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Purpose

Epigenetic alterations measured in blood may help guide breast cancer treatment. The multisite
prospective study TBCRC 005 was conducted to examine the ability of a novel panel of cell-free DNA
methylation markers to predict survival outcomes in metastatic breast cancer (MBC) using a new
guantitative multiplex assay (cMethDNA).

Patients and Methods

Ten genes were tested in duplicate serum samples from 141 women at baseline, at week 4, and at
first restaging. A cumulative methylation index (CMI) was generated on the basis of six of the
10 genes tested. Methylation cut points were selected to maximize the log-rank statistic, and cross-
validation was used to obtain unbiased point estimates. Logistic regression or Cox proportional
hazard models were used to test associations between the CMI and progression-free survival (PFS),
overall survival (OS), and disease status at first restaging. The added value of the CMI in predicting
survival outcomes was evaluated and compared with circulating tumor cells (CellSearch).

Results

Median PFS and OS were significantly shorter in women with a high CMI (PFS, 2.1 months; OS,
12.3 months) versus alow CMI (PFS, 5.8 months; OS, 21.7 months). In multivariable models, among
women with MBC, a high versus low CMI at week 4 was independently associated with worse PFS
(hazard ratio, 1.79; 95% Cl, 1.23 to 2.60; P=.002) and OS (hazard ratio, 1.75; 95% ClI, 1.21 to 2.54;
P=.003). Anincrease in the CMI from baseline to week 4 was associated with worse PFS (P < .001)
and progressive disease at first restaging (P < .001). Week 4 CMI was a strong predictor of PFS,
even in the presence of circulating tumor cells (P = .004).

Conclusion
Methylation of this gene panel is a strong predictor of survival outcomes in MBC and may have
clinical usefulness in risk stratification and disease monitoring.

J Clin Oncol 35:751-768. © 2016 by American Society of Clinical Oncology

evaluation of therapeutic benefit could help sig-
nificantly in clinical decision making, minimize
morbidity from ineffective therapy, reduce costs

Significant therapeutic advances in the field of
breast cancer have resulted in a growing number
of treatment options for patients with metastatic
breast cancer (MBC), and prioritization of these
agents can be challenging. In practice, many
months are often needed to determine whether
the selected treatment is effective, a decision usually
guided by clinical findings and imaging studies.
The identification of highly accurate circulating
molecular markers in blood that allows earlier

from additional imaging studies, and improve
clinical outcomes."* The current generation of
circulating markers offers some prognostic use-
fulness but these are not predictive for clinical
benefit from individual therapies.’®

Epigenetic alterations are among the most
common molecular abnormalities in human
cancers.* DNA methylation does not change the
genomic DNA sequence and is a form of epi-
genetic alteration that is heritable during DNA
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replication.”® Tumors commonly release aberrant DNA into the
bloodstream, and this can now be detected. Our group devel-
oped a highly sensitive high-throughput quantitative multiplex
methylation-specific polymerase chain reaction assay named
cMethDNA to detect circulating cell-free methylated DNA.” This
assay builds on the prior assays we had used to detect methylation in
tissue and in cytologic samples.®" A few clinical studies have since
examined the association between the presence or absence of cell-
free methylated DNA in peripheral blood and disease outcomes, but
none have quantified the level of methylation.”'*"> TBCRC 005 is
the first biomarker study designed specifically to prospectively test as
a primary end point the role of DNA methylation in blood in
predicting disease progression and survival in breast cancer.

Study Design

Eligible participants included female patients = 18 years of age with
histologically confirmed MBC and measurable disease and an Eastern
Cooperative Oncology Group performance status of 0 to 2, who were
starting a new systemic therapy and being treated at one of seven par-
ticipating US academic medical centers. Measurable/evaluable disease was
defined as a lesion = 1 cm on computed tomography scan or magnetic
resonance imaging or a superficial/palpable lesion = 2 cm. Patients with
a diagnosis of a second cancer in the previous 5 years were excluded, with the
exception of those women with basal or squamous cell carcinoma of the skin
and/or cervical carcinoma in situ. All patients provided written informed
consent. The institutional review board at each study site approved this study.

The study schema is outlined in Appendix Figure Al (online only).
Blood was collected at baseline, at week 4, and at first restaging (which was
at the discretion of the treating oncologist). At all three time points, serum
samples were processed locally and stored at —80°C within 4 hours of
collection. The samples were then batched and shipped to Johns Hopkins,
where they were stored at —80°C. Whole blood for analysis of circulating
tumor cells (CTCs) was collected at baseline and at week 4 and was sent to
the Clinical Laboratory Improvement Amendments—certified Clinical
Chemistry Research Laboratory at Johns Hopkins for processing within
72 hours of collection.

Methylation and CTC Assays

The cMethDNA assay was used to measure duplicate samples of
a methylation panel from a previously published 10-gene panel in 300 pL of
serum.”'® In addition, a set of identical quality control pooled specimens
from approximately 5% of the total samples was inserted into every batch to
assess inter- and intrabatch reproducibility. All samples from one individual
were run in the same batch to minimize bias from interassay variability.
Individual gene methylation (M) was calculated as a methylation index (MI):

No. methylated copies

MI

(100)

~ No. methylated + gene standard copies

The MI of each sample was averaged across duplicates. The cumulative
methylation index (CMI) is the sum of the MI for all genes. CTCs in 7.5 mL
of whole blood were isolated and enumerated on the basis of the Janssen
Diagnostic CellSearch System. Laboratory personnel were blinded to the
ordering of samples and to all clinical information.

Statistical Analysis
Methylation data of each gene were log transformed after a small
constant (0.1) was added to all values to account for zeros in the data. The
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inter- and intrabatch variation was evaluated using the coefficient of
variation (CV) for all 10 genes and the CMI. Genes were selected for
inclusion in the final analysis on the basis of CV, without reference to
performance. Median progression-free survival (PFS) and overall survival
(OS) with 95% CIs were estimated using the Kaplan-Meier method.
Survival distributions were compared between patients with high and low
CMIs at week 4 using the Gehan test, which gives more weight to early
differences. Landmark analyses of PFS and OS were performed with the
a priori defined time set at 4 weeks after treatment initiation. Patients who
experienced disease progression or death before week 4 were excluded.
Hazard ratios (HRs) and 95% Cls were estimated using the Cox pro-
portional hazards models, controlling for age, ethnicity, prior therapy,
phenotype, and disease burden. For classification of subjects into risk
groups by CMI, a cut point was determined using an outcome-oriented
approach for PES and OS with a selection procedure that was based on the
maximal log-rank statistic.'” A two-fold cross-validation approach'® was
applied to confirm the significance of the cut point and to obtain almost
unbiased estimates of the HR. The variability of the estimated HR using
this approach was assessed by repeating the cross-validation 500 times
with different choices of 1:1 random splits of the original data set.

