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A B S T R A C T

Knowledge of the inherited risk for cancer is an important component of preventive oncology.
In addition to well-established syndromes of cancer predisposition, much remains to be
discovered about the genetic variation underlying susceptibility to common malignancies.
Increased knowledge about the human genome and advances in genotyping technology
have made possible genome-wide association studies (GWAS) of human diseases. These
studies have identified many important regions of genetic variation associated with an
increased risk for human traits and diseases including cancer. Understanding the principles,
major findings, and limitations of GWAS is becoming increasingly important for oncologists
as dissemination of genomic risk tests directly to consumers is already occurring through
commercial companies. GWAS have contributed to our understanding of the genetic
basis of cancer and will shed light on biologic pathways and possible new strategies for
targeted prevention. To date, however, the clinical utility of GWAS-derived risk markers
remains limited.

J Clin Oncol 28:4255-4267. © 2010 by American Society of Clinical Oncology

INTRODUCTION

Over the past two decades, research advances in
cancer genetics have identified and characterized
mutated cancer predisposition genes that account
for a subset of cancers with a Mendelian pattern of
inheritance.1 Examples of cancer predisposition
genes are BRCA1 and BRCA2 in hereditary breast
and ovarian cancer, the mismatch repair genes in
Lynch syndrome, the APC gene in familial adeno-
matous polyposis (FAP), and the TP53 gene in Li-
Fraumeni syndrome. Individuals with mutations
in these genes have a much higher risk of develop-
ing cancer than those in the general population.
Guidelines for genetic testing for these genes and
strategies for cancer surveillance and prevention
have been developed and incorporated into onco-
logic practice.2-5

In recent years, genome-wide association stud-
ies (GWAS) have identified genetic variants, or sus-
ceptibility loci, for a variety of human diseases,
including cancer. As methods for sequencing entire
personal genomes become less costly, the number of
such genetic variants discovered will continue to
increase. While the majority of susceptibility loci
found by GWAS confer only a modest risk of disease
(Fig 1), for-profit companies have made personal
genomic profiles available directly to consumers. Al-
though clinicians and scientists have articulated
concerns regarding the premature commercial dis-

semination of personal genomics6 and need for con-
tinued research,7 oncologists and other cancer care
professionals will be asked by patients to explain
results of tests and advise on desired interventions
or screening. A recent survey8 indicated that 42% of
physicians were aware of direct-to-consumer
genomic tests for disease risk, and of those physi-
cians aware of direct-to-consumer tests, approxi-
mately 40% had been asked by patients to interpret
the results of such testing. It is therefore important
for oncologists to be aware of current data regarding
the ranges of risk, the clinical validity (accuracy of a
test in predicting the clinical outcome), and clinical
utility (risks and benefits resulting from the use of a
test) associated with genetic variants predisposing
to cancer.9,10

GENETIC SUSCEPTIBILITY TO CANCER

Mutations of more than 50 genes have been asso-
ciated with high-penetrance cancer susceptibility
syndromes (risk of cancer increased approxi-
mately 5- to 50-fold). However, these syndromes
account for only a small fraction of the familial risk
of cancer (Fig 2).11-16 Using breast cancer as an ex-
ample, mutations in BRCA1 and BRCA2 appear to
account for fewer than 20% of the familial risk of
breast cancer, with other rare genes (eg, TP53,
PTEN) accounting for no more than 5% of the
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risk.13 Other cancer types are similar in that high-penetrance cancer
susceptibility genes only explain a small fraction of the familial risk
of cancer.

Studies of monozygotic twins and inbred populations have pro-
vided strong evidence that a large fraction of cancers are mediated by
genetic susceptibility.11,12 Surprisingly, in these studies, even seem-
ingly environmental cancers, such as lung cancer, demonstrate famil-
ial clustering and are likely to be mediated by genetic susceptibility to
shared exposures. A scientific debate over the past decade has centered
on whether genetic susceptibility to common diseases is a result of the
joint action of several common variants each with low relative risk of
disease, or the result of genetic variants with low population frequency
but moderate to high risk of disease.17

Examples of rare genetic mutations of moderate effect size
emerged from studies of individual candidate genes. For example,

genes in a common pathway (ie, DNA damage response), such as
ATM18-20, CHEK221-23, BRIP1, 24 and PALB2,25 have been associated
with increased risk for breast cancer. However, based on estimates of
the risk allele frequencies ranging from 0.1% to 0.5% (ie, 0.2 to one
individual in 100 would carry at least one copy of the risk allele) and
the modest 2.0-fold increase in relative risk associated with each of
these genes, the contribution of mutations in these genes to the famil-
ial aggregation of breast cancer is limited. As shown in Figure 2,
together with the known high-penetrance genes, all known breast
cancer predisposition genes account for only approximately 25% of
the familial risk of breast cancer in outbred populations.13

