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A B S T R A C T

Claims about the diagnostic or prognostic accuracy of markers often prove disappointing when
“discrimination” found between cancers versus normals is due to bias, a systematic difference
between compared groups. This article describes a framework to help simplify and organize
current problems in marker research by focusing on the role of specimens as a source of bias in
observational research and using that focus to address problems and improve reliability. The
central idea is that the “fundamental comparison” in research about markers (ie, the comparison
done to assess whether a marker discriminates) involves two distinct processes that are
“connected” by specimens. If subject selection (first process) creates baseline inequality between
groups being compared, then laboratory analysis of specimens (second process) may erroneously
find positive results. Although both processes are important, subject selection more fundamen-
tally influences the quality of marker research, because it can hardwire bias into all comparisons
in a way that cannot be corrected by any refinement in laboratory analysis. An appreciation of the
separateness of these two processes—and placing investigators with appropriate expertise in
charge of each—may increase the reliability of research about cancer biomarkers.

J Clin Oncol 28:698-704. © 2009 by American Society of Clinical Oncology

INTRODUCTION

Molecular markers for cancer diagnosis and prog-
nosis have been studied for more than 10 years in
discovery research, an approach in which there is no
need to identify targets a priori.1 Despite sizable in-
vestments of time and funding, and despite strong
claims in research reports, few new markers have
been proven to have clinical value. The slow progress
is not simply a result of the normal ebb and flow of
science, but rather there seem to be system-wide
problems in the process by which we discover and
develop markers for cancer.2,3

A key problem of current marker research is
that reports of discovery of a high degree of diagnos-
tic or prognostic discrimination often turn out to be
wrong because of bias, or systematic inequality of
the groups compared. Bias is unintentional, but it
can commonly occur because the observational de-
sign used in marker research is much more subject
to bias than the experimental design (also known as
an interventional study or randomized clinical trial
[RCT]) used in therapeutic research. After a brief
review of bias, we discuss the “fundamental compar-
ison” in a research study and how that comparison is
arranged in different research designs. Unlike in an
RCT, in observational research an investigator
makes critical decisions about subject (human or

animal) selection and specimen handling that de-
termine whether the fundamental comparison of
specimens is reliable. Sometimes, early events un-
known to the laboratory scientist create biased
specimens and, inevitably, unreliable findings.

BIAS THREATENS VALIDITY OF
STUDY RESULTS

A study is valid if results represent an unbiased esti-
mate of the underlying truth.4 Validity of a clinical
research study may be affected by threats of three
types: chance, generalizability, and bias.5,6 Bias is the
most important3 and can occur at multiple locations
in a research study, depending on details of research
design, on biology, and on technology.3,5,7-9 Table 1
lists several sources of bias that are particularly im-
portant in marker research about diagnosis, progno-
sis, and response to therapy.

Bias may occur before an investigator receives
specimens in the laboratory for analysis. In one re-
port in which peptide patterns were said to have
nearly 100% sensitivity and specificity for prostate
cancer,10 cancer specimens came from a group of
men with a mean age of 67 years, whereas control
specimens came from a group composed of 58%
women, with a mean age of 35 years.11 Although sex
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and age may not necessarily explain all the differences between the
compared groups, they must be prominently considered in claims
about discrimination. In another report, a serum test was said to
discriminate with nearly 100% accuracy between women with and
without ovarian cancer12; however, differences between the kinds of
patients studied and the settings where blood from cancers and con-
trols was drawn may have caused differences in levels of the particular
analytes measured.13,14 In a report of plasma proteins to identify early
Alzheimer’s disease, cases came from Europe, whereas controls came
from the United States; these differences were not discussed as poten-
tial explanations of the observed results.15 In another example, the
ability of a blood test discovered to discriminate prostate cancer from
noncancer was later reported by the investigators themselves prob-
ably to have been biased by sample-related issues, including the
longer storage duration of specimens in the cancer group compared
with the noncancer group, introducing spurious signal into speci-
mens.16 The investigators concluded that “the results from our previ-
ous studies—in which differentiation between prostate cancer and
noncancer was demonstrated. . . . likely had biases in sample selec-
tion. . . . ”16 In an accompanying article, the investigators discussed
two kinds of problems that happen before investigators receive speci-
mens. They wrote, “Our analysis uncovered possible sources of stor-
age time variability that arose from different collection protocols,” and
they concluded, “These are critical issues often overlooked in the
biomarker discovery process that are likely to be the single greatest
reason most biomarker discoveries fail to be validated.”17 This kind of
attention to detail and candid reporting is to be encouraged. Although
these types of problems are common in observational research, inves-
tigators may not routinely search for or report them.

