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Magnetic Resonance Imaging

We acquire spectral data (Fourier
domain).
Data may be acquired along
non-Cartesian sampling
trajectories.

resistance to motion artifacts
ease in generating field
gradients

Data can be degraded by blur.

Data can be noisy
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Image Reconstruction

(a) Acquired Fourier Sam-
ples

(b) Spiral Sampling Trajec-
tory

(c) Reconstructed
Shepp Logan

Figure: Simulated MR no blur or noise, but non Cartesian Data1

Image exhibits aliasing and ringing: segmentation would be challenging

1Sampling pattern courtesy Dr. Jim Pipe, Barrow Neurological Institute,
Phoenix, Arizona
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Goal: given spectral data obtain an image segmentation

Estimate edges from blurred , noisy Fourier data on non-equispaced grids.
Assume a finite number of Fourier Coefficients available for a piecewise

function.
These may be noisy
The function may be blurred
Data may be collected at non Cartesian grid points

Desire accurate and robust detection of jump discontinuities to
segment the data.

Validation examine true classifications of edges in data.
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What do we mean by a jump?

Assume f is piecewise smooth

Its jump function is defined by

[f ](x) := f(x+)− f(x−)

A jump discontinuity is a local feature; i.e., the jump function at any point x
only depends on the values of f at x+ and x−.

Function in blue and Jump Function in Red
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Jump Detection from Reconstructed Fourier data
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(a) Physical space jump de-
tection
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(b) Fourier space using
N = 32 modes

3 2 1 0 1 2 3
0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

x

f, 
D 1f

 

 
Function
Fourier Recon.
Divided Diff.

(c) Fourier space usingN =
64 modes

Figure: Jump Detection of the unit ramp function with original data on 1024 grid and
using first order divided difference

Gibbs at jump makes edge detection infeasible: alternative required
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Concentration Factor Method (Gelb, Tadmor)

Concentrate edges using convolution with CσN (x)

Approximate [f ](x) using generalized conjugate partial Fourier sum

SσN [f ](x) = i

N∑
k=−N

f̂k sgn(k)σ
(
|k|
N

)
eikx = (f ∗ CσN )(x) (1)

Factor Expression

Trigonometric σT (η) =
π sin(αη)
Si(α)

Si(α) =
∫ α

0

sin(x)
x

dx

Polynomial σP (η) = −p π ηp
p is the order of the factor

Exponential σexp(η) = C η exp
(

1
αη (η − 1)

)
C - normalization; α > 0 - order

−80 −60 −40 −20 0 20 40 60 80
0

0.5

1

1.5

2

2.5

3

3.5

4

k

si
g(

et
a)

Concentration Factors

 

 
Trigonometric
Polynomial
Exponential

Envelopes in Fourier Space

National Science Foundation: Division of Computational Mathematics 8 / 38



Motivation from Real Data: Collected in Fourier Space Jump Function Detection by Concentration and Matching Waveform l1 minimization to detect edges in blurred signals Conclusions

Example: No Noise, No Blur, Cartesian Grid
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(a) Trigonometric Factor:
Jump Response

(b) Shepp Logan phantom

Apply concentration to each dimension

SσN [f ](x(ȳ)) = i

NX
l=−N

sgn(l)σ

„
|l|
N

«

·
NX

k=−N

f̂k,l e
i(kx+lȳ)

overbar represents constant dimension.

(c) Edge Map
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Illustration N = 64: Perfect Case. Black line is the jump function

f(x) =

8>><>>:
3/2 for − 3π

4
≤ x < −π

2

7/4− x/2 + sin(7x− 1/4) for −π
4
≤ x < π

8

x11/4− 5 for 3π
8
≤ x < 3π

4

0 otherwise.