Recently, genetic association studies have been used to dis-
cover common genetic variants or risk alleles (minor allele fre-
quency � 10%) with small to moderate (approximately two-fold)
risks of cancer.26 Association studies compare the frequency of a
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Fig 1. Phenotypic effect size and fre-
quency of occurrence. (*) Named genes
only reflect the most likely candidate genes
to be implicated by the marker single nucle-
otide polymorphisms (SNPs) identified from
the genome-wide association studies. (†)
The marker SNPs mapping to JAK2 in my-
eloproliferative neoplasms and KITLG in tes-
ticular germ cell tumors have odds ratios of
approximately 3.0, with allele frequencies
ranging from 20% to 40%.
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Fig 2. Familial risk of common cancers. Most common cancers, including breast, colorectal, and prostate cancer, exhibit familial aggregation, with the disease being
more common in family members than in the general population. While familial aggregation may be secondary to genetic or environmental factors, evidence from
monozygotic twins of patients suggests that genetic factors are mainly responsible.11,12 As demonstrated in this figure, known high-penetrance cancer predisposition
syndromes explain only a fraction of the familial risk of cancer.13-16 While genome-wide association studies have identified numerous low-penetrance loci for each of
these three common cancers, their contribution to the familial risk of cancer remains limited and a large portion of the familial risk of these cancers remains unexplained.
GWAS, genome-wide association study; SNP, single nucleotide polymorphisms.
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genetic variant in disease-affected patients and healthy controls. Re-
cent knowledge gained from the Human Genome Project and the
International Hap Map Project together with technical advances in
high throughput genotyping technology has resulted in GWAS for a
variety of complex diseases including cancer.

GWAS

Study Design

Roughly 99.9% of DNA sequence is identical across different
individuals. Given the vast size (3.2 billion base pairs) of the human
genome, even this small discrepancy results in millions of potential
variations.27 The most common variations are single-base pair
changes called single-nucleotide polymorphisms (SNPs). GWAS
compare allele frequencies between individuals with a disease (pa-
tients) to individuals without disease (controls). By determining
which SNPs occur more (or less) frequently in individuals with dis-
ease, genomic regions associated with a disease state can be identified
and a statistical estimate of the level of increased (or diminished) risk
associated with each SNP can be made. GWAS take advantage of the
fact that stretches of DNA tend to be inherited together and adjacent
alleles sort together nonindependently from generation to generation.
This nonrandom association of alleles at nearby loci (linkage disequi-
librium) allows certain SNPs to serve as proxies, or tagSNPs, for other
nearby SNPs. The use of such marker SNPs allows one to reduce the
number of SNPs that need to be genotyped to characterize individual
genomic variation to about 500,000.28

The design of a typical GWAS for cancer susceptibility is shown
in Figure 3. DNA from hundreds or thousands of patients and con-
trols is analyzed (genotyped) using commercially available oligonucle-
otide microarray chips, which allow high throughput analysis of up to
a million SNPs in one reaction. Even with per SNP genotyping costs of
a fraction of 1 cent, the total cost for genotyping a large sample size
using 500,000 or more SNPs can be prohibitive. Cost-effective multi-
stage designs, such as the one shown in Figure 3, retain most of the
power of the optimum design often at less than half the cost.29,30 For
study designs with three or more phases, the significant SNPs are
included for replication testing in different patient-control sam-
ple sets.

Interpreting GWAS

Initiatives, such as the Strengthening the Reporting of Genetic
Association Studies (STREGA),31 have provided guidelines for
reporting of genetic association studies and helped standardize
GWAS in order to avoid upwardly biased odds ratios (ORs).32

Interpretations of GWAS must take into account possible effects of
disease and population heterogeneity, involvement of multiple
genetic and environmental factors, and possible gene-gene and
gene-environment interactions.

Because power is a function of sample size, minor allele fre-
quency, and the presumed genetic effect size, the detection of modest
genetic effects with ORs of 1.3 or lower and minor allele frequencies
under 10%, may require more than 10,000 patients and 10,000 con-
trols for adequate statistical power.33 Although large study consortia

Individuals with cancer
(patients) 

Individuals without cancer 
(controls) 

DNA from patients and controls genotyped using 
commercially available whole-genome platforms (“chips”)

Phase 1

Using a full set of SNPs across the genome, the 
genotypes of patients and controls are compared 

to identify SNPs possibly associated with cancer risk

Phase 2

Larger set of independent patients and controls genotyped 
using a custom-designed array containing the putative 

SNPs identified in Phase 1

Optional Phase 3

Larger and more heterogeneous patient and control groups
may be tested to confirm the genotype associations