Likelihood ratio tests were used in nested Cox models to assess the
added value of each biomarker (CMI or CTCs at baseline or week 4) in
predicting PFS and OS beyond established risk factors. The proportionality
assumption was met by graphically assessing plots of log (—log [survival])
versus log of survival time. Because of the limited sample size, interaction
terms (eg, potentially different effects of the biomarkers on outcomes by
hormone receptor status) were examined using the Wald test but were not
retained in the final models. The prognostic impact of the CMI according
to each biologic subtype (hormone receptor and human epidermal growth
factor receptor 2 status) was explored. Baseline and week 4 CMI, as well as
change from baseline, were also evaluated as continuous markers with
respect to outcomes. Disease status at first restaging was classified into one
of three categories, progressive disease (PD), stable disease, or responsive
disease (partial response/complete response) determined at approximately
8 to 12 weeks after the treatment started. The nonparametric Jonckheere-
Terpstra trend test was used to assess whether week 4 CMI levels or re-
duction at week 4 from baseline differed among ordered disease status at
first restaging. Association analyses of PD at first restaging (PD v non-PD)
were performed using logistic regression.

All tests were two-sided and considered statistically significant at
P < .05 and were performed using SAS 9.4 (SAS Institute, Cary, NC) and
R version 3.1.0 (available at http://www.r-project.org).

A total of 182 women were enrolled in the study. Serum samples
from the first 33 patients (taken before the start of sample col-
lection for the CTC assay) were used for analytical validation of the
cMethDNA assay,” leaving 149 women with available samples for
this study. Of the 149 women, eight were excluded subsequently
(Appendix Fig A2), resulting in an analytic population of 141.
Table 1 describes the patient characteristics of our analytic pop-
ulation. Serum was available to evaluate the CMI in duplicates at two
time points (at baseline and at week 4) in 129 women, and at a third
time point for 112 of the 129 women. Information on CTCs was
available at baseline and at week 4 for 96 women. Median follow-up
for the cohort was 19.5 months (range, 0.8 to 86.3 months).

The MI at baseline was calculated for all 10 genes (Appendix
Fig A3), and the results were highly correlated with one another
(Appendix Table Al, online only). Four of the genes (COL6A2,
ARHGEF7, TMEFF2, and GXP7) were excluded from analyses
because of CVs > 20%. The six genes included were AKRIBI,
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Table 1. Baseline Patient Characteristics of the Analytic Population
Analytic Population
Characteristic (N =141)
Age, years, median (range) 56 (29-84)
ECOG performance status 0-2
Ethnicity
White* 118 (84)
Black 23 (16)
Menopausal statust
Postmenopausal 126 (89)
Perimenopausal/premenopausal 15 (11)
BMI,# kg/m?, median (range) 26.0 (18-44)
Tumor phenotype of initial diagnosis
ER positive/PR positive/HER2 negative§ 85 (60)
HER2 positive (any ER) 29 (21)
Triple negative 27 (19)
Disease burden
Visceral only (liver, lung, brain) 23 (16)
Nonvisceral only (bone and/or soft tissue) 49 (35)
Both 69 (49)
Prior therapy”
None 37 (26)
Chemotherapy only 33 (23)
Hormone therapy only 29 (21)
Chemotherapy and hormonal therapy 42 (30)
Elevated CTC level (= 5) 71 (50)
Progression-free survival, months, median (95% CI) 4.4 (3.3105.8)
NOTE. Data are presented as No. (%) unless otherwise indicated.
Abbreviations: BMI, body mass index; CTC, circulating tumor cell; ECOG,
Eastern Cooperative Oncology Group; ER, estrogen receptor; HER2, human
epidermal growth factor receptor 2; PR, progesterone receptor.
*Including one Asian.
TOn the basis of self-report data from baseline questionnaire.
FExcluding 12 patients who did not have baseline height or weight information
available.
8|ncluding eight subjects with unknown HER2 status.
|| In the metastatic setting (some subjects may receive adjuvant chemotherapy).

HOXB4, RASGRF2, RASSF1, HISTIH3C, and TM6SF1. The inter-
and intrabatch CVs for any of the genes were < 18% (the majority
having a CV < 10%), which is considered acceptable.'® The inter-
and intrabatch CVs for the CMI of the six genes were < 2.5%.

Landmark analyses were performed on the basis of week 4.
A cut point of 9 for PFS and 21 for OS were the values selected for
the week 4 CMI that maximized the log-rank statistic. One patient
who had PD before the landmark time point was excluded. In the
multivariable models described in Table 2, patients with a high
CMI at week 4 had a significantly worse PFS (HR, 1.79; 95% ClI,
1.23 to 2.60; P = .002) after adjusting for age, ethnicity, prior
therapy, tumor phenotype, and disease burden. Similar results for
OS (HR, 1.75; 95% CI, 1.21 to 2.54; P = .003) are illustrated in
Table 3.

The median PFS among women in the high versus low CMI
group was 2.1 months (95% CI, 1.7 to 3.2 months) versus
5.8 months (95%, CI 4.7 to 7.4 months), respectively (Fig 1A).
The median OS was almost a year shorter for women in the high
(12.3 months; 95% CI, 8.4 to 16.5 months) versus low (21.7 months;
95% CI, 19.3 to 28.3 months) CMI group (Fig 1B). Baseline CMI,
modeled continuously, was not associated with PFS but was as-
sociated with OS in multivariate analyses (Appendix Fig A4). The
prognostic effect of the week 4 CMI was consistent across different
biologic subtypes; however, the sample size of some subtypes was
small (Appendix Table A2). Sensitivity analyses for factors such as

jeo.org

body mass index, study site, and the 10-gene panel did not alter the
observed estimates. To evaluate the robustness of the two-fold cross-
validation approach, we repeated the two-fold cross-validation
procedure 500 times to allow for different choices of the 1:1 random
split of the original data set and calculated the corresponding HR.
The mean HR for PFS was 1.95 (variance, 0.048), and the mean HR
for OS was 1.87 (variance, 0.023), which is considered stable and
within the range of our original results.