(2)

(d) Polynomial p=1 (σ1) (e) Polynomial p=2 (σ2) (f) Exponential (σexp)

Not sufficient: false positives and false negatives depend on red threshold
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Improving jump detection

The minmod to improve the approximation (Gelb and Tadmor (2006))
Use the minmod function over different concentration functions

minmod{a1, . . . , an} :=
{
smin(|a1|, |a2|, . . . , |an|) s := sgn(ai), ∀i
0 otherwise

,

(3)
yielding the approximation obtained by finding the jump approximation with
multiple σ

SMM
N [f ](x) = minmod{Sσ1

N [f ](x), Sσ2
N [f ](x), . . . , SσnN [f ](x)}. (4)

Apply multiple concentration factors: pick edges detected for all CFs.
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Minmod CF edge detection for noisy and blurred functions: 2% threshold

(g) Under sampling (h) Blurring by a Gaussian (i) Noise contamination

Figure: False positives & negatives. (g) 10% missing Fourier Coefficients. (h)
Gaussian blur of variance τ = 0.05, for point spread function coefficients
ĥk = e−

k2τ2
2 . (i) Noise of variance .015 applied to Fourier Coefficients.

For blurred functions the edges may be missed, for noisy functions or with
missing data too many edges are determined.
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The Jump Response: What do we expect to see at a jump

Let r(x) denote the unit ramp function.

r(x) =
{

x−π
2π x < 0
π−x
2π x > 0 , [r](x) =

{
1 x = 0
0 else

Definition : Jump Response
The jump response, denoted by Wσ

N (x), is defined as the jump function approxima-
tion of the unit ramp as generated by the concentration sum, i.e.,

Wσ
N (x) := SσN [r](x) = i

∑
|k|≤N

r̂(k)sgn(k)σ
(
|k|
N

)
eikx

=
1

2π

∑
0<|k|≤N

σ
(
|k|
N

)
|k|

eikx

The JR describes the unique oscillatory pattern of the jump function approximation in
the immediate vicinity and away from jumps.
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Sample Jump Responses of the Concentration Factors
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(a) Trigonometric Factor
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(b) Polynomial Factor
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(c) Exponential Factor

JR depends on CF
Suggests define the JR as a Matching Waveform (MW)
Correlate Edge Function with the Matching Waveform

Leads to a Matching Waveform Concentration Factor
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Mathematical Description MWCF (A. Gelb and D. Cates, 2008)

Jump approximation at x = ξ depends on size [f ] and location ξ, not f :

SσN [f ](x) =
[f ](ξ)
π

N∑
k=1

σk,N
cos k(x− ξ)

k
+O

(
logN
N

)
.

Use JR W σ
N (x) =

N∑
k=1

σk,N
cos kx
k .

Apply CF and correlate with JR

SσmwN [f ](x) =
1

γmw
(SσN [f ] ∗W σ

N )(x), γmw =
1
π

N∑
k=1

(σk,N
k

)2 (5)

Gives admissible matching waveform concentration factor (MWCF)

σmw

( |k|
N

)
:=

1
γmw

σ
( |k|
N

)∫ π

−π
W σ
N (ρ) exp (−ikρ) dρ. (6)

MWCF performs better in the presence of noise, does not remove
oscillations. Performance deteriorates for nearby jumps.
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Mathematical Description: Estimate Jump [f ] given ĝk of Noisy Blurred f

Appealing to sparsity

Given ĝk for blur function h and noise n, ĝk = ĥkf̂k + n̂k

Approximate [f ] from [g], given ĝk : ( ˆSσN [g])k =
(
iσ|k|,N sgn(k)

)
ĝk

Observe ĝk ≈ ĥkf̂k yields(
iσ|k|,N sgn(k)

)
ĝk = ( ˆSσN [g])k ≈ ĥk( ˆSσN [f ])k

Seek sparse y which also approximates the jump function of f

Convolve y with W σ
N (x) to approximate jump SσN [f ](x)

( ˆSσN [f ])k ≈ ( ˆW σ
N ∗ y)k = (Ŵ σ

N )kŷk, (7)

Obtain for (Ŵ σ
N )k = π

|k|σ|k|,N , |k| ≤ N, k 6= 0

ĥk(Ŵ σ
N )kŷk ≈ iσ|k|,N sgn(k)ĝk
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A Discrete Variational Formulation: for blur, noise and Cartesian

The Formulation

Introduce necessary matrices

Σ = diag
„
σ

„
| −N |
N

«
, · · · , 0, · · · , σ

„
|N − 1|
N

««
Concentration

H = diag(
π

| −N | ĥ−N , · · · , 0, · · · ,
π

|N − 1| ĥN−1) Blur

Fkj =
1

2N
(−1)k exp(

−iπjk
N

) where ŷ = Fy((x)) Fourier Transform.