5%-10% most significant SNPs
carried on to next phase

DNA

A
G
T
A
A
C

DNA

A
G
T
G
A
C

Number of SNPs
tested

PHASE 1

PHASE 2

PHASE 3

Number of 
patients/controls

Fig 3. Genome-wide association study
(GWAS) design. A typical cancer GWAS
starts with the selection of a large number
of individuals affected with a specific type
of cancer and a suitable comparison group
without cancer. DNA is isolated from each
individual and genotyped using commer-
cially available genome platforms (ie,
chips) that assess for common genetic
variations in the form of single nucleotide
polymorphisms (SNPs) across the entire
human genome. Data are reviewed to
ensure appropriate genotyping quality. In
phase I, stringent statistical methods are
used to assess for associations between
SNPs passing quality thresholds and can-
cer risk. In phase II, SNPs found to be
significantly associated with cancer risk
(approximately 5% to 10% of all SNPs) are
tested in a larger set of independent pa-
tients and controls using arrays containing
the putative SNPs of interest. Some stud-
ies proceed to further evaluation of puta-
tive SNPs in a third phase using larger and
more heterogeneous populations to con-
firm the genotype associations.
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may approach this size, such efforts are often limited by cost. In
addition to ensuring adequate statistical power, patients and controls
must be well-matched to avoid population stratification, wherein
misleading associations may result from differences in race or ethnic-
ity of those with and without the disease of interest.34-37 Family-based
designs can minimize population stratification bias, but also compro-
mise the power of associations.38 As population stratification can lead
to significant type I error rates (ie, false positives), principal compo-
nent analysis39,40 and other methods41,42 have been developed that
estimate the population ancestry of patients and controls based on
genotypes of a panel of SNPs that are not associated with the disease of
interest. Misleading associations may also result from genetic hetero-
geneity, wherein what appears to be a single disease is in fact a result of
genetically separate phenomenon. For example, given the known phe-
notypic variation in breast cancer, combining all breast cancers into
one group may obscure potential genetic associations.

Given multiple comparisons, stringent statistical thresholds are
necessary to avoid spurious false-positive associations. The most
widely used adjustment for multiple comparisons is the Bonferroni
correction, in which the threshold P value (usually 5 � 10�2) is
divided by the number of tests performed (approximately 500,000
depending on array used) resulting in an acceptable P value on the
order of lower than 1 � 10�7. Even with statistically significant asso-
ciations, positive results have to be interpreted with caution owing to
“winner’s curse,” wherein an artificial inflation in measures of associ-
ation can result from the discovered loci having to pass through
stringent significance thresholds.43,44 Regardless of study design and
statistical considerations, GWAS are prone to publication bias, as
strongly positive associations are more likely to be reported than
negative studies.

Interpretation and Clinical Relevance of Results

Genetic associations from GWAS are reported either as relative
risks (RR) for cohort studies or as ORs for case-control studies. To
date, the majority of cancer GWAS have found risk alleles with only
modest associations with cancer risk (OR, 1.1 to 1.5). For example, a
risk allele in the fibroblast growth factor receptor 2 (FGR2) gene has
been found to be associated with a 1.26-fold increased risk of breast
cancer, comparable in magnitude to the modest increased risk of
breast cancer conferred by delaying first pregnancy to age older than
35.45 However, a 1.26 risk may be reported to a patient by stating “your
risk is increased 26%,” which may seem high, but is far less than the
100-fold increases in breast cancer risk associated with, for example,
BRCA mutations. In addition to being misleading, the use of ORs also
generally relate to risks over a lifetime, and not over a specific period of
time. The very low level of risk associated with most variants found by
GWAS remains the greatest barrier to the clinical application of these
markers in cancer prevention.

It may also be possible to combine a set of risk alleles into a
genomic risk profile for risk estimation of a particular cancer. In a
multiplicative model, one simply multiplies one risk factor by the
other (eg, 1.2 � 1.5 � 1.8) to derive the combined risk. Such genomic
risk panels can then be compared to models that incorporate typical
clinical variables (eg, Gail model for breast cancer risk). To date, such
comparisons have revealed a very modest, if any, added value to
genomic risk profiles.46-48 In addition, more research is needed re-
garding epistasis (gene-gene interactions) that may confound results
of genomic risk profiles. It is also possible that as more variants in the

same pathway are discovered, there will be supra-multiplicative inter-
actions that may lead to much higher relative risks. To date such
supra-multiplicative interactions have not been found.

It may be common for individuals receiving commercial testing
for cancer risk to be told that a certain genetic variant they were found
to have is associated with a very high proportion of a type of cancer.
The reporting of this type of population attributable risk % (PAR%) of
a SNP may be misleading.49 Because of the high allele frequencies of
most susceptibility loci identified, the PAR% can be quite high even
with very modest elevations in relative risk. In fact, the joint PAR% of
common risk variants in some cancers approaches (and may exceed)
100%. These same risk loci, however, may explain only a small fraction
of the excess familial relative risk of cancer.14 For example, for the
dozen or so SNPs associated with breast cancer risk, the joint PAR% is
higher than 70% while the risk loci explain only approximately 8% of
the familial relative risk of breast cancer. A large PAR% does not
exclude the possibility that other risk alleles exist, that multiple risk
factors may occur in the same individual, or that environmental fac-
tors may also contribute to disease development.

When clinicians interpret results of GWAS SNPs, it is also impor-
tant to note that many of the low-risk variants derived by GWAS and
used in some commercial panels have not been replicated; a systematic
review of 260 meta-analyses of 160 polymorphism gene associations
concluded that there is insufficient scientific evidence to conclude that
genomic profiles are useful in measuring genetic risk for common
diseases or in developing personalized recommendations for disease
prevention.50 Finally, since the frequency of risk alleles and the inci-
dence of types of cancer vary within populations, these values may not
be generalizable and prospective studies are necessary to directly mea-
sure absolute risk, and to judge the accuracy of risk estimates calcu-
lated using retrospective methods.

GWAS OF CANCER

In recent years, more than 50 cancer GWAS have been published
incorporating at least 15 different malignancies. Nearly all the
cancer susceptibility loci identified to date are associated with
modest increases in disease risk, with ORs generally below 1.5.
Exceptions to this are the risk variants identified in JAK2 in myelo-
proliferative neoplasms and in KITLG in testicular cancer which
are each associated with nearly a three-fold increased risk of
disease.51-53 The contribution of the identified susceptibility loci in
explaining the genetic basis (heritability) of cancer and the poten-
tial clinical implications of GWAS findings is illustrated below in
three common malignancies.