Bias occurring before specimens ever reach an investigator’s lab-
oratory (ie, to the left of the red line in Fig 1B) may be especially
problematic for two reasons. First, it may simply be invisible to or

unappreciated by a laboratory investigator. Second, even if recog-
nized, bias already hardwired in at that point may be impossible to
adjust for in subsequent laboratory or statistical analysis.5

Bias may also occur after specimens are received in the laboratory
(ie, to the right of the red line in Fig 1B). A study reported that a serum
peptide pattern derived in a training set of specimens could identify
ovarian cancer with nearly 100% sensitivity and specificity in an inde-
pendent validation set.18 After two related data sets produced by the
same investigators at later times were made available to the public
through unrestricted Web access, all three data sets were reanalyzed by
Baggerly et al,19 who concluded that baseline correction prevented
reproduction of the original results.19 Their troubleshooting ap-
proaches suggested that discrimination could have been due to bias
related to instrument calibration or artifact. They concluded, “Taken
together, these and other concerns suggest that much of the structure
uncovered in these experiments could be due to artifacts of sample
processing, not to the underlying biology of cancer.”19

The examples above come mainly from the field of proteomics
for cancer diagnosis because problems related to bias are well docu-
mented in the literature11,14,16,17,19,20; however, similar problems may
occur in discovery in other “-omics” fields and in any marker re-
search,5 and in studies of diagnostic tests in general,21 because such
studies must use observational (nonexperimental) designs that are
inherently more challenging and more subject to bias than the exper-
imental design. In contrast, the field of research methods used to
discover and develop drugs is better developed3 than for the field of
markers, in large part because the experimental design provides such
strength in avoiding bias. The larger topic of observational versus
experimental research is extensively covered in journal articles and
textbooks about epidemiology, biostatistics, and research design.22-24

Methodologic issues in marker research have been discussed in
general reviews,3,5,6,25-29 rules of thumb,30 guidelines for reporting,31-35

Table 1. Sources and “Locations” of Bias in Marker Research

Source of Bias

Location of Bias:
Before or After
Specimens Are
Received in the

Laboratory

ExampleBefore After

Features of subjects, determined in selection: X Cancer subjects are male, whereas control subjects are mainly female.
Bias: Assay results may depend on sex.

Age
Sex
Comorbid conditions
Medications

Specimen collection X Cancer specimens come from one clinic, whereas controls come from a
different clinic.
Bias: Assay results may depend on conditions that differ between clinics.

Specimen storage and handling X X Cancer specimens are stored for 10 years because it takes longer to collect
them, whereas control specimens are collected and stored over 1 year.
Bias: Assay results may vary with duration of storage, or with different
numbers of thaw-freeze cycles.

Specimen analysis X Cancer specimens are run on one day, whereas control specimens are run
on a different day.
Bias: Assay results may depend on day of analysis in a machine that
“wanders” over time.

NOTE. The table shows examples of different sources of bias and the location of the bias before or after specimens are received in the laboratory. The list is not
exhaustive; other biases may be important, and the biases listed may or may not be important in any given research study, depending on details of biology and
technology (ie, what is being measured and how it might be influenced).

Sources of Bias in Specimens

www.jco.org © 2009 by American Society of Clinical Oncology 699



guidelines for quality requirements in use of markers,36 and use of
phases to organize biomarker development.25,37 Although these dis-
cussions provide important perspectives and details, the field is short
on clear, practical organizing themes. Ideas and principles from that
larger field, when focused on potential sources of bias in specimens,
may explain how one seemingly small detail of a research study may
lead to fatal bias in results, and on how those ideas and principles may
point to a solution.

THE FUNDAMENTAL COMPARISON

The fundamental comparison refers to the process of arranging and
analyzing groups of subjects and specimens to learn whether a possible
cause is responsible for a difference observed in the compared groups.
Depending on how the process of the fundamental comparison is
arranged, results of a comparison will be valid or strong (represents
fairly the underlying reality), or they may be unreliable because of bias.
Bias—a systematic difference between the compared groups—tends
to produce results that are positive but do not reflect an underlying
reality and are not reproducible.

