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A B S T R A C T

Purpose
Epigenetic alterations in tissues targeted for cancer play a causal role in carcinogenesis. Changes in
DNA methylation in nontarget tissues, specifically peripheral blood, can also affect risk of malignant
disease. We sought to identify specific profiles of DNA methylation in peripheral blood that are associated
with bladder cancer risk and therefore serve as an epigenetic marker of disease susceptibility.

Methods
We performed genome-wide DNA methylation profiling on participants involved in a population-
based incident case-control study of bladder cancer.

Results
In a training set of 112 cases and 118 controls, we identified a panel of 9 CpG loci whose profile
of DNA methylation was significantly associated with bladder cancer in a masked, independent
testing series of 111 cases and 119 controls (P � .0001). Membership in three of the most
methylated classes was associated with a 5.2-fold increased risk of bladder cancer (95% CI, 2.8
to 9.7), and a model that included the methylation classification, participant age, sex, smoking
status, and family history of bladder cancer was a significant predictor of bladder cancer (area
under the curve, 0.76; 95% CI, 0.70 to 0.82). CpG loci associated with bladder cancer and aging
had neighboring sequences enriched for transcription-factor binding sites related to immune
modulation and forkhead family members.

Conclusion
These results indicate that profiles of epigenetic states in blood are associated with risk of bladder
cancer and signal the potential utility of epigenetic profiles in peripheral blood as novel markers of
susceptibility to this and other malignancies.

J Clin Oncol 29:1133-1139. © 2011 by American Society of Clinical Oncology

INTRODUCTION

The incidence of transitional-cell carcinoma of the
urinary bladder (ie, bladder cancer) in the United
States in 2009 was predicted to be almost 71,000 new
cases.1 Worldwide, almost 360,000 cases of the dis-
ease were diagnosed in 2009.2 In addition, 16% of
individuals initially diagnosed with bladder cancer
will, in their lifetime, be diagnosed with additional
primary tumors.3 The highly successful treatment of
bladder cancer comes at great economic burden to
the health care system, with lifetime monitoring and
treatment making bladder cancer one of the most
expensive of all cancers, with diagnosis to death per
patient costs ranging from $96,000 to $187,000, ac-
counting for almost 3.7 billion US dollars (2001
dollars) in direct costs to the US medical system
each year.4

Tobacco carcinogen exposure through active
smoking is the main established risk factor for blad-
der cancer; but the attributable risk is far less than for
lung cancer, and much of the etiology of bladder
cancer remains unclear.5 Other major risk factors
for bladder cancer include occupational exposures,
particularly aromatic amine and polycyclic aromatic
hydrocarbon exposures,6 inorganic arsenic7-10,11 use
of certain hair dyes, exposure to chlorination by-
products, individual fluid intake, and dietary fac-
tors.12,13 Of course, host susceptibility also plays an
important role in bladder carcinogenesis, and family
history of bladder cancer confers an almost two-fold
risk of disease. Polymorphisms in genes related to
environmental toxicant metabolism such as NAT2
and GSTM1 have been clearly linked to bladder
cancer risk.14,15 Genome-wide association studies
of bladder cancer identified single-nucleotide
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polymorphisms (SNPs) on chromosome 8q24, upstream of the MYC
oncogene, on chromosome 3q28 near the TP63 tumor suppressor
gene,16 and in the PSCA gene to be associated with bladder cancer
risk.17 Although these SNP studies may point to novel mechanisms of
susceptibility to the disease, it is becoming increasingly clear that their
contribution to the attributable risk for the disease is minor. In fact,
there is great controversy over whether common genetic variants will
play a major role in defining disease susceptibility.18

It is now widely accepted that epigenetic alterations in target
tissues are causal to the development of malignancy.19,20 The extent of
variability of the cellular epigenome, and specifically DNA methyl-
ation at gene promoter regions, remains a critical question; the
amount of variation in genomic methylation across the population is
not currently known. Further, individual variation in the epigenome is
likely to have multiple characteristics, with a component that is tissue-
specific and a component that is common to all tissues. We know that
some of this variability, particularly in blood, is associated with aging
and exposures encountered throughout life,21,22 and the data now
suggest that it is, in fact, associated with risk of breast,23 ovarian,24 and
small-cell lung cancer.25 The profiles of epigenetic change that are
found to be associated with disease may reflect genetic or environmen-
tal factors (or their interaction) that establish these gene regulatory
marks in a fashion that results in disease susceptibility. Therefore, we
examined the genome-wide DNA methylation profiles of peripheral
blood from a population-based case-control study of bladder cancer
to identify profiles of DNA methylation in this accessible (but not
diseased) tissue that are associated with bladder cancer. By examining
the gene pathways involved, as well as the genomic context of the loci
with bladder cancer–associated methylation, we provide insight
into the functional consequences of these profiles and their gene-
sis, respectively.