Breast Cancer

Breast cancer has been at the forefront of cancer GWAS with at
least 13 independent loci implicated in disease risk (Table 2).45,54-81 Of
identified susceptibility loci, the most strongly associated risk SNP,
with an OR of 1.26, was in FGFR2. The protein encoded by FGFR2 is a
member of the FGFR family and is overexpressed in 5% to 10% of
breast tumors.82,83 While the precise mechanism(s) of FGFR2 dereg-
ulation in breast cancer etiology remains unknown, fine mapping of
the region suggests that the causative variants lie in intron 2 of FGFR2.
The 10q26 locus mapping to FGFR2 was implicated in a number of
breast cancer GWAS using different patient populations and appears
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to be strongest in estrogen receptor–positive breast cancers.84-86 Some
of the other susceptibility loci identified in gene-containing regions
have not been implicated in cancer previously (eg, TOX3, LSP1,
STXBP4) and are being evaluated for their potential role in carcino-
genesis. Other SNPs lie in regions devoid of genes (ie, the 8q24
region) where research into their impact on near-by genes is under
investigation. As most GWAS-based associations have correlated
with estrogen receptor–positive breast cancers, efforts to identify risk
SNPs predicting for estrogen receptor–negative or triple-negative
breast cancers are ongoing.

Importantly, as compared to the high-penetrance breast can-
cer susceptibility genes, the magnitude of risk associated with each
of the risk SNPs identified in breast cancer GWAS is modest, with
ORs largely ranging from 1.1 to 1.4 (Fig 1). The contribution of
these loci to the familial risk of breast cancer is no more than
approximately 8%14 thereby still leaving the majority of the familial
risk of breast cancer unexplained. Modeling studies have predicted
that together the seven most common breast cancer–associated SNPs
would add little in terms of improved discriminatory accuracy when
compared to, or when used in conjunction with, a standard clinical
breast cancer risk model (eg, the Gail model).46,47 The addition of
information on 10 breast cancer risk SNPs to the Gail model predicted
the risk of breast cancer only slightly better than the clinical model
alone.48 Similarly, in a cohort of BRCA mutation–negative women
with and without breast cancer, incorporation of a genotypic risk score

had limited discriminatory accuracy; however, the potential for
reclassification of a clinically relevant proportion of women for
altered recommendations for chemoprevention or magnetic reso-
nance imaging screening has not been excluded.87 While these
clinical studies demonstrate the potential use of SNPs in cancer risk
prediction, to date, breast cancer risk stratification based on SNPs
remains premature.

Colon Cancer

Although familial susceptibility accounts for as much as 35% of
colorectal cancer (CRC)17, only approximately 6% of all CRCs occur
in the setting of a known genetic predisposition syndrome. Hereditary
nonpolyposis colorectal cancer (Lynch syndrome) and FAP account
for the majority of cases, while rare inherited syndromes, such as
Peutz-Jeghers syndrome, juvenile polyposis, attenuated FAP, and
MYH-associated polyposis, explain only 1% of CRCs.

The seven GWAS in CRC have identified 10 susceptibility loci
(Table 2). Multiple CRC GWAS identified the 8q24 locus, contain-
ing the rs6983267 SNP, with an associated approximately 1.2-fold
increased risk of disease.74-76,78 This SNP was also associated with
adenoma risk with an OR of 1.16.88 While the 8q24 region is devoid
of known genes, two recent publications suggest that the rs6983267
SNP may be connected to enhanced Wnt signaling and subsequent
MYC regulation, known pathways in carcinogenesis.89,90

Table 1. Definition of Terms

Term Definition

High-penetrance cancer susceptibility
syndrome

A cancer predisposition syndrome wherein a mutation in the implicated gene produces a phenotype in a
high proportion of individuals who carry the mutation

SNP A variation in DNA sequence where a single nucleotide is replaced by another; SNPs are thought to
represent the most common form of genetic variation in the genome

Clinical validity The accuracy with which a genetic test can identify or predict the presence or absence of a particular
clinical condition taking into account the specificity, sensitivity as well as the penetrance of the
genetic variation

Clinical utility The degree to which the use of a test informs clinical decision making and leads to improved health
outcomes

Candidate gene studies A study that identifies genetic associations by assessing genetic variants that are suspected of being
involved in the expression of a particular trait or disease

GWAS A systematic hypothesis-free search for genetic variations, in the form of SNPs, across the genome to
identify genetic associations with a disease or trait

Minor allele frequency Frequency of the less common allele of a polymorphic locus
Risk allele Any one of several variants of a gene that occupy the same position locus on a chromosome and is

associated with risk of a particular trait or disease
Linkage disequilibrium The non-random association of alleles of different polymorphisms in a population
Population stratification Genetic differences between cases and controls not due to the trait or disease being studied but rather

due to sampling of populations with different ethnicities or ancestries; population stratification can
lead to erroneous genetic associations

