementation (with the
NUMA-aware library matrix creation routines) delivers not only substantially
better performance (better than 2.5×), but also better multi-socket scalability
(typically 2×). The latter is well explained by proper NUMA allocation. How-
ever, even in the single-socket configuration, pthreads usually delivers twice
the performance of OpenMP. This was quite surprising given we use the cor-
rect OpenMP affinity variables, load balancing shouldn’t be an issue on at
least some of the matrices, and OpenMP usually performs well for structured
grid computations. Although the pthreads implementation did provide close

20 Scientific Computing with Multicore and Accelerators

to 3 GFlop/s per socket, we show that substantially better performance can
be attained.

Figure 1.4 shows the performance benefits attained for the full SMP when
auto-tuning is applied to the pthread implementation. We include OpenMP
data as dots for comparison. As previously discussed, a vast number of opti-
mizations were explored including register blocking, index compression, alter-
nate matrix formats (BCOO, GCSR), prefetching, and cache/TLB blocking.
We observe that auto-tuning often accelerated performance by 30% (typically
from register blocking) and as much as 2.5× (the extreme case requiring TLB
and cache blocking). Moreover, the conjunction of pthreads and auto-tuning
consistently exceeded OpenMP performance by between 2.6× and 5.1×. Un-
fortunately, there are some matrices (e.g., Epidemiology, Circuit, Webbase)
for which our current tuning regimen seems ill-equiped. These are the prob-
lems that exhibit poor cache locality (both temporal and spatial) at any scale
and demand substantial inter-core and inter-socket communication.

1.6.2 QS22 PowerXCell 8i

The Cell SpMV auto-tuner is built on the multicore auto-tuner we used
for Nehalem. The principal differences are the threading model (superficial
change from pthreads to pthreads+libspe) and the fact that due to the com-
plexity of Cell programming, only a subset of the optimization space was
implemented. Thus, on Cell the auto-tuner only implements BCOO (omitting
BCSR/GCSR), always cache blocks for the available local store capacity, al-
ways compresses indices, and always uses DMA. However, the Cell auto-tuner
does implement a variant on segmented scan in which each SPE runs a soft-
ware pipelined, vector length of 1, BCOO segmented scan on its cache block. In
essence, this transforms the doubly-nested BCSR or sequential BCOO imple-
mentations into a single very-fast pipelined loop. Note that the PPE performs
no computation in the SpMV kernel, but rather is used for coordination.

Figure 1.5 presents baseline Cell performance (1×1 BCOO) using either
one or both of the Cell chips on the QS22 SMP. It also shows auto-tuned
performance using both chips. When examining single-socket performance,
we see dramatically different behavior compared to Nehalem. Cell’s perfor-
mance is remarkably constant — a testament to the elimination of CSR’s
short loops (via segmented scan) coupled with a potentially compute-bound
SPE. Although we expected the QS22’s DDR2-based stream performance to
be substantially lower than the QS20’s XDR-based performance, the expected
(bandwidth-only) performance bound of 3 GFlop/s per socket is somewhat
higher than observed performance (black bar). When the second socket is
used, the matrices amenable to NUMA-parallelized attain a speedup of 2×.
However, we observe a very similar behavior to that of Nehalem on the chal-
lenging matrices.

Principally, the Cell auto-tuner explores alternate register blockings while
using only the BCOO format with index compression. Nevertheless, we ob-

Sparse Matrix-Vector Multiplication on Multicore and Accelerators 21

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

D
en

se

Pr
ot

ei
n

S
ph

er
es

C
an

ti
le

ve
r

W
in

dT
un

ne
l

H
ar

bo
r

Q
C
D

S
hi

p
Ec

on
om

ic
s

Ep
id

em
io

lo
gy

A
cc

el
er

at
or

C
ir
cu

it

W
eb

ba
se

LP

G
Fl

o
p

/
s

QS22 Cell Blade

16 SPEs (auto-tuned)
16 SPEs
8 SPEs

FIGURE 1.5: SpMV performance as a function of matrix, hardware con-
currency, and optimization. Note, the untuned baseline is actually a DMA-
enabled 1×1 COO implementation, and is thus by no means näıve.

serve that register blocking can dramatically improve performance for some
matrices (over 2×). Nominally, register blocking should only improve perfor-
mance by a factor of 1.5× (if memory-bound). We believe the discrepancy
arises from a transition from compute-bound to memory-bound. This may
be confirmed as the attained performance (over 9 GFlop/s) aligns well with
the bandwidth–arithmetic intensity product. Once again, we observe that our
breadth of optimizations is insufficient for more than a third of the matrices.
Clearly, there is still ample research material for SpMV.