The association between CMI levels at baseline, at week 4, and
at first restaging and disease status as early as first restaging, which
was most often at week 12, was also examined. Figure 2A illustrates
the distributions of log CMI levels at baseline, at week 4, and at first
restaging by disease status. A significant trend was observed
between an increasing CMI at week 4 and less responsive disease
at first restaging (P for trend < .001, Jonckheere-Terpstra test).
The median CMI at week 4 was highest in women with PD, lowest
in women with responsive disease (partial response/complete re-
sponse), and intermediate in women with stable disease at first
restaging.

Next, the effect on disease status of a change in CMI levels
from baseline to week 4 was examined. Women with responsive
(P < .001) or stable (P < .001) disease were more likely to have
a reduction in median levels of the CMI from baseline to week 4
(Fig 2A). As illustrated in Tables 2 and 4, a change in log CMI
from baseline to week 4 was associated with worse PFS (HR, 1.21;
95% CI, 1.09 to 1.34; P < .001) and PD at first restaging (OR,
1.55;95% CI, 1.20 to 2.01; P < .001). When a change in the CMI
was modeled as a binary variable in multivariable analyses, an
increase in the CMI at week 4 was associated with a worse PFS
(HR, 2.18; 95% CI, 1.40 to 3.41; P < .001) and a 4.6-fold increase
in the risk of PD at first restaging (OR, 4.58; 95% CI, 1.82 to
11.60; P = .001) compared with a reduction or no change in the
CML. In either case, adjusting for the baseline CMI did not alter
the point estimates.

In this study, we were also able to evaluate CTCs at baseline
and at week 4 in 96 women. The distribution of CTC values is
illustrated in Appendix Figure A5. As was the case with the CMI,
week 4 CTCs = 5 cells/7.5 mL were significantly associated with
worse PFS (HR, 1.46; 95% CI, 1.02 to 2.10; P = .04) and OS
(HR, 2.24; 95% CI, 1.54 to 3.26; P < .001). The median OS
for = 5 cells/7.5 mL was 8.1 months (95% CI, 4.9 to 18.8 months)
and 20.8 months (95% CI, 17.5 to 26.6 months) for < 5 cells/7.5 mL.
As was the case with the CMI, CTCs at week 4 were reduced in
women with responsive disease (P = .0001; Fig 2B). However, in
contrast to CMI, CTC levels were not significantly different by
disease status at first restaging (P for trend = .457; Fig 2B). The
CMI was more sensitive (78%) in identifying high-risk (pro-
gressive) disease than were CTCs (30%). A change in CTCs
modeled either as a continuous marker (Appendix Fig A6) or as
abinary marker (increase or reduction v no change from baseline;
OR, 2.23; 95% CI, 0.77 to 2.47) was not significantly associated
with PD at first restaging in multivariable analyses.

Finally, as an exploratory analysis, we examined the prog-
nostic significance of the CMI and CTCs in 96 women in whom
both markers had been measured (Appendix Table A3). Likeli-
hood ratio tests suggest that the addition of either the week 4 CMI
or CTCs significantly improved the ability of a model of estab-
lished risk factors to predict PFS (P < .00land P = .038 for the

© 2016 by American Society of Clinical Oncology 753
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Table 2. Association of CMI Levels and Prognostic Factors With Progression-Free Survival in Women with Metastatic Breast Cancer

Univariate Analysis Multivariable Analysis

Variable No. Events HR (95% CI)* P No. Events HR (95% CI)* P

Age, years 138 0.97 (0.96 to 0.99) < .001 126 0.97 (0.96 to 0.99) .003
Ethnicity, black v white 138 1.22 (0.78 to 1.92) .79 126 1.32 (0.81 t0 2.8) 270
Prior therapy, yes v no 138 1.21 (0.82 to 1.78) .331 126 0.91 (0.59 to 1.39) .649
Disease burden, visceral v nonvisceral 138 0.96 (0.68 to 1.37) .839 126 1.02 (0.69 to 1.50) 915
Phenotype 138 126

HER2 positive (any ER) v ER positive/PR positive/ 1.31 (0.85 to 2.01) 219 1.09 (0.69 to 1.72) 727

HER2 negative

Triple negative v ER positive/PR positive/HER2 negative 0.92 (0.59 to 1.44) .702 0.75 (0.44 to 1.27) .280

HER2 positive (any ER) v triple negative 1.43 (0.83 to 2.47) .202 1.45 (0.79 to 2.66) 231
Log week 4 CMIt (continuous) 126 1.15 (1.05 to 1.25) .002 126 1.13 (1.04 to 1.23) .006
Week 4 CMI, hight v low (with cross-validation) 126 1.76 (1.23 to 2.52) .002 126 1.79 (1.23 to 2.60) .002
Log CMI change from baseline to week 4t (continuous) 126 1.19 (1.07 to 1.32) .001 126 1.21 (1.09 to 1.34) < .001

NOTE. Progression-free survival was calculated from the date treatment started to the date of first documentation of progressive disease as determined by standard
Response Evaluation Criteria in Solid Tumors, clinical deterioration, or rising tumor markers in the situation in which imaging was not performed, or the time of death from
any cause, whichever came first. Those who remained alive without progressive disease were censored at the time of their last tumor assessment.

Abbreviations: CMI, cumulative methylation index; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; HR, hazard ratio; PR, progesterone
receptor.

*HRs and 95% Cls were estimated and P values obtained using Cox proportional hazards models with the multivariable analysis adjusting for age, ethnicity, prior
therapy, phenotype, and disease burden. For dichotomized week 4 CMI, HR was obtained using a stratified Cox regression model.

TContinuous CMI (log week 4 CMI, log CMI change from baseline to week 4) was assessed using a separate multivariable model adjusting for age, ethnicity, prior
therapy, phenotype, and disease burden.

$High in this analysis is based on a week 4 CMI > 9. The remaining individuals were classified as low.

CMI and CTCs, respectively) and OS (P = .043 and P = .007 for
the CMI and CTCs, respectively). Furthermore, the CMI at week
4 seemed to be a significant predictor of PFS and improved the
prediction of the base model even in the presence of CTCs
(P =.004). In separate models, a change in the CMI in the base
model improved PFS (P = .002), but a change in CTC level did

To our knowledge, this is the first study to demonstrate the promise
of early changes in the level of circulating cell-free tumor-specific
DNA methylation for clinical application in patients with MBC.

not. The improvement with the change in the CMI occurred
even in the presence of CTCs (P = .007). The addition of
a change in CTC level or in the CMI did not significantly
improve the model fit for OS.