Genetic heterogeneity Multiple genetic mutations can result in the same disease phenotype
Bonferroni correction A multiple-comparison correction used when several statistical tests are being performed

simultaneously; in GWAS, using the Bonferroni correction helps to avoid spurious genetic associations
Winner’s curse Results of GWAS may be subject to varying degrees of upward bias in effect size estimates due to

having to pass through stringent statistical thresholds
Epistasis Gene-to-gene interactions where the effects of one gene are modified by one or several other genes
PAR% The reduction in incidence of a particular disease that would be observed if the population was entirely

unexposed, compared with its actual exposure; in genetic epidemiology, combining knowledge of risk
allele frequency and genotypic relative risk, the attributable fraction of cases that would not occur if
no one in the population had the risk allele can be determined

FRR The ratio of disease risk in biological relatives of affected individuals compared with disease risk in the
general population; in general, the higher the FRR, the stronger the genetic effect

Publication bias A type of reporting bias wherein statistically significant or positive results are more likely to be published

Abbreviations: SNP, single nucleotide polymorphism; GWAS, genome-wide association studies; PAR, population attributable risk; FRR, familial relative risk.
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Table 2. Genome-Wide Association Studies for Breast, Prostate and Colorectal Cancers

Locus Implicated Gene SNP Per Allele OR Ranges� Reference

Breast
1p11.2 Pericentric rs11249433 1.16 54
2q35 Intergenic rs13387042 1.2-1.25 54,55
3p24.1 SLC4A7 rs4973768 1.11 56
5p12 Intergenic (MRPS30) rs4415084 1.16-1.19 57

rs10941679
5q11.2 MAP3K1, MIER3, C5orf35 rs889312 1.13 45
6q22.33 ECHDC1, RNF146 rs2180341 1.41 58
6q25.1 ESR1 rs2046210 1.29 59
8q24 Intergenic rs13281615 1.08 45
10q26 FGFR2 rs2981582 1.20-1.29 45

rs1219648 57,60
rs1078806 58

11p15.5 LSP1 rs3817198 1.07 45
14q24.1 RAD51L1 rs999737 1.06 54
16q12 TNRC9 (TOX3), LOC643714 rs3803662 1.16-1.28 45,54,55
17q23 STXBP4 rs6504950 1.05 56

Prostate
2p15 EHBP1 rs721048 1.15 61
2p21 THADA rs1465618 1.08 62
2q31 ITGA6 rs12621278 1.33 62
3p12 Intergenic rs2660753 1.18 64
3q21 Intergenic rs10934853 1.12 63
4q22 PDLIM5 rs17021918 1.11 62

rs12500426 1.08
4q24 TET2 rs7679673 1.10 62
6q25 SLC22A3 rs9364554 1.17 64
7p15 Intergenic rs12155172 1.05 62
7p15.2-15.1 JAZF1 rs10486567 1.12-1.35 65
7q21.3 LMTK2 rs6465657 1.12 64
8p21 NKX3-1 rs2928679 1.05 62

rs1512268 1.18
8q24 Intergenic HapC 14 SNPs 2.10 66

rs16901979 1.79-1.80 63,66
DG8S737 1.64 67
rs1447295 1.36-1.60 63,66-69
rs1016343 1.37 64
rs6983267 1.26-1.42 64,65,69
rs4242382 1.41-1.87 64,65
rs1006908 1.15 70
rs620861 1.17 71
rs16902094 1.14 63

10q11.2 MSMB rs10993994 1.16-1.25 64,65
10q26.13 CTBP2 rs4962416 1.17-1.20 65
11p15 IGF2, IGF2AS, INS, TH rs7127900 1.22 62
11q13.2 Intergenic rs10896449 1.10-1.28 65

rs7931342 1.19 64
rs11228565 1.23 63

17q12 TCF2 (HNF1B) rs4430796 1.18-1.38 63,65,72
rs7501939 1.41 64

17q24.3 Intergenic rs1859962 1.20-1.26 64,72
19q13.2 PPP1R14A rs8102476 1.12 63
19q13.41 KLK2, KLK3 rs2735839 1.20 64
22q13 TTLL1, BIK, MCAT, PACSIN2 rs5759167 1.20 62
22q13 TNRC6B rs9623117 1.18 73
Xp11.23-p11.22 NUDT10, NUDT11, rs5945619 1.19 64

LOC340602, GSPT2, MAGED1 rs5945572 1.23 61
(continued on following page)
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Nearly half of the susceptibility loci in CRC are in linkage
disequilibrium or are nearby genes of the transforming growth
factor beta (TGF-ß) signaling pathway previously implicated in
carcinogenesis.91,92 Increased TGF-ß1 expression has been linked
to tumor progression and recurrence in CRC and germline muta-
tions in components of the TGF-ß signaling pathway, namely
SMAD4 and BMPR1A, are responsible for the high-penetrance
juvenile polyposis syndrome. Genes implicated from CRC GWAS
along the TGF-ß pathway include: SMAD7, RHPN2, BMP4, BMP2,
and GREM1.