1.6.3 GTX 285

Unlike the Nehalem and Cell implementations, there is not one single GPU
auto-tuner. As such, in this section, we present the performance results of 5
different GPU SpMV implementations. Moreover, in all cases, we assume data
(both matrices and vectors) remain resident in GPU device memory obviating

22 Scientific Computing with Multicore and Accelerators

0

2

4

6

8

10

12

14

16

18

20

22

D
en

se

Pr
ot

ei
n

S
ph

er
es

C
an

ti
le

ve
r

W
in

dT
un

ne
l

H
ar

bo
r

Q
C
D

S
hi

p
Ec

on
om

ic
s

Ep
id

em
io

lo
gy

A
cc

el
er

at
or

C
ir
cu

it

W
eb

ba
se

LP

G
Fl

o
p

/
s

GTX 285 max
CSR(naive)
CSR(vector)
COO
Hybrid
BELLPACK

FIGURE 1.6: GPU performance as a function of matrix and implementation
(dots). Dotted bars are used simply to visualize the best possible performance.

the need for any PCIe transfers. This is a reasonable assumption for any local
iterative sparse solver. Finally, all GPU computations are performed in double
precision and access the source vector is accelerated via the on-chip, read-only
texture cache.

Figure 1.6 presents each implementation’s performance on each matrix.
The black bars (näıve CSR) represent a straightforward loop parallelization
of the standard 1×1 CSR implementation that assigns one thread per row.
GPUs may require several thousand parallel threads in order to fully utilize
the processor. This need for abundant parallelism is a challenge for a simple
thread-per-row decompsition strategy when matrices have relatively few rows,
as is the case with our Dense and LP examples which have 2,000 and 4,284
rows, respectively. Despite the appearance of substantial parallelism on the re-
mainder, this simple implementation exhibits substantial memory divergence
when accessing the CSR data structure, since as threads access different rows,
they access disjoint rather than contiguous nonzeros. Thus it does not effec-
tively utilize the available 159 GB/s of memory bandwidth since there is an

Sparse Matrix-Vector Multiplication on Multicore and Accelerators 23

order of magnitude difference between fully coalesced and uncoalesced memory
access. All remaining implementations attempt to attain memory coalescing.
They are overlaid in Figure 1.6 via dots with light grey bars highlighting the
maximum performance attained via any implementation.

The vectorized CSR implementation, which exhibits much less memory
divergence, delivers substantially better performance than the scalar CSR im-
plementation. In addition, it assigns one 32-thread warp per row and thus
requires far fewer rows to develop sufficient find-grained parallelism. In the
vectorized approach, the degree of memory divergence, and to some extent
execution divergence, is determined by the distribution of nonzeros per row.
When applied to the six finite-element matrices with an average 50 or more
nonzeros per row the vectorized kernel achieves no less than 7.5 GFlop/s. On
the other hand, matrices such as Webbase with approximately 3.1 nonzeros
per row expose a weakness of the vectorized implementation—several threads
of a warp will be idle when a row is much shorter than the warp width.

The segmented reduction-based COO implementation delivers very con-
sistent, albeit lower, performance across the matrix suite. Although robust
with respect to the number of rows and distribution of nonzeros per row, the
COO implementation suffers from low arithmetic intensity (2 flops for 4+4+8
bytes) and the overhead of many inter-thread operations.

The Hybrid implementation, which combines the easy vectorization of
ELLPACK with the robustness of COO, achieves good performance on most
every matrix. For matrices with a naturally dense substructure, which is
typical of matrices arising from finite element analysis, the register blocked
BELLPACK implementation delivers better performance. For such matrices,
it delivers 1.1–1.5× higher throughput, which is the range expected given the
bandwidth it conserves by reducing the number of indices it must read.