METHODS

Study Population

The study population has been previously described,26,27 and additional
details are provided in the Data Supplement. Briefly, cases of incident bladder
cancer were identified from the New Hampshire state cancer registry from July
1, 1994, until June 30, 1998, and a standardized histopathologic review was
conducted by a single study pathologist to verify the diagnosis and histopathol-
ogy of the cases. The case group in this study is limited to white patients
because of a limited number of nonwhite participants in the study population.
For cases, blood samples were collected on average within 1 year after diagno-
sis. All controls younger than 65 years of age were selected from records
obtained from the New Hampshire Department of Transportation, and con-
trols older than 65 years of age were chosen from records obtained from the
Health Care Financing Administration’s Medicare Program. Informed con-
sent was obtained from each participant, and all procedures and study mate-
rials were approved by the Committee for the Protection of Human Subjects at
Dartmouth College and Brown University. Consenting participants under-
went a detailed in-person interview covering sociodemographic information
and lifestyle factors such as the use of tobacco.

DNA Methylation and Statistical Analysis

DNA was extracted from peripheral-blood buffy coats using the
QIAmp DNA mini kit according to the manufacturer’s protocol (Qiagen,
Valencia, CA) and was subjected to sodium bisulfite modification using the EZ
DNA Methylation Kit (Zymo Research, Orange, CA) following the manufac-
turer’s protocol. Methylation profiling was performed using the Illumina
Infinium Methylation27 Bead Array at the University of California, San Fran-
cisco Institute for Human Genetics Genomic Core Facility.

The scheme of our analysis strategy aimed at identifying and validating
novel epigenetic biomarkers of bladder cancer in peripheral blood is depicted
in Figure 1. We used the methods of Houseman et al,28 the recursively parti-
tioned mixture model (RPMM), because this model-based clustering strategy
has been demonstrated to perform effectively and efficiently for methylation
data derived from the Illumina array technologies, and it allows for inference in
addressing the associations between the methylation-based clusters and cova-
riates. Training and testing sets were obtained by randomly sampling within
bladder cancer case-control status. We used a procedure called Semi-
Supervised Recursively Partitioned Mixture Models (SS-RPMM),29 similar in
spirit to the semi-supervised methodologies proposed by Bair and Tibshirani30

for identifying methylation profiles that are associated with case-control sta-
tus. To examine the robustness of the association identified in the SS-RPMM,
we also used a least absolute shrinkage and selection operator approach for
modeling the association between methylation profile and bladder cancer
status, using the same training and testing data sets. Details of these
methods and results are included in the Data Supplement.

Gene set enrichment analysis (GSEA31) was used to explore the biologic
relevance of blood-based alterations in DNA methylation for distinguishing
bladder cancer cases from controls and also as a result of aging.

RESULTS

The profile of DNA methylation was obtained for 460 peripheral-
blood samples using the Human Methylation27 Beadarray. We used a
semi-supervised strategy to identify profiles of DNA methylation as-
sociated with bladder cancer and to examine whether the identified
profiles can predict case status in a series of blinded test samples (Fig
1). Following quality assurance procedures, the data set was split into
training and testing series. Characteristics of the cases and controls are
shown in Table 1, and do not differ significantly between training and
testing sets (Data Supplement).

Training data set
  Cases (n = 112)
  Controls (n = 118)

Identify loci most
associated with

case status

Fit RPMM using
chosen loci

Mixed
effects
model

Cross-validation
to choose No. 
of loci

Predicted classes
test association

Empirical
Bayes class
prediction

Testing data set
  Cases (n = 111)
  Controls (n = 119)

Infinium Data
  Cases (n = 223)
  Controls (n = 237)