Overall, the 10 risk loci identified are associated with modest 1.1-
to 1.25-fold increases in the relative risk of CRC and account for only
approximately 6% of the excess familial risk of CRC.79 There is cur-
rently no evidence that individual SNPs or panels of SNPs add to the
discriminatory accuracy of current clinical risk criteria based on age,
personal and family history of adenomas or CRC, and pre-existing
inflammatory bowel disease. Nor is there convincing evidence that
these SNPs correlate with survival, early-age at onset, site of tumor, or
a histologically more aggressive subset of disease.79,93 By way of com-
parison, the relative risk for CRC for an individual carrying the 8q24
risk SNP is approximately 1.2- versus a 1.8-fold increased risk for the
first-degree relatives of individuals with an adenoma94 and a 2.5-fold
increased risk for individuals with a first-degree relative with CRC.95

At this time, recommendations for CRC screening would not be
altered from that of the general population based solely on the pres-
ence of a CRC-associated risk allele.

Prostate Cancer

There is strong evidence for genetic predisposition to prostate
cancer from family studies, including a two- to three-fold increased
risk of disease in first-degree relatives of affected men.96,97 Germline
mutations in genes such as BRCA2 have been found to be associated
with prostate cancer risk, however, such mutations explain less than
10% of the familial risk of prostate cancer.15

GWAS have identified more than a dozen prostate cancer risk
loci with ORs mostly ranging from 1.2 to 2.0 (Table 2). As in CRC,
bladder, and breast cancer, a number of prostate cancer GWAS identified
risk SNPs mapping to the 8q24 locus. In a multiethnic study, Haiman et

al77 identified seven independent risk variants in the 8q24 region and,
interestingly, observed that the risk variants were most common in the
African-American population, possibly suggesting a partial explanation
forthehigherincidenceofprostatecancerinAfrican-Americanmen.Risk
SNPsatorneargenes(ie,MSMB,KLK3andKLK2)withplausibleroles in
prostate carcinogenesis have also been found.64,65

The joint contribution of identified loci to the familial risk of
prostate cancer approaches 20%. However, the contribution of the
risk SNPs in improving the discriminatory accuracy of clinical models
(eg, those based on prostate-specific antigen [PSA]) is likely to be
modest, although in at least in one instance a kallikrein-linked SNP is
highly correlated with serum levels of proteins associated with prostate
cancer risk.98 Studies correlating individual risk SNPs to more aggres-
sive prostate cancer subsets have largely been unrevealing69,99-101 and
the risk SNPs have not been associated with survival after diagno-
sis.102,103 In addition, a family history of prostate cancer still confers a
greater risk than the presence of any individual risk allele.101-103

The impact of carrying multiple risk SNPs on prostate cancer risk
was assessed by Zheng et al102 with results demonstrating that men
who carried � four of five possible risk SNPs had a 4.5-fold increased
risk of disease. Importantly, there was no evidence that the risk SNPs
were associated with disease aggressiveness, earlier age at diagnosis or
presence or absence of family history. A subsequent analysis demon-
strated that these five risk alleles do not improve prediction models for
disease risk or disease-specific mortality once known risk factors (ie,
age, PSA, family history) or prognostic factors (ie, Gleason score,
diagnostic PSA, stage, age, primary treatment) are taken into ac-
count.103 To date, the validity and clinical utility of using individual or
multiple SNP panels as a screening test for prostate cancer have not
been demonstrated. Additional studies seeking to identify genetic
variants that predict for early-onset or more aggressive disease and
may be used for risk stratification are in progress.

Other Malignancies

As presented in Table 3,51-53,104-132 dozens of other SNPs have
been associated with an increased risk of cancers of the lung, skin,
thyroid, ovaries, pancreas, and other sites. With the exception of

Table 2. Genome-Wide Association Studies for Breast, Prostate and Colorectal Cancers (continued)

Locus Implicated Gene SNP Per Allele OR Ranges� Reference

Colorectal
8q23.3 EIF3H rs16892766 1.25 74
8q24.21 LOC727677, POU5F1P1 rs10505477 1.17 75

Intergenic rs6983267 1.17-1.27 74,76
rs7014346 1.19 78

10p14 Intergenic rs10795668 1.11 74
11q23 Intergenic rs3802842 1.12 78
14q22-q23 BMP4 rs4444235 1.11 79
15q13 Intergenic rs4779584 1.23-1.26 74,80

GREM1 rs10318 1.19 80
16q22.11 CDH1 rs9929218 1.10 79
18q21.1 SMAD7 rs4939827 1.16-1.20 78,81
19q13.11 RHPN2 rs10411210 1.15 79
20p12.3 Intergenic rs961253 1.12 79

Abbreviations: SNP, single nucleotide polymorphism; OR, odds ratio.
�ORs � 1 in the original publication have been converted to ORs � 1 for the alternate allele.
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Table 3. Genome-Wide Association Studies for Other Cancers

Locus (entrez gene) Implicated Gene SNP Per Allele OR Ranges� Reference

Lung
5pter-p15.33 CLPTM1L, TERT rs401681 1.16 104

rs402710 1.18 105
rs2736100 1.14 105

1.23 (adenocarcinoma) 106
5p15.33 rs4975616 1.16 107
6p21.33-p21.3 BAT3, MSH5 rs3117582 1.24 104,107
15q24-q25 CHRNA3, CHRNA5, CHRNB4, rs8034191 1.30-1.38 108-110