For a study to be valid or strong, having an unbiased fundamental
comparison is obviously necessary. A study’s overall strength depends
on other things as well, such as an investigator’s insight and creativity
about features such as what intervention or cause will be assessed (eg,
a newly developed therapy or genetic mutation), what subjects and
specimens will be used (eg, a new animal model), and what outcome
will be assessed (survival or response to therapy). However, insight
and creativity cannot overcome or avoid the need for a fair compari-

son. Regardless of the degree of an investigator’s creativity and insight,
a biased comparison may produce misleading results.

SUBJECTS, SPECIMENS, AND STUDY DESIGN

Subject selection ultimately determines whether specimens are
“strongly unbiased”3 or have high enough quality to be used for a
comparison that is reliable. Because laboratory investigators may have
little knowledge about selection methods, they may be unaware of fatal
flaws producing important biases in specimens they receive for anal-
ysis. The role that subject selection plays depends on the location
where the fundamental comparison begins in each design—in other
words, before or after specimens are received in the laboratory (Fig 1).

In experimental research, the fundamental comparison begins
when subjects are randomly assigned to the compared groups (Fig
1A). The purpose of random assignment is to assure there are no
systematic differences in the compared groups at baseline. Random
assignment addresses many problems in subject selection and speci-
men processing that can lead to bias. Random assignment ensures
baseline equality in the fundamental comparison, and specimens col-
lected at the time of randomization can be processed before the out-
come is known, further helping to avoid bias.

In contrast, in observational research, subjects are selected and
specimens are collected before reaching the investigator’s laboratory,
so that systematic differences may already exist at baseline between the
compared groups, as illustrated in Figure 1B. In observational re-
search, the processes of subject selection and specimen collection have
become a critical part of the fundamental comparison itself. The next

Experimental Design

(random assignment 

at baseline)

A.

Observational DesignB.

Subjects
with

disease

Subjects selected,
not randomly assigned;

baseline equality not assured

Specimens received by
laboratory investigator

Subjects
with

cancer

Cancer subjects

Treated subjects

Conduct
measurements
on specimens

Conduct
measurements
on specimens

Comparison subjects

Fundamental Comparison

Comparison subjectsSubjects
without
disease

R

Fundamental Comparison

Subjects randomly assigned;
baseline equality assured

Fig 1. The fundamental comparison in experimental and observational study design. (A) Randomized controlled trial (RCT) of therapy (experimental design). The
comparison in an RCT of treatment begins with random allocation of subjects (eg, humans or animals) to the treatment or comparison group, so that baseline equality
is assured in the compared groups. The entire fundamental comparison is done under the observation or supervision of the laboratory investigator, making potential
sources of bias easier to anticipate and control. Although selection of subjects affects generalizability—“to whom” results may apply—the selection of subjects is not
involved in the comparison itself. Specimens (eg, tissue or blood) may be taken from subjects at different times (eg, at the end of the study to assess an outcome of
treatment [as shown in the figure]), or just after random allocation to assess prognosis or prediction. (B) Observational study of diagnosis. The comparison begins with
subject selection that is not randomized; the process of subject selection may, itself, introduce bias, or systematic differences between the compared groups. This
kind of bias, occurring before specimens ever reach the laboratory, may be totally unknown to the laboratory investigator and may fatally flaw any comparison done
in the investigator’s laboratory. R, random allocation.
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sections discuss details of these differences in design and how to
improve this aspect of marker research.

Randomized Study of Treatment

(experimental design)

The goal of an experiment is to assess whether an agent (like a
drug or induced genetic mutation) is the cause of some effect. Ran-
domization organizes the fundamental comparison in a way that
keeps all other factors equal except the cause, so that measured effects
will be unbiased and not explained by incidental factors. In an exper-
iment, the choice of subjects has no direct effect on the baseline
comparison. The choice of course affects the generalizability of
results, or to whom results may apply.5 If the comparison of
treatment versus control is conducted using one strain of mice,
results might not apply to another strain or to human beings. But the
baseline comparison is at least fair and reliable regardless of what
subjects are chosen, except in rare instances when randomization does
not work or is actually subverted.38