Our results suggest that CMI levels of a novel six-gene panel
measured 4 weeks after the initiation of a new therapy and a novel
quantitative assay known as cMethDNA have clinical usefulness as
a predictor of survival outcomes in women with MBC. A high CMI

Table 3. Association of CMI Levels and Prognostic Factors With Overall Survival in Women With Metastatic Breast Cancer

Univariate Analysis Multivariable Analysis

Variable No. Events HR (95% CI)* P No. Events HR (95% CI* P

Age, years 133 0.99 (0.97 to 1.00) 115 121 0.99 (0.98 to 1.01) 441
Ethnicity, black v white 133 1.75 (1.10 to 2.77) .018 121 1.89 (1.11 to 3.22) .020
Prior therapy, yes v no 133 1.05 (0.71 to 1.55) 813 121 1.21 (0.78 to 1.88) .393
Disease burden, visceral v nonvisceral 133 1.23 (0.86 to 1.76) .258 121 1.16 (0.79 to 1.72) 450
Phenotype 133 121

HER2 positive (any ER) v ER positive/PR positive/ 1.00 (0.64 to 1.57) .987 1.01 (0.62 to 1.65) .964

HER2 negative

Triple negative v ER positive/PR positive/HER2 negative 1.60 (1.02 to 2.51) .041 1.76 (1.05 to 2.95) .032

HER2 positive (any ER) v triple negative 0.63 (0.36 to 1.09) .100 0.57 (0.31 to 1.06) .078
Log week 4 CMIt (continuous) 121 1.14 (1.04 to 1.25) .004 121 1.17 (1.06 to 1.28) .001
Week 4 CMI, high# v low (with cross-validation) 121 1.70 (1.18 to 2.45) .005 121 1.75 (1.21 to 2.54) .003
Log CMI change from baseline to week 41 (continuous) 121 1.08 (0.98 to 1.20) 104 121 1.08 (0.98 to 1.20) 123

NOTE. Overall survival was defined as the date treatment started to the date of death from any cause. Those who remained alive were censored at the date last known
to be alive.

Abbreviations: CMI, cumulative methylation index; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; HR, hazard ratio; PR, progesterone receptor.

*Cox proportional hazard models and stratified Cox regression were used to estimate HRs and 95% Cls and P values. The multivariable analysis was adjusted for
age, ethnicity, prior therapy, phenotype, and disease burden. HRs and 95% Cls were estimated and P values obtained using Cox proportional hazards models with the
multivariable analysis adjusting for age, ethnicity, prior therapy, phenotype, and disease burden. For dichotomized week 4 CMI, HR was obtained using a stratified Cox
regression model.

TContinuous CMI (log week 4 CMI, log CMI change from baseline to week 4) was assessed using a separate multivariable model adjusting for age, ethnicity, prior
therapy, phenotype, and disease burden.

FHigh in this analysis is based on a week 4 CMI >21. The remaining individuals were classified as low.
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level at week 4 was consistently associated with PES and OS, as well
as PD, as early as first restaging. Furthermore, a change in the CMI
within 4 weeks of initiating therapy tracked with PFS and disease
response as early as first restaging, supporting the potential prog-
nostic usefulness of measuring CMI levels within weeks of initiating
a new therapy. Last, both the CMI at week 4 and a change in the CMI
added to the ability of established risk factors, including CTCs, to
predict PFS.

The six-gene panel examined in this study is based on the
results of a DNA methylation array conducted in breast tumors
and sera for patients with both estrogen receptor—positive and

jeo.org

estrogen receptor—negative breast cancer.” Five of the six genes in
the six-gene panel were identified by our group as methylated in
breast cancer.” Two genes with some degree of commonality in
function were RASGRFI, a RAS guanosine triphosphate hydrolase
with nucleotide exchange function,”’ and RASSFI, a methylation
marker common to many cancers that encodes a protein similar
to RAS effector proteins.”’ Among the four other novel genes,
HISTIH3C interacts with linker DNA between nucleosomes and
functions in the compaction of chromatin into higher-order
structures,”” the AKR1BI gene encodes a member of the aldo/keto
reductase superfamily and catalyzes the reduction of a number of

© 2016 by American Society of Clinical Oncology 755
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Fig 2. Association of disease status at first restaging with (A) CMI and (B) CTCs across three time points. The length of the box is the interquartile range and represents
the middle 50% of the data. The horizontal line inside the box shows the median. The lower and upper edges of the box represent the 25th and 75th percentiles,
respectively. The vertical dashed lines extend from the box to the upper and lower 1.5 interquartile values from the upper and lower edges. Jonckheere-Terpstra test for
trend in change from baseline among ordered disease status at first restaging. *Significant difference (P < .001) at the given time point compared with baseline using
Wilcoxon signed rank test. Natural log transformed CMI and CTC data were graphed and the y-axes were formatted with back-transformation values. CMI, cumulative

methylation index; CTCs, circulating tumor cells; PD, progressive disease; PR/CR, partial response/complete response; SD, stable disease.

aldehydes,23 and HOXB4 encodes a transcription factor involved
in development and, as with many members of the HOX gene
family, is regulated by methylation of dense C-phosphate-G
islands.** There is no literature regarding the function of the
newly discovered TM6SFI.” The cMethDNA assay can measure
methylation levels in gene loci coamplified from one 300-pL
aliquot of serum. The cMethDNA assay is calibrated against a low
fixed physiologic level of recombinant gene-specific reference DNA
that is copurified and coamplified with target methylated DNA.

A few other studies have evaluated the relationship between
cell-free tumor DNA in plasma and serum and disease outcome
in patients with breast cancer.'*'>**® Those studies did not
quantify the level of methylation either as a categorical or as
a continuous measure, as we report in this article. Most of the
studies were based in a single institution, measured a limited
number of candidate genes at a single time point, had a small
sample size, included limited clinical information, and were not
prospective.