PSMA4, LOC123688
rs1051730 1.31-1.35 105,108,110
rs8042374 1.33, NR 104,107

15q25.1 CHRNA3 rs938682 1.33 107
rs12914385 1.29 107

BCC and CM
1p36.13 PADI4, PADI6, RCC2, AHRGEF10L rs7538876 1.28 BCC 111
1q42.11-q42.3 RHOU rs801114 1.28 BCC 111
7q32 KLF14 rs157935 1.23 BCC 112
9p21 MTAP, CDKN2A rs7023329 1.18 CM 113
9p21 CDKN2A, CDKN2B rs2151280 1.19 BCC 112
9p23 TYRP1 rs1408799 1.15 CM 114
11q14-q21 TYR rs1126809 1.21 CM 114

1.14 BCC
rs1393350 1.29 CM 113

12q12-q13 KRT5 rs11170164 1.35 BCC 112
16q24 MC1R rs258322 1.67 CM 113
20q11.2-q12 ASIP Hap rs1015362G and rs4911414T 1.45 CM 114

1.35 BCC
20q11.22 CDC91L1 (PIGU) rs910873 and rs1885120 1.75 CM 115

Urinary bladder
3q28 TP63 rs710521 1.19 116
8q24.21 MYC, BC042052 rs9642880 1.22 116
8q24.2 PSCA rs2294008 1.15 117

Neuroblastoma
2q35 BARD1 rs3768716 1.68 118

rs6435862 1.68
6p22.3 FLJ22536, FLJ44180 rs4712653 1.35 119

rs9295536 1.32
rs6939340 1.37

Glioma
5p15.33 TERT rs2736100 1.27 120
8q24.21 CCDC26 rs4295627 1.36 120
9p21.3 CDKN2B rs1412829 1.42 121

rs4977756 1.24 120
11q23.3 PHLDB1 rs498872 1.18 120
20q13.33 RTEL1 rs6010620 1.51 121

1.28 120
Acute lymphoblastic leukemia

(childhood)
7p12.2 IKZF1 rs4132601 1.69 122
10q21.2 ARID5B rs10994982 1.62 123
Maps to 10q11.22 by HGNC rs10821936 1.91 123

rs7089424 1.65 122
14q11.2 CEBPE rs2239633 1.34 122

Chronic lymphocytic leukemia
2q13 ACOXL, BCL2L11 rs17483466 1.39 124
2q37.1 SP140 rs13397985 1.41 124
2q37.3 FARP2 rs757978 1.39 125

(continued on following page)
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SNPs for testicular germ cell tumors and myeloproliferative neo-
plasms, none of these SNPs has been found to have a risk greater
than 2.0.

CHALLENGES AND FUTURE DIRECTIONS

Identification of Functional Gene Variants and

Targeted Prevention

Perhaps one of the most important advantages of GWAS is the
use of an agnostic approach wherein genes previously not impli-
cated in cancer susceptibility may be identified. For example, genes
such as FGFR2, overexpressed in 5% to 10% of breast tumors, and

MSMB, a gene coding for PSP94, an immunoglobulin binding
factor synthesized by prostate epithelial cells, seem particularly
plausible breast and prostate candidate cancer susceptibility genes,
respectively. Variants in genes previously linked to cancer patho-
genesis, such as KITLG in testicular cancer, may also help to explain
cancer predisposition. A challenge to date has been that the major-
ity of risk SNPs implicated in cancer susceptibility have not been
associated with functional changes in the genes residing near the loci
of these SNPs. For some of the identified loci, fine-scale genetic map-
ping and deep sequencing of the implicated regions is ongoing and will
hopefully lead to identification of the causal genetic change. For loci
that map to genes or nearby genes, functional analyses will be crucial in

Table 3. Genome-Wide Association Studies for Other Cancers (continued)

Locus (entrez gene) Implicated Gene SNP Per Allele OR Ranges� Reference

6p25-p23 IRF4 rs872071 1.54 124
8q24.21 Intergenic rs2456449 1.26 125
11q24.1 GRAMD1B rs735665 1.45 124
15q21.3 NEDD4, RFX7 rs7169431 1.36 125
15q23 Intergenic rs7176508 1.37 124
16q24.1 IRF8 rs305061 1.22 125
19q13.2-q13.3 PRKD2, STRN4 rs11083846 1.35 124

Follicular lymphoma
6p21.33 STG, PSORS1 rs6457327 1.69 126

Thyroid (papillary and follicular)
9q22.33 Intergenic rs965513 1.75 127
14q13.3 Intergenic rs944289 1.37 127

Myeloproliferative neoplasms
9p24.1 JAK2 rs10974944 3.10 52

Testicular germ cell cancer
4q24 Intergenic rs4699052 1.21 53
5q31.3 SPRY4 rs4324715 1.37 51

rs4624820 1.37 53
rs6897876 1.39 51

6p21.3 BAK1 rs210138 1.50 53
12q22 KITLG rs995030 2.55 53

rs3782179 3.08 51
rs4474514 3.07 51
rs1508595 2.69 53

Pancreatic
1q32.1 NR5A2 rs3790844 1.30 127a
5p15.33 TERT-CLPTM1L rs401681 1.19 127a
9q34 ABO rs505922 1.20 128
13q22.1 Intergenic rs9543325 1.26 127a

Ovarian
9p22 BNC2, CNTLN, LOC648570 rs3814113 1.22 129

Gastric (diffuse)
8q24.3 PSCA rs2976392 1.62 (Japan) 130

1.90 (Korea)
Esophageal (squamous cell)

4q21-23 ADH1B rs1229984 1.79 131
12q24 ALDH2 rs671 1.67 131

Single locus 5p15.33 Multiple cancers TERT-CLPTM1L rs401681 132
Prostate 1.07
Lung 1.15
BCC 1.25
Urinary bladder 1.12
Cervical 1.31

Abbreviations: OR, odds ratio; NR, not reported; BCC, basal cell carcinoma; CM, cutaneous melanoma.
�ORs � 1 in the original publications have been converted to ORs � 1 for the alternate allele.