A strength of the experimental design—and a reason it is so
reliable—is that the entire comparison can be arranged and supervised
by the investigator, allowing powerful preemptive measures to be
taken to avoid bias. As illustrated in Figure 1 and as stated by Potter,
“The distinction between observation and experiment rests on
whether the researcher is in charge of the differences in the initial
conditions between the two compared entities.”39 Design might fur-
ther include blinding subjects and study personnel to treatment status
(double-blind design) to avoid biases at later steps. An investigator
may decide not to implement some design features, or some features
may not be possible (eg, in oncology studies, one cannot blind to
radiation therapy versus surgery). In animal studies, conducting ran-
domization and blinding is easier than in human studies, but investi-
gators still may not use those techniques. The entire field of mouse
model experiments to study amyotrophic lateral sclerosis has been
said to be compromised by unreliable comparisons in nonrandom-
ized studies without blinded evaluation of outcomes.40 Ultimately any
study’s reliability is determined by investigators’ choices about critical
details of research design and conduct.

The importance of the baseline equality achieved by randomiza-
tion cannot be overstated. Randomization appears in the name of the
research design that is strongest to study treatment or etiology: RCT.
Journals routinely require investigators to report results of random-
ization in a table, so readers can see that baseline inequality was not the
cause of the difference between groups in results. Even if every differ-
ence at baseline could be annotated accurately and in detail, there is no
convincing method of statistical analysis to solve the problem of base-
line inequality. As noted by Norman Breslow, a biostatistician, the
problem is “. . . the fundamental quality of the data, and to what extent
are there biases in the data that cannot be controlled by statistical
analysis[.] One of the dangers of having all these fancy mathematical
techniques is people will think they have been able to control for things
that are inherently not controllable.”41

Nonrandomized Study of Diagnostic Test

(observational design)

Understanding and addressing the problem of baseline equality
is perhaps the most important challenge in observational research
about markers for diagnosis and prognosis. Unlike in the experimen-
tal approach, the comparison in an observational study of diagnosis

(or prognosis) begins during the process of subject selection—a pro-
cess that may be totally outside the observation or supervision of the
laboratory investigator.

Although arranging a meticulous comparison is obviously criti-
cal when evaluating a drug therapy, a laboratory investigator might
fairly ask whether such a careful comparison is important in basic or
biologic research that has no immediate clinical consequence. A
strong case can be made that reliable results are important in any
research, whether basic or clinical, if that result provides the basis for
investing in some kind of additional work. A weak foundation may
lead to wasted effort. Before approval of a $104 million proteomics
initiative to develop improved technology, computational methods,
and standardized reagents for proteomics studies,42 concern was
raised about whether the preliminary results showing that the technol-
ogy can discriminate diagnostically might be unreliable, in which case
investment might not be warranted.42,43

Understanding the nonexperimental (observational) designs
used in the field of marker studies is particularly difficult because
many different designs are used, they may not be as easy to diagram as
experimental or RCT research, and because sources of bias are more
difficult to identify and manage. Designs for studies of diagnostic
accuracy can involve, as explained by Knottnerus and Muris, “(1)
survey of the total study population, (2) case-referent approach, or (3)
test-based enrollment.”21 Even the basic approaches to data collection
may differ dramatically: “Data collection should generally be prospec-
tive, but ambispective [retrospective reference group is used as a con-
trol group, but remainder of study is prospective] and retrospective
approaches are sometimes appropriate.”21 This translates into practi-
cal challenges for research methodologists and clinical researchers.

A special case of observational design is the nested case-control
design (recently termed the PRoBE approach44) in which specimens
are collected prospectively (specimens are collected before the diagno-
sis [or prognosis] is known) and later undergo retrospective blinded
evaluation.44 Sometimes specimens may have been prospectively col-
lected and already exist in a specimen bank that can be a source for a
nested case-control analysis.3 The approach can help minimize the
problem of baseline inequality because, as specimens are collected
before diagnosis (or prognosis) is known, the presence or absence of
disease cannot affect selection of subjects or handling of specimens.
The unique recommendation of the PRoBE approach is that mini-
mally acceptable performance standards for the true-positive rate and
false-positive rate are defined before the study is conducted, taking
into account the clinical application of the marker (eg, diagnostic v
prognostic use).