Table 4. Association of CMI Levels and Prognostic Factors With Progressive Disease at First Restaging (N = 134)

Univariate Analysis

Multivariable Analysis

Variable OR (95% CI)* P OR (95% CI)* P

Age, years 0.98 (0.95 to 1.01) 128 0.99 (0.95 to 1.02) 454
Ethnicity, black v white 1.61 (0.64 to 4.02) 313 2.13 (0.72 to 6.30) A71
Prior therapy, yes v no 1.12 (0.51 to 2.49) 777 1.05 (0.41 to 2.67) .920
Disease burden, visceral v nonvisceral 0.96 (0.46 to 2.01) .920 0.90 (0.38-2.10) .805
Phenotype

HER2 positive v ER positive/PR positive/HER2 negative 1.06 (0.45 to 2.51) .897 1.35 (0.49 to 3.74) .567

Triple negative v ER positive/PR positive/HER2 negative 1.00 (0.40 to 2.50) > 999 0.56 (0.18 to 1.78) .325

HER2 positive (any ER) v triple negative 1.06 (0.36 to 3.15) 918 2.40 (0.67 to 8.64) .180
Log week4 CMI (continuous) 1.32 (1.09 to 1.62) .006 1.32 (1.08 to 1.62) .006
Log CMI change from baseline to week 4 (continuous) 1.52 (1.18 to 1.96) .001 1.55 (1.20 to 2.01) < .001

NOTE. Disease status at first restaging was classified into two categories: progressive disease v stable disease or responsive disease (partial response/complete
response) after new treatment initiated.

Abbreviations: CMI, cumulative methylation index; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; OR, odds ratio; PR, progsterone receptor.
*ORs and 95% Cls were estimated and P values obtained using logistic regression models with the multivariable analysis adjusting for age, ethnicity, prior therapy,
disease burden, and phenotype. Continuous CMI (log week 4 CMI, log CMI change from baseline to week 4) was assessed using a separate multivariable model
adjusting for age, ethnicity, prior therapy, phenotype, and disease burden.
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In our comparison of the CMI with CTCs, a clinically available
biomarker for risk stratification in patients with breast cancer, the
CMI and CTCs at week 4 seem to be complementary as prognostic
markers, but both the CMI and a change in the CMI were stronger
predictors of PES when contrasted directly with CTCs.*>”° When
predicting treatment response at first restaging, CTCs were more
specific (85%) in identifying low-risk (stable or responsive) disease
compared with the CMI (51%), whereas the CMI was more
sensitive (78%) in identifying high-risk (progressive) disease than
were CTCs (30%). Of interest, numeric changes in CTC level
between baseline and week 4 were not associated with treatment
response. Women with a high CTC level at both baseline and week
4 compared with those with a low CTC level had a worse PFS and
OS; this finding is consistent with a recent clinical trial in MBC in
which change in treatment guided by CTCs did not influence
disease outcome.”® Although monitoring for the change in the
CMI for treatment response has prognostic usefulness, its clinical
usefulness in influencing changes in therapy must now be eval-
uated formally in randomized clinical trials. Furthermore, whether
there is meaningful risk reclassification of patients with the ad-
dition of the CMI is worth careful assessment in future larger
validation studies.

To our knowledge, this is the first prospective study to
demonstrate the potential clinical usefulness of measures of se-
rum methylation to inform clinical care in breast cancer. The CMI
of a panel of six genes and change in CMI levels were independent
predictors of survival outcomes. Limitations of the study include
the lack of central adjudication for outcomes such as PD, al-
though these results seem to align with death, a less subjective
outcome. Other limitations include the lack of blood samples

before week 4 and the modest sample size. Our findings must be
validated to determine the clinical usefulness of the cMethDNA
assay for specific treatments and tumor phenotypes in patients
with metastatic disease and early-stage breast cancer.

Disclosures provided by the authors are available with this article at
jco.org.

Conception and design: Kala Visvanathan, MaryJo S. Fackler, Zhe Zhang,
Elizabeth Garrett-Mayer, Saraswati Sukumar, Antonio C. Wolff
Financial support: Lisa A. Carey, Antonio C. Wolff

Administrative support: Stacie C. Jeter, Antonio C. Wolff

Provision of study materials or patients: Kala Visvanathan, MaryJo S.
Fackler, Stacie C. Jeter, Andres Forero, Anna M. Storniolo, Rita Nanda,
Nancy U. Lin, Lisa A. Carey, James N. Ingle, Antonio C. Wolff
Collection and assembly of data: Kala Visvanathan, MaryJo S. Fackler,
Zhe Zhang, Zoila A. Lopez-Bujanda, Stacie C. Jeter, Lori J. Sokoll, Andres
Forero, Anna M. Storniolo, Rita Nanda, Nancy U. Lin, Lisa A. Carey,
James N. Ingle, Saraswati Sukumar, Antonio C. Wolff

Data analysis and interpretation: Kala Visvanathan, MaryJo S. Fackler,
Zhe Zhang, Lori J. Sokoll, Elizabeth Garrett-Mayer, Leslie M. Cope,
Christopher B. Umbricht, David M. Euhus, Saraswati Sukumar,
Antonio C. Wolff

Manuscript writing: All authors

Final approval of manuscript: All authors

1. Tie J, Kinde I, Wang Y, et al: Circulating tumor
DNA as an early marker of therapeutic response in
patients with metastatic colorectal cancer. Ann Oncol
26:1715-1722, 2015

2. Smerage JB, Hayes DF: The measurement
and therapeutic implications of circulating tumour
cells in breast cancer. Br J Cancer 94:8-12, 2006

3. Van Poznak C, Somerfield MR, Bast RC, et al:
Use of biomarkers to guide decisions on systemic
therapy for women with metastatic breast cancer:
American Society of Clinical Oncology clinical prac-
tice guideline. J Clin Oncol 33:2695-2704, 2015

4. Egger G, Liang G, Aparicio A, et al: Epigenetics
in human disease and prospects for epigenetic
therapy. Nature 429:457-463, 2004

5. Baylin S: DNA methylation and epigenetic
mechanisms of carcinogenesis. Dev Biol (Basel) 106:
85-87, discussion 143-160, 2001

6. Jones PA: DNA methylation and cancer. On-
cogene 21:56358-5360, 2002

1. Fackler MJ, Lopez Bujanda Z, Umbricht C,
et al: Novel methylated biomarkers and a robust
assay to detect circulating tumor DNA in metastatic
breast cancer. Cancer Res 74:2160-2170, 2014

8. Evron E, Dooley WC, Umbricht CB, et al:
Detection of breast cancer cells in ductal lavage fluid
by methylation-specific PCR. Lancet 357:1335-1336,
2001

9. Fackler MJ, Malone K, Zhang Z, et al: Quan-
titative multiplex methylation-specific PCR analysis

jeo.org

doubles detection of tumor cells in breast ductal fluid.
Clin Cancer Res 12:3306-3310, 2006

10. Fackler MJ, McVeigh M, Mehrotra J, et al:
Quantitative multiplex methylation-specific PCR as-
say for the detection of promoter hypermethylation in
multiple genes in breast cancer. Cancer Res 64:
4442-4452, 2004