The Nehalem and Cell results demonstrated that there is no one “best”
implementation, but rather produce a family of implementations auto-tuned
to fit specific matrices. These GPU performance results demonstrate the same
trend: the best choice of SpMV kernel depends on the structure of the ma-
trix. BELLPACK delivers superior performance for matrices with small dense
blocks, the Hybrid format provides better results on matrices with more chal-
lenging sparsity patterns, and CSR (vector) worked best for the matrices with
the most nonzeros per row.

1.7 Summary: Cross-Study Comparison

The implementations of SpMV described in this chapter represent the
state-of-the-art in performance on the three target hardware platforms.
Though SpMV is itself simple to state and to analyze, the diversity of architec-
tural designs and input matrix characteristics means a complex combination

24 Scientific Computing with Multicore and Accelerators

Nehalem
Naïve
OpenMP

QS22
Auto-tuned
Pthreads

Nehalem
Auto-tuned
Pthreads

GTX285
Tuned
CUDA

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

D
e
n
s
e

P
ro

te
in

S
p
h
e
re

s

C
a
n
ti
le

v
e
r

W
in

d
T
u
n
n
e
l

H
a
rb

o
r

Q
C
D

S
h
ip

E
c
o
n
o
m

ic
s

E
p
id

e
m

io
lo

g
y

A
c
c
e
le

ra
to

r

C
ir
c
u
it

W
e
b
b
a
s
e

L
P

G
F
lo

p
/

s

Tuned Performance

FIGURE 1.7: Performance comparison across architectures. Note: The
näıve baseline (Nehalem/OpenMP) is shown as a black bar. The best im-
plementation for each architecture — Nehalem (circle), Cell (diamond),
GTX285 (square) — is shown as a color-coded dot with a light gray bar
denoting the global best.

of architecture- and matrix-specific techniques is essential to achieving this
level of performance.

To summarize the main findings of this chapter, Figure 1.7 compares the
best performance we attain on each platform across the suite of matrices. The
common baseline performance is the näıve OpenMP parallelization running
on Nehalem (the bottom black bars).

Clearly, all optimized implementations deliver substantially better perfor-
mance. In addition, we observe that the GPU usually delivers better than
twice Nehalem’s performance, although this should come as no surprise given
the GPU has more than triple the Nehalem SMP’s bandwidth. As our in-

Sparse Matrix-Vector Multiplication on Multicore and Accelerators 25

tuition expected, bandwidth is the determining performance factor; however,
note that achieving high levels of sustainable bandwidth requires a significant
tuning effort.

Figure 1.7 also shows that the gap between untuned and tuned perfor-
mance, comparing the baseline OpenMP Nehalem implementation to its tuned
Nehalem counterpart (circles), we see a 2–4× difference in performance. This
observation suggests just how important selection of the appropriate program-
ming model and performance tuning can be. Moreover, it implies the need for
improved tools and techniques that simplify and automate the tuning process.

We observe several cases where Nehalem performance is comparable (Ac-
celerator, Circuit) or exceeds (Economics, LP) GPU performance. Two of
these matrices (Circuit and Economics) are the smallest in our test corpus,
and may fit in Nehalem’s aggregate SMP cache. However, the SMP nature
impedes communication of vector elements between successive SpMV’s thus
limiting the benefit. The other two have sparsity patterns that appear to pose
problems for our GPU implementations, partially due to the fact that the
vector working set exceeds the texture cache’s capacity.

One seeming change relative to the earlier literature shown in Figure 1.7
is Cell’s relatively lackluster performance. However, we note that at the time
of its initial release, the tuned Cell implementation delivered far better per-
formance than any commodity CPU on the market at that time [14,15]. That
is, due to the absence of any substantive Cell hardware development in the
last 4 years, commodity multicore now delivers comparable performance.

1.8 Acknowledgments

The authors acknowledge Georgia Institute of Technology (Georgia Tech),
its Sony-Toshiba-IBM Center of Competence, and the National Science Foun-
dation (NSF) for the use of Cell Broadband Engine resources that have con-
tributed to this research. The authors from Lawrence Berkeley National Labo-
ratory (LBNL) are supported by the Director, Office of Science, of the U.S. De-
partment of Energy (DOE) under contract number DE-AC02-05CH11231 and
by NSF contract CNS-0325873, along with generous funding and equipment
from Microsoft, Intel, and U.C. Discovery (under Awards #024263, #024894,
and #DIG07-10227, respectively). The authors from Georgia Tech were sup-
ported in part by NSF award number 0833136, NSF CAREER award num-
ber 0953100, NSF TeraGrid allocation CCR-090024, joint NSF 0903447 and
Semiconductor Research Corporation (SRC) Award 1981, a Raytheon Faculty
Fellowship, and grants from the Defense Advanced Research Projects Agency
(DARPA) and Intel Corporation. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do
not necessarily reflect those of DOE, NSF, SRC, DARPA, Microsoft, or Intel.