Fig 1. Diagram of the analysis strategy used in defining the methylation profiles
in the training set and applying those profiles for classification in the testing set.
RPMM, recursively partitioned mixture model.
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The first step of our semi-supervised strategy was to identify
those CpG loci whose methylation state was most significantly associ-
ated with being a bladder cancer case rather than control. To do this,
we fit a series of linear mixed-effects models using the training data
only for each of the 26,486 CpGs in the data set. This allowed us to
model each methylation value as the dependent variable, with a ran-
dom effect for plate (to allow for inter-plate normalization) based on a
single normalization sample run on all plates and a fixed effect for
case-control status. CpG loci were ranked based on the absolute value
of the t statistic derived from the model, and the top nine loci were
chosen on the basis of a nested cross-validation procedure (Fig 1) for
inclusion in the RPMM, which clustered the samples on the basis of
the methylation profile of these nine loci in the training data. To
predict class membership in the testing data using only the methyl-
ation status of these nine loci, the latent class structure from the
RPMM solution fit to the training data was used in conjunction with
an empirical Bayes procedure. The methylation profile of these nine
loci in the testing data is depicted in Figure 2A, which also shows the
mean methylation across loci within a given class and the relationships
among the classes through the dendrogram. The right branch classes
(those beginning with the letter R) had overall mean methylation
that was significantly greater than that of the left branch classes
(P � .0001). The distribution of the methylation values for each of
the nine loci, across classes, is depicted (Data Supplement).

In the test set, we observed that class membership was signifi-
cantly associated with case-control status (P � .0001, permutation-
based �2 test, Fig 2B), with the right branch classes (those beginning
with R) containing a higher proportion of bladder cases than controls
compared with the left branch classes. The methylation beta values for
cases compared with controls for each of the loci in the testing set are
shown (Data Supplement). Each of the nine CpG loci used in the
classifier had greater methylation among cases than controls. We
assessed performance of the classifier by using receiver operating char-

acteristic curves and calculating the area under the curve (AUC).
Using methylation class alone, the AUC was 0.70 (95% bootstrap CI,
0.63 to 0.77). After adjustment for participant age, sex, smoking status
(never, former, current), and family history of bladder cancer, the
AUC increased to 0.76 (95% bootstrap CI, 0.70 to 0.82; Figs 3A and
3B). To identify whether the association between methylation profiles
and bladder cancer is sensitive to the statistical methodology used in
the examination, we also performed our analysis using a LASSO ap-
proach, using the same training and testing data sets. The methods and
results of these analyses are described (Data Supplement) and suggest
that our identification of bladder cancer–associated methylation
classes is robust to the statistical method used.

Unconditional logistic regression was used to calculate the mag-
nitude of the association between methylation class and bladder can-
cer, controlling for potential confounders. The odds ratios (ORs) and
95% CI resulting from each of the pairwise comparisons between the
seven predicted classes are shown (Data Supplement). There was a
trend of increasing risk of disease moving from the left to right branch
of the classification, with the highest risk for members of class RR
compared with LLL (OR � 8.7; 95% CI, 1.5 to 55.2). Comparing all
the right branch classes with all the left classes, the OR for bladder
cancer was 5.2 (95% CI, 2.8 to 9.7), controlled for participant age, sex,
smoking status, and family history of bladder cancer. There was no
difference in the prevalence of invasive disease across the predicted
classes (data not shown).

Because previous work has suggested that aging is associated with
epigenetic states in peripheral blood and can be related to the altera-
tions associated with cancer, we sought to examine whether there was
any overlap in the biologic pathways impacted by differential DNA
methylation associated with age or case status. We performed a gene
set enrichment analysis (GSEA) based on Kegg-defined pathways us-
ing the combined training and testing data and compared pathways
over-represented among loci associated with participant age (in con-
trols) with those associated with disease. Pathways with a nominal P �
.05 based on the GSEA enrichment statistic are provided in Figure 4,
grouped by function. No overlapping pathways based on age- and
disease-associated loci were identified. However, similar functional
groupings of pathways were identified in both age-associated and
bladder cancer–associated loci and are detailed in Figure 4. Genetic
information processing pathways were identified exclusively among
loci associated with bladder cancer.

In addition to examining the functional consequences of differ-
ential methylation in peripheral blood between cases and controls, we
hypothesized that differential methylation profiles may represent a
response of the hematopoietic system to a developing tumor (ie, the
methylation profiles capture the downstream effects of this response,
which may be through differential binding of transcription factors
near sites of altered methylation). The top half of Figure 4 depicts the
results of this GSEA-based analysis, depicting binding sites of tran-
scription factors over-represented within 1 kB of loci whose DNA
methylation was related to age, bladder cancer status, or both, grouped
by similar structure or functional response. Binding sites for a
forkhead-containing transcription factor and a transcription factor
involved in immune modulation (GATA1) overlapped between loci
associated with age and disease status. Loci with differential methyl-
ation strongly associated with age were nearby binding sites of a large
number of transcription factors related to developmental processes,