11. Fackler MJ, Rivers A, Teo WW, et al: Hyper-
methylated genes as biomarkers of cancer in women
with pathologic nipple discharge. Clin Cancer Res 15:
3802-3811, 2009

12. Fiegl H, Millinger S, Mueller-Holzner E, et al:
Circulating tumor-specific DNA: A marker for moni-
toring efficacy of adjuvant therapy in cancer patients.
Cancer Res 65:1141-1145, 2005

13. Chimonidou M, Tzitzira A, Strati A, et al: CST6
promoter methylation in circulating cell-free DNA of
breast cancer patients. Clin Biochem 46:235-240,
2013

14. Fujita N, Kagara N, Yamamoto N, et al:
Methylated DNA and high total DNA levels in the
serum of patients with breast cancer following
neoadjuvant chemotherapy are predictive of a poor
prognosis. Oncol Lett 8:397-403, 2014

15. Gobel G, Auer D, Gaugg |, et al: Prognostic
significance of methylated RASSF1A and PITX2
genes in blood- and bone marrow plasma of breast
cancer patients. Breast Cancer Res Treat 130:
109-117, 2011

16. Fackler MJ, Umbricht CB, Williams D, et al:
Genome-wide methylation analysis identifies genes
specific to breast cancer hormone receptor status and
risk of recurrence. Cancer Res 71:6195-6207, 2011

17. Contal C, O’Quigley J: An application of
changepoint methods in studying the effect of age on
survival in breast cancer. Comput Stat Data Anal 30:
253-270, 1999

18. Faraggi D, Simon R: A simulation study of
cross-validation for selecting an optimal cutpoint in
univariate survival analysis. Stat Med 15:2203-2213,
1996

19. Tworoger SS, Hankinson SE: Use of bio-
markers in epidemiologic studies: Minimizing the in-
fluence of measurement error in the study design and
analysis. Cancer Causes Control 17:889-899, 2006

20. Freedman TS, Sondermann H, Friedland GD,
et al: A Ras-induced conformational switch in the Ras
activator Son of sevenless. Proc Natl Acad Sci USA
103:16692-16697, 2006

21. Gordon M, Baksh S: RASSF1A: Not a pro-
totypical Ras effector. Small GTPases 2:148-157,
2011

22. MacAlpine DM, Almouzni G: Chromatin and
DNA replication. Cold Spring Harb Perspect Biol 5:
a010207, 2013

23. Watanabe K: Recent reports about enzymes
related to the synthesis of prostaglandin (PG) F
(2) (PGF(2a) and 9a, 11B-PGF(2)). J Biochem 150:
593-596, 2011

24. Lin SH, Wang J, Saintigny P, et al: Genes
suppressed by DNA methylation in non-small cell
lung cancer reveal the epigenetics of epithelial-
mesenchymal transition. BMC Genomics 15:1079,
2014

25. Avraham A, Uhlmann R, Shperber A, et al:
Serum DNA methylation for monitoring response to

© 2016 by American Society of Clinical Oncology 757


http://jco.org
http://jco.org

neoadjuvant chemotherapy in breast cancer patients.
Int J Cancer 131:E1166-E1172, 2012

26. Van der Auwera |, Elst HJ, Van Laere SJ, et al:
The presence of circulating total DNA and methylated
genes is associated with circulating tumour cells in
blood from breast cancer patients. Br J Cancer 100:
1277-1286, 2009

Visvanathan et al

27. Ahmed SA, Hamed MA, Omar OS: Clinical
utility of certain biomarkers as predictors of breast
cancer with or without metastasis among Egyptian
females. Tumour Biol 36:815-822, 2015

28. Dawson SJ, Rosenfeld N, Caldas C: Circulat-
ing tumor DNA to monitor metastatic breast cancer.
N Engl J Med 369:93-94, 2013

Affiliations

29. Cristofanilli M, Budd GT, Ellis MJ, et al: Circulating
tumor cells, disease progression, and survival in meta-
static breast cancer. N Engl J Med 351:781-791, 2004

30. Smerage JB, Barlow WE, Hortobagyi GN, et al:
Circulating tumor cells and response to chemother-
apy in metastatic breast cancer: SWOG S0500. J Clin
Oncol 32:3483-3489, 2014

Kala Visvanathan, Johns Hopkins University School of Medicine and Bloomberg School of Public Health; MaryJo S. Fackler, Zhe
Zhang, Zoila A. Lopez-Bujanda, Stacie C. Jeter, Lori J. Sokoll, Leslie M. Cope, Christopher B. Umbricht, David M. Euhus, Saraswati
Sukumar, and Antonio C. Wolff, Johns Hopkins University School of Medicine, Baltimore, MD; Elizabeth Garrett-Mayer, Medical
University of South Carolina, Charleston, SC; Andres Forero, University of Alabama at Birmingham, Birmingham, AL; Anna M.
Storniolo, Indiana University, Bloomington, IN; Rita Nanda, University of Chicago, Chicago, IL; Nancy U. Lin, Dana-Farber Cancer
Institute, Boston, MA; Lisa A. Carey, University of North Carolina, Chapel Hill, NC; and James N. Ingle, Mayo Clinic, Rochester, MN.

Support

Supported by the Avon Foundation for Women, the Breast Cancer Research Foundation, Janssen Diagnostics, the Rubenstein Family
Fund, the Susan G. Komen Foundation, National Institutes of Health Grants No. NTHP30CA006973 and NIHP30CA58223, and the Susan G.
Komen Leadership Grant SAC110053 (A.C.W.).

Prior Presentation

Presented in part at the ASCO Annual Meeting, May 29-June 2, 2015.

758 © 2016 by American Society of Clinical Oncology

JOURNAL OF CLINICAL ONCOLOGY



DNA Methylation in Serum and Disease Outcomes in Breast Cancer

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Monitoring of Serum DNA Methylation as an Early Independent Marker of Response and Survival in Metastatic Breast Cancer: TBCRC 005

Prospective Biomarker Study

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are
self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more
information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwe or ascopubs.org/jco/sitel/ifc.