26 Scientific Computing with Multicore and Accelerators

Bibliography

[1] The Open Group Base Specifications, Issue 6: POSIX Threads
(pthread.h). IEEE Std 1003.1, 2004. http://www.opengroup.org/
onlinepubs/009695399/basedefs/pthread.h.html.

[2] NVIDIA CUDA (Compute Unified Device Architecture): Program-
ming Guide, Version 2.1. http://developer.download.nvidia.com/
compute/cuda/2_1/toolkit/docs/NVIDIA_CUDA_Programming_Guide_
2.1.pdf, December 2008.

[3] OpenMP: Application Program Interface, version 3.0, May 2008. http:
//www.openmp.org/mp-documents/spec30.pdf.

[4] Muthu Manikandan Baskaran and Rajesh Bordawekar. Optimizing sparse
matrix-vector multiplication on GPUs using compile-time and run-time
strategies. Technical Report RC24704 (W0812-047), IBM T.J. Watson
Research Center, Yorktown Heights, NY, USA, December 2008.

[5] Nathan Bell and Michael Garland. Implementing a sparse matrix-vector
multiplication on throughput-oriented processors. In Proc. ACM/IEEE
Conf. Supercomputing (SC), Portland, OR, USA, November 2009.

[6] Guy E. Blelloch, Michael A. Heroux, and Marco Zagha. Segmented oper-
ations for sparse matrix computations on vector multiprocessors. Techni-
cal report, Carnegie Mellon University, Department of Computer Science,
Pittsburgh, PA, USA, August 1993.

[7] Jee Whan Choi, Amik Singh, and Richard W. Vuduc. Model-driven au-
totuning of sparse matrix-vector multiply on GPUs. In Proc. ACM SIG-
PLAN Symp. Principles and Practice of Parallel Programming (PPoPP),
Bangalore, India, January 2010.

[8] Eun-Jin Im, Katherine Yelick, and Richard Vuduc. Sparsity: Optimiza-
tion framework for sparse matrix kernels. Int’l J. of High Performance
Computing Applications (IJHPCA), 18(1):135–158, February 2004.

[9] NVIDIA. NVIDIA’s next generation CUDA compute architec-
ture: FermiTM, v1.1. Whitepaper (electronic), September 2009.
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_
Fermi_Compute_Architecture_Whitepaper.pdf.

27

28 Scientific Computing with Multicore and Accelerators

[10] John R. Rice and Ronald F. Boisvert. Solving elliptic problems using
ELLPACK. Springer Verlag, 1984.

[11] Yousef Saad. Iterative Methods for Sparse Linear Systems, Second Edi-
tion. Society for Industrial and Applied Mathematics, April 2003.

[12] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D.
Owens. Scan primitives for GPU computing. In Proc. ACM SIG-
GRAPH/EUROGRAPHICS Symp. Graphics Hardware, San Diego, CA,
USA, 2007.

[13] Richard W. Vuduc. Automatic performance tuning of sparse matrix ker-
nels. PhD thesis, University of California, Berkeley, CA, USA, January
2004.

[14] Sam Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine
Yelick, and James Demmel. Optimization of sparse matrix-vector multi-
plication on emerging multicore platforms. In Proc. ACM/IEEE Conf.
Supercomputing (SC), 2007.

[15] Sam Williams, Richard Vuduc, Leonid Oliker, John Shalf, Katherine
Yelick, and James Demmel. Optimizing sparse matrix-vector multiply on
emerging multicore platforms. Parallel Computing (ParCo), 35(3):178–
194, March 2009. Extends conference version: http://dx.doi.org/10.
1145/1362622.1362674. .

[16] Samuel Webb Williams. Auto-tuning performance on multicore comput-
ers. UCB/EECS-2008-164, University of California, Berkeley, CA, USA,
December 2008.