The nested case-control approach is not new, and its strengths
have been discussed elsewhere.3,45 In a study of breast cancer progno-
sis, tissue specimens collected before prognosis was known were ret-
rospectively analyzed using already-collected tissue from the National
Cancer Institute’s (NCI’s) National Surgical Adjuvant Breast and
Bowel Project clinical trial B-1446; the positive result from that study
provided the basis for introduction of the OncotypeDx test into clin-
ical practice. In a study of stool DNA markers to screen for colon
cancer, specimens were collected prospectively before colonoscopy
and were analyzed retrospectively, blinded to diagnostic status.47 The
stool test was substantially better than fecal occult blood testing,47 but
the degree of discrimination was considered too modest, considering
cost, to warrant implementation at that time.48 In a study of serum
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proteomics to diagnose colon adenomas, serum specimens were col-
lected before the colonoscopy that established the diagnosis, and spec-
imens were analyzed retrospectively and blinded.49 In this study, no
discrimination was found, but the result seemed to be reliable because
of the strength of the research design. Last, in a major ongoing study of
serum proteomics to diagnose ovarian cancer, serum specimens col-
lected in NCI’s screening trial of prostate, lung, colon, and ovarian
cancer are being analyzed retrospectively and in a blinded manner by
multiple laboratories.50 This study’s results, when available, will argu-
ably provide the strongest evidence to date about a how well serum
proteomics technology can diagnose ovarian cancer—a critically im-
portant issue for the entire field of serum proteomics, given the mag-
nitude of investment and claims, particularly for ovarian cancer.

APPROACHES TO IMPROVE THE SITUATION

The following approaches may help simplify, organize, and improve
research about markers for cancer diagnosis and prognosis.

Understand That Subject Selection Is Part of the

Fundamental Comparison

Our first goal should be for every investigator to understand the
critical role of subject selection in the fundamental comparison of
every observational study. Even if subject selection does not seem like
part of a study, the process will need to be reported in detail in a
research report, so that potential biases in specimens can be identified.
Indeed, current guidelines prescribing which details of study design
should be reported in research about diagnosis (eg, Standards for
Reporting of Diagnostic Accuracy [STARD]34) or prognosis (eg, Re-
porting Recommendations for Tumor Marker Prognostic Studies
[REMARK]31) focus mainly on events that happen to the left of the red
line (Fig 1) because of the fatal flaws in comparison that can occur. If
investigators fail to assess details until the end—after the laboratory
work is completed—they may find out too late that baseline inequality
exists because the specimens were fatally biased to begin with. For this
reason, investigators should learn, in advance of doing any laboratory
analysis, enough about the features and history of specimens to decide
whether specimens may be so flawed that the laboratory work should
not even be conducted. Minor flaws must be appropriately under-
stood, managed, and discussed in interpretation of results. Although
an understanding of the effect of subject selection on baseline equality
may be second nature to persons experienced in epidemiology, bio-
statistics, and observational research design, it may be totally outside
the experience of laboratory investigators. In contrast, bias to right of
the red line (Fig 1B) may be relatively easy to deal with because what
happens can be directly observed and can often be corrected by refine-
ments in laboratory technique.

Improve Late-Phase Research (validation)

The intended use of the PRoBE approach, as proposed by its
authors, is in a pivotal or late-phase study done just before doing a
(usually very expensive) RCT in which marker results will be used to
direct a therapy or other intervention to improve the outcome.20,44

Such a study would determine whether the test discriminates among
those subjects in whom an intervention would be relevant, for
example, persons with asymptomatic screen-detected cancer. A
nested case-control study may provide the least-biased late-phase

observational assessment of a test’s diagnostic discrimination before
doing the RCT that assesses the combined effect of early detection and
intervention. Although this study design may address the critical bias
of baseline inequality, it does not necessarily address other problems;
for example, the nested case-control study of stool DNA markers
described above47 used specimen storage conditions suitable to pre-
serve DNA mutations, but not adequate for a newly developed DNA
integrity assay.47,51

Late-phase studies in general may be expensive and cumber-
some, and the potential benefits must be weighed against costs. For
example, a study of colorectal cancer screening involving stool
collection and colonoscopy in asymptomatic, average-risk subjects
required enrolling more than 5,000 persons to yield 31 cancers, at a
cost of more than $10 million.47 However, that may still be money well
invested if it avoids false leads that trigger other studies consuming
millions more. In other examples, specimens may be collected as part
of multimillion-dollar RCTs enrolling large numbers of subjects.46,50

The degree of effort required may be worth the cost, but investment of
such magnitude requires serious deliberation.