Table 1. Characteristics of the Participants Used in the Analysis

Characteristic

Controls Cases

No. % No. %

Total No. 237 223
Age, years

Median 65 66
Range 28-74 25-74

Sex
Male 158 48 171 52
Female 79 60 52 40

Family history of bladder cancer�

No 224 53 199 47
Yes 7 44 9 56

Smoking history
Never 72 64 40 36
Former 126 53 111 47
Current 39 35 72 65

Tumor stage/grade designation
Carcinoma in situ — 6 3
Noninvasive low grade (grade 1-2) — 140 63
Noninvasive high grade (grade 3) — 17 7
Invasive — 60 27

�Data on family history were not available for 13 participants.

Epigenetic Profiles of Bladder Cancer Susceptibility
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including homeobox-containing transcription factors, as well as fac-
tors involved in immune modulation and stress response. Oncogenic
transcription factor binding sites as well as immune modulation and
development-related transcription factor binding sites were exclu-
sively over-represented near loci whose methylation was associated
with bladder cancer.

DISCUSSION

This study represents a very novel, large-scale examination of the
utility of DNA methylation in peripheral blood as a biomarker of
bladder cancer risk and suggests that there are epigenetic alterations
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detectable in accessible, nondiseased tissue that reflect susceptibility to
bladder tumorigenesis. It is important to note that we cannot defini-
tively determine whether these altered profiles of DNA methylation
are a response of the hematopoietic systems to the presence of the
developing tumor or are extant before tumor development and in
some way allow for or potentiate the growth of the tumor. At the same
time, we have hypothesized that these profiles may represent a di-
rected alteration, and that by looking at the genomic context of those
loci whose differential methylation was associated with aging or blad-
der cancer, we may be able to better define how these pathologic
processes are influencing methylation status.

Specifically, we examined the representation of transcription fac-
tor binding sites within 1 kB of the loci demonstrating differential
methylation with age and with case status. Loci associated with aging
and with disease demonstrated over-representation of specific tran-
scription factors involved in immune modulation and proliferation.
Specific to those loci associated with bladder cancer, we observed an
over-representation of transcription factor binding sites for transcrip-
tion factors that have been functionally characterized as oncogenes
and those involved in lipid/sterol homeostasis, whereas specific to loci
associated with aging were a number of transcription factor binding
sites critical in developmental processes. The key role of immune
modulation in both aging and carcinogenesis, and particularly bladder
carcinogenesis,32 highlights how the detected methylation alterations
may represent specific changes to the immune system that enable
tumorigenesis. For instance, there is a growing literature on the role
of regulatory T cells (known as suppressor T cells) (Treg) and their

over-abundance in both the peripheral blood as well as in the target
epithelial tissues of a developing tumor,33-35 and these methylation
alterations may represent changes to the representation of specific
lymphocyte subsets in peripheral blood as either a mediator or conse-
quence of bladder tumorigenesis. In fact, recent work has demon-
strated that Foxo1 and Foxo3 proteins are critical for the control of
Treg cell differentiation and specifying Treg cell lineage.36 It is equally
important to consider transcription factor binding sites that were not
over-represented in our analyses; these include those involved in an-
giogenesis/vascular endothelial growth factor signaling and cellular
interaction and communication. Taken together, these results are
striking, as they suggest that methylation of DNA in the hematopoietic
system associated with aging and bladder cancer may be associated
with the presence or absence of transcription factor binding that is
both specific to the two processes as well as overlapping.

The functional consequence of the differences in methylation
between individuals with and without bladder tumors is unclear,
although the nine genes identified as harboring signal CpGs that are
most associated with bladder cancer represent a wide range of cellular
processes. For example, BRD7 is an activator of the WNT signaling
pathway, which plays a critical role in stem cell maintenance and a
pathway whose alteration has been linked to bladder cancer.37 TBCA
encodes a member of the multiprotein complex responsible for ap-
propriate folding of the tubulin protein and may be involved in re-
sponding to cellular stress events leading to an unfolded protein
response.38 COX7C is one member of the cytochrome c oxidase com-
plex responsible for mitochondrial respiration,39 and changes in its

Variable DNA Methylation
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Fig 4. Diagram of the gene-set enrich-
ment analysis on DNA methylation data.
The upper panel depicts the transcription
factor binding sites (TFBS) within 1 kB of
differentially methylated loci associated
with aging, bladder cancer, and their over-
lap grouped by functional role or family.
The lower panel depicts the KEGG path-
ways that are over-represented among the
loci with differential methylation associated
with aging, bladder cancer, and their overlap,
grouped by higher level pathways.
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expression have been observed in skin squamous cell carcinoma40

and in response to fluorouracil treatment.41 At a higher level,
similar pathways were disrupted in both age-associated and
cancer-associated methylation, including those related to organis-
mal systems, cellular processes, human disease, and environmental
information processing.