Kala Visvanathan

Patents, Royalties, Other Intellectual Property: Inventor on one or more
patents applied for on issues relating to methylation and cancer in the past
2 years and has assigned her rights to her institution, and participates in
a royalty-sharing agreement with her institution

MaryJo S. Fackler

Consulting or Advisory Role: Myriad Genetics (I), Cepheid

Research Funding: Cepheid

Patents, Royalties, Other Intellectual Property: Inventor on one or more
patents applied for on issues relating to methylation and cancer in the past
2 years and has assigned her rights to her institution, and participates in
a royalty-sharing agreement with her institution

Travel, Accommodations, Expenses: Medtronic (I)

Zhe Zhang

Research Funding: Avon Foundation for Women (Inst)

Patents, Royalties, Other Intellectual Property: Inventor on one or more
patents applied for on issues relating to methylation and cancer in the past
2 years and has assigned her rights to her institution, and participates in
a royalty-sharing agreement with her institution

Zoila A. Lopez-Bujanda

Patents, Royalties, Other Intellectual Property: Inventor on one or more
patents applied for on issues relating to methylation and cancer in the past
2 years and has assigned her rights to her institution, and participates in
a royalty-sharing agreement with her institution

Stacie C. Jeter
No relationship to disclose

Lori J. Sokoll
Research Funding: Janssen Diagnostics (Veridex) (Inst)

Elizabeth Garrett-Mayer

Stock or Other Ownership: Abbott Laboratories, Abbvie
Consulting or Advisory Role: Tactical Therapeutics, Okava
Pharmaceuticals

Research Funding: Genentech (Inst)

Leslie M. Cope

Patents, Royalties, Other Intellectual Property: MDxHealth; Inventor on
one or more patents applied for on issues relating to methylation and
cancer in the past 2 years and has assigned his rights to his institution, and
participates in a royalty-sharing agreement with his institution

jeo.org

Christopher B. Umbricht

Patents, Royalties, Other Intellectual Property: Inventor on one or more
patents applied for on issues relating to methylation and cancer in the past
2 years and has assigned his rights to his institution, and participates in
a royalty-sharing agreement with his institution

David M. Euhus
No relationship to disclose

Andres Forero
No relationship to disclose

Anna M. Storniolo
Consulting or Advisory Role: Eli Lilly, Novartis/Pfizer

Rita Nanda
No relationship to disclose

Nancy U. Lin

Consulting or Advisory Role: Shionogi Pharma

Research Funding: Genentech, GlaxoSmithKline, Novartis, Array
BioPharma, Kadmon

Lisa A. Carey
Research Funding: GlaxoSmithKline, Genentech

James N. Ingle
No relationship to disclose

Saraswati Sukumar

Research Funding: Cepheid

Patents, Royalties, Other Intellectual Property: Inventor on one or more
patents applied for on issues relating to methylation and cancer in the past
2 years and has assigned her rights to her institution, and participates in
a royalty-sharing agreement with her institution

Antonio C. Wolff

Research Funding: Myriad Genetics

Patents, Royalties, Other Intellectual Property: Inventor on one or more
patents applied for on issues relating to methylation and cancer in the past
2 years and has assigned his rights to his institution, and participates in
a royalty-sharing agreement with his institution

© 2016 by American Society of Clinical Oncology


http://www.asco.org/rwc
http://ascopubs.org/jco/site/ifc
http://jco.org

Visvanathan et al

Appendix

Ato

Whole blood

. Serum

Week 4 First restaging .
Start new therapy (median = 27 (median = 63 Observ:rrzrs?;::eiszf status
days) days)

® Ao

A Disease assessment (clinical examination and imaging studies)

Fig A1. TBCRC-005 study schema. For this study, we had duplicate serum samples from 141 women at baseline. In addition, for 129 of the 141 women, we had duplicate
measures at a second time point, and for 112 of the 129 women, duplicate measures at a third time point.

(N =182)

Analytic population
(n=141)

Patients enrolled in TBCRC 005
between January 2007 and June 2009

Samples from women used for
analytical validation (n = 33)

cMethDNA assay performed
(n = 149) + 5% QCs (n = 72)

Patient were excluded because they did not get treated
(n = 3) or because there was not enough sample
for duplicate assays (n = 2) or because all 10 genes
were not measured in duplicate (n = 3)

Fig A2. Flow chart describing study population. Patients were enrolled from the following seven cancer centers: Johns Hopkins Sidney Kimmel Cancer Center,
Baltimore, MD; University of Alabama at Birmingham, Birmingham, AL; Indiana University, Bloomington, IN; University of Chicago, Chicago, IL; Dana-Farber Cancer
Institute, Boston, MA; University of North Carolina, Chapel Hill, NC; and Mayo Clinic, Rochester, MN. QCs, quality control samples.
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AKR1B1 COL6A2 HOXB4 RASFGR2 RASSF1 HIST1H3C GPX7 ARHGEF7 TMEFF2 TM6SF1
Gene
No. of values 141 141 141 141 141 141 141 141 141 141
Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
25% Percentile 0.0 0.0 0.0 0.0 0.0330 0.0 0.0010 0.0 0.0 0.0
Median 8.178 1.331 3.670 3.274 9.531 3.632 0.0040 0.0 0.0 0.7330
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Maximum 98.06 81.08 97.52 97.11 96.81 99.08 94.45 94.19 98.79 97.05

Fig A3. Scatter plot summarizing the Ml for each of the 10 genes evaluated. M| = [(No. methylated copies)/(No. methylated + gene standard copies)] X 100. Ml for each
sample was averaged across duplicates. MI, methylation index.

Marker HR 95% LCL 95% UCL
PFS
Baseline CMI 1.01 0.92 1.1 ——
Week 4 CMI 1.13 1.04 1.23 —a—
Change in CMI  1.21 1.09 1.34 —
Baseline CTCs  1.06 0.99 1.14 ——
Week 4 CTCs 1.1 1.02 1.20 ——
Change in CTCs 1.08 0.97 1.20 —
0s
Baseline CMI 1.12 1.01 1.24 D
Week 4 CMI 1.17 1.06 1.28 —a—
Change in CMI  1.08 0.98 1.20 —_—
Baseline CTCs  1.20 1.1 1.29 ——
Week 4 CTCs 1.20 1.1 1.31 ——
Change in CTCs 1.02 0.92 113 ——
T T T T T T
0.9 1 1.1 1.2 1.3 1.4
HR

Fig A4. Forest plot of the association of CMI and CTCs as a continuous marker with both PFS and OS. Baseline and week 4 CTCs and CMI modeled as a continuous
marker and both PFS and OS. All markers were treated as continuous variables and log transformed. The bars represent 95% Cls. The size of the box is indicative of the
precision of the point estimate. CMI, cumulative methylation index; CTCs, circulating tumor cells; HR, hazard ratio; LCL, lower confidence limit; OS, overall survival; PFS,
progression-free survival; UCL, upper confidence limit.
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Fig A5. Baseline and week 4 distributions of CTCs. CTCs, circulating tumor cells.