Improve Early-Phase Research (discovery)

The reality in 2010 is that very few markers ever become candi-
dates for a pivotal study and subsequent RCT. The main problem
currently is not that promising candidates that fail in RCTs could have
been weeded out by a well-done nested case-control study before-
hand. The problem is that discovery is so weak, because of bias, that
research results are not reliable and cannot be reproduced.

It is not clear, however, that a nested case-control approach can
be used in early-phase or discovery research that is often (but not
always) done on subjects with advanced disease and who are symp-
tomatic. The approach cannot be meaningfully applied if diagnosis
is already known. In some circumstances, it may be possible to use
the approach in early-phase or discovery research if discovery can be
done with specimens collected from asymptomatic subjects (often
with early-stage disease) before diagnosis is known. It may even be
possible to use the same larger set of specimens for both discovery
(to derive analytes or patterns that may discriminate) and valida-
tion3 (to show that discrimination occurs in samples totally inde-
pendent of those used in discovery3,6,44). For example, in the study
of stool DNA markers described above,47 the main goal was to use
specimens in late-phase validation of markers discovered previ-
ously in research using more advanced-stage disease and from
patient groups where the diagnosis was already known.52,53 A
secondary goal of that study was to create a specimen bank of aliquots
to be used later for discovery of markers developed in the future.
Unfortunately, one of the assays required using all available aliquots,
and the planned bank was depleted. In another study of serum mark-
ers for ovarian cancer, specimens banked in NCI’s prostate, lung,
colon, and ovary study50 are being used both in validation and discov-
ery (C. Berg, personal communication, August 2009). These examples
illustrate how specimens of appropriate quality might be used for both
discovery and validation.3

National Efforts to Improve Cancer Marker

Discovery Methods

Some national efforts are being undertaken to create or improve
specimen banks that can be used for development of markers of
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diagnosis and prognosis, for example in NCI’s Early Detection Re-
search Network54 and Office of Biorepositories and Biospecimen Re-
search.55,56 Although these efforts devote substantial attention to
standard operating procedures54-56 for events that happen to the right
of the red line after an investigator receives samples, we suggest that
similar attention must be paid to events that occur to the left of the red
line. One way to provide that attention is to add to standard proce-
dures a process that involves suitable expertise, from the fields of
epidemiology, biostatistics, and clinical research design, to review
study design on the left side of the red line. One part of that process
should be to consider whether the design of subject selection and
specimen collection will allow a reliable answer to some specific pro-
posed research question about diagnosis or prognosis. This kind of
expertise and process was instrumental in the design and interpreta-
tion of the successful studies discussed above.46,47,49,50

Consider Separating Clinical and Laboratory

Processes, With Specimens as the Handoff Point

Many investigators conducting early discovery research under-
stand and enjoy the process of laboratory research more than the
process of clinical research. Because this preference may sometimes be
a source of problems in effective communication or collaboration, it
may be advantageous to deliberately separate the two processes in-
volved in the fundamental comparison instead of requiring laboratory
researchers to understand details of specimen collection and requiring
clinical researchers to understand details of laboratory methods. In
this formulation, clinical researchers, epidemiologists, and biostatisti-
cians would focus on the first process—research design including
specimen collection to ensure high-quality or strongly unbiased spec-
imens, then specimens would be “handed off” by the clinical research
group to the laboratory group for the second process—laboratory
analysis. Of course, some degree of cross-talk among collaborators

and across the divide would be essential, but the success and efficiency
of marker research might be enhanced by emphasizing separation,
except among highly trained and highly dedicated experts who can
successfully complete both processes in their research group.

In conclusion, because studies of cancer markers for diagnosis
and prognosis are observational, not experimental, the process of
subject selection is a critical part of the fundamental comparison.
Understanding how to best manage this process in the design and
conduct of marker research, especially in early discovery, is still in its
infancy relative to other areas of observational epidemiology research.
A major problem in current biomarker discovery research is baseline
inequality of the specimen groups that are compared in laboratory
analysis, originating from flawed subject selection earlier in the study.
Understanding the role of specimens—as a product of one process
(subject selection) in the fundamental comparison and the substrate
for the second process (laboratory analysis)—may help simplify and
strengthen the process of discovery and validation of biomarker re-
search. Sufficient attention to each process, and perhaps a division of
labor between clinical and laboratory researchers, may help improve
the reliability of biomarker research.
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