Genome-Wide Association Studies in Cancer

www.jco.org © 2010 by American Society of Clinical Oncology 4263



helping to tailor targeted preventive approaches, such as the poten-
tial use of tyrosine kinase inhibitors to prevent breast cancer in
women with FGFR2 pathway deregulation.

Incorporation into Prospective Trials

Before incorporating risk variants into individualized cancer risk
assessment, the hypothesis-generating GWAS results should be vali-
dated in prospective studies in heterogeneous populations to demon-
strate the efficacy of these variants in predicting an individual’s risk of
disease and associated disease outcome. The importance of prospec-
tive clinical studies cannot be underestimated for several reasons. First,
prospective studies can take into account environmental factors,
and can also identify associations with disease-specific mortality or
more aggressive clinical phenotypes. Second, prospective studies al-
low better estimates of absolute risk, sensitivity, specificity as well as
positive and negative predictive value that take into account the spe-
cific cancer incidences in the target population. These measures are
more clinically useful than ORs from retrospective studies. Other
measures may include derivation of the discriminatory accuracy of
genomic tests using receiver operating characteristic curves that plot
graphically the true-positive rate (sensitivity) against the false-positive
rate (1 � specificity). Such measures have only recently been applied
to GWAS-derived risk markers,46-48,133 and analysis from initial re-
ceiver operating characteristic curves indicate that even with strong
genetic associations, effective discrimination between patients and
controls is not guaranteed.133 In addition, using methods of calibra-
tion testing, panels of risk variants should be compared to the predic-
tive power of already existing cancer risk models that incorporate a
variety of clinical variables, such as the predictive models available for
breast and prostate cancer and the more recently developed CRC risk
model for those older than 50 years. Finally, because experience with
communication of high-penetrance cancer risk information has
shown that people have difficulty understanding probabilistic infor-
mation134,135 and tend to persist in inaccurate estimates of their risk
even in the context of specialized counseling,136-139 the appropriate
delivery mode of genetic risk information to individuals must
be determined.

Current Challenges

At present, the modest increased risks of cancer associated with
the known genetic variants are, for the most part, not medically ac-
tionable. There is a lack of data to justify use of individual SNPs or
panels of risk variants as independent risk predictors over known
clinical variables. Increased population screening based on genomic
risk profiles may be harmful and lead to increased cancer screening
tests associated with significant false-positive rates (eg, breast mag-
netic resonance imaging, serum PSA), to invasive tests (eg, colonos-
copy), to unnecessary subsequent medical interventions (eg, biopsy),
and to overall increased medical costs. Results of genomic risk profiles
may also provide false reassurance to individuals who may, in fact, be
at high-risk for a particular cancer based on other clinical variables.

Despite the paucity of evidence supporting the use of GWAS
results for clinically useful cancer risk prediction, personal genomic
testing is currently being offered directly to consumers outside the
context of the health care system. Such genome scans may include
cancer-specific scans for breast, prostate, colorectal, thyroid, skin, lung
and urinary bladder cancer risk. Patients who obtain such tests
through nontraditional channels, may nonetheless expect that their

physicians will assist them with the interpretations of such data.140,141

Indeed, physicians, including oncologists, have already been asked to
explain results of genomic profiles to their patients. Despite the pau-
city of evidence for clinical utility, 52% to 75% of physicians in an
initial survey felt that genomic tests had the potential to impact clinical
management.8 In order to inform both patients and physicians, there
has been a call for increased regulation or guidance with respect to the
provision of such tests. However, such intervention has been limited
as many genetic and genomic tests fall outside of the purview of the US
Food and Drug Administration and other regulatory agencies.9 Such
regulations will clearly be required for pharmacogenomic applications
of inherited genetic variants which predict response and toxicity of
preventive and therapeutic pharmacologic interventions. Recognizing
the scientific merits as well as the limitations of recent discoveries of
genetic variants, a recent update by the American Society of Clinical
Oncology emphasizes the importance of further research to demon-
strate the validity and clinical utility of genomic profiles.142

Future Perspectives

GWAS are powerful tools that have enhanced our understanding of
cancer genetics and will inevitably lead to the identification of novel
pathways of carcinogenesis. Research regarding other forms of genetic
variation in the human genome, including genomic structural
changes and sequence variation, is just beginning to emerge and will
provide further insight into the genetic basis of complex diseases. As
our knowledge of the human genome continues to rapidly expand,
health care providers must also be aware of the evidence base required
for genomic profiles of cancer risk to be effectively incorporated into
the practice of preventive oncology.
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