Marker OR 95% LCL 95% UCL

Baseline CMI  0.99 0.81 123 ——

Week 4 CMI 1.32 1.08 1.62 —_——
Change in CMI  1.55 1.20 2.01 =
Baseline CTCs  1.14 0.99 1.32 —i—

Week 4 CTCs 1.23 1.04 1.47 —a—
Change in CTCs 1.21 0.98 1.51 —

08 1 12 14 16 18 2
OR

Fig A6. Forest plot of the association of CMI and CTCs as a continuous marker with
disease status at first restaging. All markers were treated as continuous variables and were
log transformed. The bars represent 95% Cls. The size of the box is indicative of precision of
the point estimate. CMI, cumulative methylation index; CTCs, circulating tumor cells; LCL,
lower confidence limit; OR, odds ratio; UCL, upper confidence limit.
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Table A1. Correlation Among Baseline Methylation of All 10 Genes With Each Other
Spearman Correlation Coefficients and P Values* (N = 141)

Gene AKR1B1 COL6A2 HOXB4 RASFGR2 RASSF1 HIST1H3C GPX7 ARHGEF7 TMEFF2 TM6SF1
AKR1B1 1.0000 0.6136 0.3987 0.6914 0.5941 0.2966 0.4978 0.5428 0.6150 0.5833
< .0001 < .0001 < .0001 < .0001 < .001 < .0001 < .0001 < .0001 < .0001
COL6A2 0.6136 1.0000 0.3856 0.6844 0.5797 0.2385 0.5008 0.5916 0.5681 0.6227
< .0001 < .0001 < .0001 < .0001 .0044 < .0001 < .0001 < .0001 < .0001
HOXB4 0.3987 0.3856 1.0000 0.4319 0.3392 0.2153 0.3937 0.4571 0.3271 0.4527
< .0001 < .0001 < .0001 < .0001 .0103 < .0001 < .0001 < .0001 < .0001
RASFGR2 0.6914 0.6844 0.4319 1.0000 0.6081 0.2334 0.5467 0.6868 0.6715 0.7113
< .0001 < .0001 < .0001 < .0001 .0054 < .0001 < .0001 < .0001 < .0001
RASSF1A 0.5941 0.5797 0.3392 0.6081 1.0000 0.2508 0.5062 0.4422 0.5731 0.5251
< .0001 < .0001 < .0001 < .0001 .0027 < .0001 < .0001 < .0001 < .0001
HIST1H3C 0.2966 0.2385 0.2153 0.2334 0.2508 1.0000 0.2107 0.2909 0.2786 0.2373
0.0004 0.0044 0.0103 0.0054 0.0027 0.0121 0.0005 0.0008 0.0046
GPX7 0.4978 0.5008 0.3937 0.5467 0.5062 0.2107 1.0000 0.5028 0.4490 0.5346
< .0001 < .0001 < .0001 < .0001 < .0001 .0121 < .0001 < .0001 < .0001
ARHGEF7 0.5428 0.5916 0.4571 0.6868 0.4422 0.2909 0.5028 1.0000 0.5297 0.7450
< .0001 < .0001 < .0001 < .0001 < .0001 < .001 < .0001 < .0001 < .0001
TMEFF2 0.6150 0.5681 0.3271 0.6715 0.5731 0.2786 0.4490 0.5297 1.0000 0.6081
< .0001 < .0001 < .0001 < .0001 < .0001 < .001 < .0001 < .0001 < .0001
TM6SF1 0.5833 0.6227 0.4527 0.7113 0.5251 0.2373 0.5346 0.7450 0.6081 1.0000

< .0001 < .0001 < .0001 < .0001 < .0001 .0046 < .0001 < .0001 < .0001

* P value: probability > |4 under HO: p = 0.

Table A2. Association of Week 4 CMI by Hormone Receptor and HER2 Status in Univariate Analysis

PES oS
Subgroup n HR (95% CI) P n HR (95% Cl) P
Week 4 CMI, high v low
Hormone receptor positive 96 2.28 (1.48 to 3.50) < .001 96 1.75 (1.15 to 2.67) .009
Hormone receptor negative 32 1.69 (0.80 to 3.57) .169 28] 2.36 (1.12 to 4.98) .024
HER2 positive 28 1.89 (0.85 to 4.21) 21 28 4.05 (1.58 to 10.4) .004
HER2 negative 92 2.05 (1.33 to 3.16) .001 93 1.50 (0.98 to 2.28) .061

Abbreviations: CMI, cumulative methylation index; HER2, human epidermal growth factor receptor 2; HR, hazard ratio; OS, overall survival, PFS, progression-free
survival.
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Table A3. Assessment of the Added Value of CMI and CTCs in Predicting PFS and OS in Women With Metastatic Breast Cancer
PFS (6]
Model (n = 96) x? Statistic* P x> Statistic* P
A
Base model — — — —
Base model + baseline CMI 0.01 920 6.518 .01
Base model + baseline CMI + week 4 CMI 13.649 < .001 4114 .043
Base model + baseline CMI + week 4 CMI + baseline CTCs 0.860 313 2.657 .103
Base model + baseline CMI + week 4 CMI + baseline CTCs + 1.397 237 3.329 .068
week 4 CTCs
B
Base model — — — —
Base model + baseline CTCs 1.268 .262 6.017 .014
Base model + baseline CTCs + week 4 CTCs 4.298 .038 7.246 .007
Base model + baseline CTCs + week 4 CTCs + baseline CMI 1.853 173 0.579 447
Base model + baseline CTCs + week 4 CTCs + baseline CMI 8.5607 .004 2.776 .096
+ week 4 CMI
C
Base model — — — —
Base model + change in CMI 9.547 .002 0.418 518
Base model + change in CMI + change in CTCs 0.017 .896 0.004 .950
D
Base model — — — —
Base model + change in CTCs 2.231 135 0.076 .783
Base model + change in CTCs + change in CMI 7.333 .007 0.346 .556
NOTE. Base model includes age, ethnicity, prior therapy, phenotype, and disease burden.
Abbreviations: CMI, cumulative methylation index; CTCs, circulating tumor cells; OS, overall survival; PFS, progression-free survival.
*Two times the difference of the log likelihood between nested models has a x? distribution with one degree of freedom.
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