Find discrete approximation y to y(x) from second order cone problem.

y = arg min
u
‖u‖1 subject to ‖Σ(HFu− b)‖22 ≤ δ, (8)

b = (−iĝ−N , · · · , 0, · · · , iĝN−1). Σ weights the data fit term.
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Reconstruct edges with MWCF and Impose Sparsity as a Regularization

Summary of The Approach

1 Concentration function applied in Fourier domain enhances scales at edges

2 Find Fourier expansion approximating jumps using concentration at the edges

3 Correlate obtained jump approximation to JR. (use MWCF)

4 Impose sparseness in space on the jump function: Regularization term

5 Find sparse jump function which matches the jump function of the data: Data Fit Term

6 Introduce regularization parameter λ and solve

y = arg min
u
{λ‖u‖1 +

1
2
‖Σ(HFu− b)‖22}

Recall Goal: segment data
How important is the regularization parameter λ?
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Experiments with N = 64 and under sampling but no noise and no blur.
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Figure: Edge detection using σexp. FC is percentage of Fourier Coefficients used, y is
the thin line, unseen in (b). FP and FN are count of misidentified edges, either false
positive or false negative, using 2% threshold on y.

One sees the effect of the regularization parameter comparing (a) and (b), and of reducing the
number of Fourier Coefficients comparing (a) and (c).
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Under sampling, no noise, no blur. False Positives and False Negatives
with Waveform
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Illustrating impact of choice of
regularization parameter in relation to the
number of Fourier Coefficients sampled,
and impact on the number of False
Positives and False Negatives
Region (d) shows that there is a range of
regularization parameters for which the
method is robust with respect to correct
identification of edges provided up to
about 70% of coefficients are retained.

National Science Foundation: Division of Computational Mathematics 20 / 38



Motivation from Real Data: Collected in Fourier Space Jump Function Detection by Concentration and Matching Waveform l1 minimization to detect edges in blurred signals Conclusions

Polynomial Concentration N = 64, no noise, no blur, missing Fourier data
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(a) N=64, σ1
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(b) N=64, σ2

Higher order concentration factors perform better at capturing the edges correctly for a wider
range of regularization parameters.
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Edge detection in the presence of blur in the coefficients. N = 64.
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(e) σexp

Figure: Edge detection in blurred signals using σp, for p = 1, 2, and σexp. All plots
show that the method can handle blurring where the traditional CF method fails.

Gaussian blur of variance τ = 0.05, for point spread function coefficients ĥk = e−
k2τ2

2 . The
higher order concentration factors again perform better at capturing the edges correctly for a
wider range of regularization parameters.
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Edge detection in the presence of additive noise in the coefficients. N = 64.
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(b) σ2
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(c) σexp

Figure: Edge detection in signals with noise of variance .015 applied to Fourier
Coefficients. All plots show that the method can handle noise where the traditional
CF method fails.

In this case the higher order exponential concentration factor performs better than the
quadratic, perhaps due to its inherent filtering of coefficients contaminated with noise.
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Is waveform correlation required? Examples without waveform N = 64
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(c) σexp

Figure: No blur, no noise missing Fourier data: classification capability robustness
with respect to choice of λ.

When using the low order polynomial concentration factor the method is quite robust, but for
higher order concentration factors the method is more sensitive to the choice of λ and the
ability to correctly detect edges is limited.
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Example for blurred and noisy non-harmonic Fourier data, N = 64
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(a) Fourier reconstruction of blurred noisy data
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(b) Jittered spectral data using σ1
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(c) Log spectral data using σexp, α = 2

Gaussian blur variance τ = .05.

Additive white complex Gaussian
noise, variance .015.

Regularization parameters .002 in
(e) and .0013 in (f).

Solution is more sensitive to choice
of regularization parameter λ than
for the harmonic case.

Determination of λ is harder for the
log than jittered data.
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A Two Dimensional Example (Stefan and Yin)

(a) (b)

Figure: A modified Shepp logan phantom with gradients and a radial sampling
pattern.