This work, in summary, suggests that there is untapped potential
in the use of peripheral blood–based epigenetic profiling for bladder
cancer risk prediction or early detection, as well as in understanding
the complicated interplay of multiple systems in tumorigenesis. We
have demonstrated, with high accuracy, the ability to distinguish blad-
der cancers from controls using a model containing the DNA meth-
ylation profile of nine loci, patient age, sex, smoking status, and family
history (AUC � 0.76). Profiles of DNA methylation reflecting in-
creased methylation of these nine loci were associated with a more
than five-fold increased risk for bladder cancer compared with profiles
with lesser extents of methylation.

The addition of GWAS-based SNPs to bladder cancer prediction
models does not seem to significantly improve their performance as
compared with models that include risk factors and demographics
alone.42 Wu et al recently developed a risk modeling strategy for
bladder cancer, including epidemiologic variables, as well as a pheno-
typic measure of mutagen sensitivity, and this model showed similar
performance (AUC � 0.8) to our model and points to the need for
including phenotypically relevant data in risk prediction strategies.43

Our use of phenotypically relevant DNA methylation profiles, though,
may be more appealing, because measurement of DNA methylation is
more amenable to the clinical setting than are those of mutagen
sensitivity assays, which are time intensive and laborious, requiring
lymphocyte culture and microscopic assessment after exposure to

a test mutagen. Although our results are not at the level of accuracy
necessary for immediate diagnostic utility, they do point, along
with a small but growing number of other studies of other solid
tumors,23-25 to the tremendous clinical potential of epigenetic
profiling of peripheral-blood DNA. Confirmation of these findings
in additional populations is warranted, as is expanded examination
of the role of aging and environmental exposures on the produc-
tion of disease-associated methylation profiles.
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Glossary Terms

DNA methylation: Methylation of bases contained in the
DNA double helix, resulting in a loss of gene function. Generally
occurring on cytosine residues in the DNA, methylation is im-
portant in regulating cell growth and differentiation and has
resulted in the testing of DNA methyltransferase inhibitors as
anti-cancer agents and differentiation agents.

Epigenetic: The transfer of information from one cell to its
descendants without the information’s being encoded in the nu-
cleotide sequence of the DNA. The methylation of the promoter
to inactivate a gene is an example of an epigenetic change. Epige-
netic inheritance is typically transmitted in dividing cells. Al-
though rare, it is occasionally seen in traits being transmitted
from one generation to another. Epigenetic variants can arise
spontaneously and just as spontaneously revert.

Epigenome: The overall epigenetic state of a cell.

Gene Set Enrichment Analysis (GSEA): GSEA is a
computational method that determines whether an a priori de-
fined set of genes shows statistically significant, concordant dif-
ferences between two biologic states.

KEGG: Kyoto Encyclopedia of Genes and Genomes is an inte-
grate bioinformatic database resource that is used as a reference
knowledge base for biologic interpretation of large-scale data sets
generated by sequencing and other high-throughput experimen-
tal technologies.

Population-based: Study in which the subjects are drawn from a
defined population in a manner that is representative of the source pop-
ulation studied. Such a design can avoid bias arising from the selective
factors that guide affected individuals to a particular medical facility,
allowing for greater generalizability of the findings.

Recursively partitioned mixture model (RPMM): A
likelihood-based hierarchical clustering procedure that produces classi-
fication solutions similar to those of conventional mixture models in a
computationally efficient manner and allows for precise inference re-
garding potential covariates.

Regulatory T cells (known as suppressor T cells): are a
specialized subpopulation of T cells that act to suppress activation of the
immune system and thereby maintain immune system homeostasis and
tolerance to self-antigens. This is an important “self-check” built into
the immune system so that responses do not go haywire. Regulatory T
cells come in many forms, including those that express the CD8 trans-
membrane glycoprotein (CD8 T cells), those that express CD4, CD25
and Foxp3 (CD4CD25 regulatory T cells or “Tregs”) and other T cell
types that have suppressive function. These cells are involved in closing
down immune responses after they have successfully tackled invading
organisms and also in keeping in check immune responses that may
potentially attack one’s own tissues (autoimmunity).
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