National Science Foundation: Division of Computational Mathematics 26 / 38



Motivation from Real Data: Collected in Fourier Space Jump Function Detection by Concentration and Matching Waveform l1 minimization to detect edges in blurred signals Conclusions

Some Two Dimensional Results (Stefan and Yin)

(a) (b) (c)

Figure: Edge detection using (a) Canny edge detector (matlab) after reconstruction
from the radial samples using TV. (b) Wavelet edge detector on TV reconstruction.
(c) A 5th order FD edge detector
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Conclusions

A New Formulation for Image Segmentation
Approach is variational formulation employing sparsity of JF to find
edges for noisy/blurred signals.

Approach is a regularized deconvolution of the approximate jump
function.

Approach requires the MW to improve robustness with respect to choice
of the regularization parameter.

Approach is successful for missing Fourier data.

Approach suggests new way to think of the Regularized Parameter
Estimation Problem:

Is the Parameter Robust for Segmentation
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THANK YOU!
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Non-harmonic Fourier data

Motivation: Modern MRI scanners optimize data collection
Fourier data collected on non-cartesian representations of the k-space.

Non-harmonic Fourier data, f̂(ωk), for piecewise-analytic
f ∈ L2(R(−π, π)) are defined by

f̂(ωk) :=
1

2π

∫ π

−π
f(x)e−iωkxdx, ωk /∈ Z. (9)

Extension of convolution form of jump approximation (1)

S̃σN [f ](x) = (f ∗ C̃σN )(x) := i

N∑
k=−N

αkf̂(ωk)sgn(ωk)σ
(
|ωk|
N

)
eiωkx.

Coefficients αk are weights for non-uniform trapezoidal rule
approximation of inverse Fourier integral. (convolutional gridding).
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Examples: Non-harmonic sampling (right half plane), N = 16
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(a) Jittered sampling ωk = k± ζk, ζk ∼ U [0, θ) , k = −N,−(N − 1), . . . , N.
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(b) Log sampling
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Applying the Edge Detector with the non-harmonic concentration sum
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(a) Edges from jittered sampling using σ1 and σexp with α = 2.
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(b) Edges from log sampling using σ1 and σexp with α = 2.
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Extending the Sparsity Approach

g = (ĝ(ω−N ), ..., ĝ(ωN−1))T non-harmonic measurements.
y, approximates [f ] on equispaced grid xj = πj

N −π, j = 0, . . . , 2N − 1.
Introduce Σ diagonal matrix of concentration factors, H diagonal matrix
of blur coefficients, F ∈ C2N×2N discrete non-harmonic Fourier matrix,
and W a Toeplitz matrix whose rows contain shifted replicates of the
jump waveform W σ

N (x)

Σ = idiag
(

sgn(ωk)σ
(
|ωk|
N

))
, H = diag

(
ĥ(ωk)

)
Fkj = exp

[
i

(
−π +

πj

N

)
ωk

]
, k = −N, . . . , N − 1, j = 0, ..., 2N − 1.

Compute the jump approximation by solving

y = arg min
u
{λ‖u‖1 +

1
2
‖HFWu− Σg‖22}. (10)
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Example for exact data: Detects the location but not the height, N = 64
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(c) Jittered sampling, σ1, λ = .0017
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(d) Log sampling, σexp, α = 2, λ = .00091

Approximations: non-harmonic Fourier data using variational formulation
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Comparing the performance of the waveform correlation N = 64, for σ1
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(e) With W
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(f) Without W

Figure: No blur, no noise, missing data, first order with/without waveform weighting

Two approaches are comparable for low order polynomial concentration
factor. National Science Foundation: Division of Computational Mathematics 36 / 38
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Comparing the performance of the waveform correlation N = 64, for σ3
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(a) With W
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(b) Without W
No blur, no noise, missing data, third order with/without waveform. Clearly
waveform is required. Higher order polynomial CF introduces oscillations
that need to be suppressed.
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Comparing the performance of the waveform correlation N = 64, for σexp
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(c) With W
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(d) Without W

No blur, no noise, missing data. Exponential concentration factor
with/without the waveform. Waveform is required. Higher order CF
introduces oscillations that need to be suppressed.
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