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Widely used parametricgeneralizedlinear models are, unfortunately,a somewhat lim-
ited class of speci� cations. Nonparametric aspects are often introduced to enrich this class,
resulting in semiparametricmodels. Focusing on single or k-sample problems,many classi-
cal nonparametricapproachesare limited to hypothesis testing.Those that allow estimation
are limited to certain functionals of the underlying distributions.Moreover, the associated
inference often relies upon asymptotics when nonparametric speci� cations are often most
appealing for smaller sample sizes. Bayesian nonparametricapproachesavoid asymptotics
but have, to date, been limited in the range of inference. Working with Dirichlet process
priors, we overcome the limitations of existing simulation-basedmodel � tting approaches
which yield inference that is con� ned to posterior moments of linear functionals of the
populationdistribution.This article provides a computationalapproach to obtain the entire
posterior distribution for more general functionals. We illustrate with three applications:
investigation of extreme value distributions associated with a single population, compar-
ison of medians in a k-sample problem, and comparison of survival times from different
populations under fairly heavy censoring.

Key Words: Dirichlet process mixing; Extreme value distributions; Functionals; Markov
chain Monte Carlo; Survival data distributions.

1. INTRODUCTION
Parametric modeling has long dominated both classical and Bayesian inference work.

Such modeling is typically developed using generalized linear models within standard ex-
ponential families. Such families are limited, being unimodal with implicit mean-variance
relationship. In looking beyond standard parametric families one is naturally led to mix-
ture models. Continuous mixture models arising through a parametric family of mixing
distributions—for example, t’s, Beta-binomials and Poisson-gammas—typically achieve
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increased heterogeneity but are still limited to unimodality. Finite mixture distributions
(Titterington, Smith, and Makov 1985) are more � exible and now more feasible to im-
plement due to advances in simulation-based model � tting. See, for example, Diebolt and
Robert (1994) and Richardson and Green (1997).

Paradoxically, rather than handling the very large number of parameters resulting from
� nite mixture models with a large number of mixands, it may be easier to work with an
in� nite dimensional speci� cation by assuming a random mixing distribution which is not
restricted to a speci� ed parametric family. The Dirichlet process (Ferguson 1973, 1974) is
arguably the most widely used in this context, followingAntoniak (1974), Ferguson (1983),
and Lo (1984), resulting in what we refer to as Dirichlet process mixing. Since the work of
Ferguson there has been a rapid growth in this area which is now generally referred to as
Bayesian nonparametrics. An attractive summary and synthesis of this literature was given
by Walker, Damien, Laud, and Smith (1999). Computational details for simulation-based
� tting of Dirichlet process mixed models were given by Escobar (1994), Escobar and West
(1995), Bush and MacEachern (1996), MacEachern and Müller (1998), Walker and Damien
(1998), and Neal (2000).

A slightly different perspective leads to semiparametric modeling. As Oakes (1988)
observed, “A practical motivation for consideration of semiparametric models is to avoid
restrictiveassumptionsabout secondaryaspects of a problemwhilepreservinga tight formu-
lation for the features of primary concern.” In the context of regression modeling, Gelfand
(1999) noted that the objective of semiparametric modeling is “to enrich the class of stan-
dard parametric models by wandering nonparametrically near, in some sense, the standard
class but retaining the linear structure.”

In what follows, for simplicity, we con� ne our development to single and multiple
sample problems. These can be handled entirely nonparametrically.However, our approach
for full inference is readily applicable to semiparametric settings as in Gelfand and Kottas
(2001) and Kottas and Gelfand (2001, in press).

In the Bayesian literature, for a single continuouspopulation,fully nonparametricwork
includesSusarla and Van Ryzin (1976) and Lo (1984) on the estimationof the survival curve
and the density, respectively. However, to estimate the population median based upon a
singlesample, the approachhasbeen semiparametric, introducingthemedianparametrically
as a location shift, ³ , relative to a random median 0 distribution, F , where F is modeled
using some form of Dirichlet process prior. See, for example, Dalal (1979a, b) and Doss
(1985a,b). Here, the joint posteriordistributionof ³ and F is obtainedand thenmarginalized
to provide the posterior for ³ .

Our contribution is to be fully nonparametric and achieve full inference within the
Dirichlet process mixing framework. Working in R1, the support of our mixture class is
dense within the class of all distributions on R1 so there is no need to investigate a richer
class of mixture models. In Gelfand and Mukhopadhyay (1995), population inference was
con� ned to posterior moments of linear functionals of the population distribution. Here,
we provide a computational approach to obtain the entire posterior distribution for more
general functionals. The approach uses the Sethuraman (1994) representation, after � tting
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the model, to obtain posterior samples of the random mixing distribution. Then, a Monte
Carlo integration is used to convert each such sample to a random draw from the posterior
distribution of the functional of interest. Hence, arbitrarily accurate inference is available
for the functional and for comparing it across populations. Functionals illustrated here
include population distribution functions, density functions, hazard functions, quantiles
and interquartile ranges as well as these features for the distribution of any order statistic
associated with a sample of arbitrary size from the population.

Recently,Ishwaran and Zarepour (2000) proposed an alternatemethod of � tting Dirich-
let process mixed models which yields approximate inference for functionalsof the random
mixture. For Dirichlet process models inference approaches for functionals is discussed in
Muliere and Tardella (1998) and Guglielmi and Tweedie (2000).

The plan of the article is as follows. Section 2 brie� y reviews Dirichlet process mixing.
Section 3 presents the details of our approach along with theoretical justi� cation. Section 4
looksat thesinglepopulationproblem, includingthe distributionof the maximum,providing
a nonparametric Bayesian approach for the investigation of extreme value distributions.
Section 5 considers fully nonparametric Bayesian analysis of variance. Finally, Section 6
considers a survival analysis setting in the presence of fairly heavy censoring.

2. DIRICHLET PROCESS MIXING

2.1 REVIEW

Consider a space £ and a ¼ -� eld B of subsets of £. Following Ferguson (1973), a
random distribution function G on (£; B) follows a Dirichlet process DP( ¸ G0), where ¸ >

0 is a scalar (precision parameter) and G0 a speci� ed distributionon £, if, given an arbitrary
� nite measurable partition, B1,: : : ,Br of £, the joint distribution of (G(B1),: : : ,G(Br)) is
Dirichlet(̧ G0(B1),: : : ,̧ G0(Br)).

Let K(¢; ³ ) be a parametric family of distributions (cdf’s), indexed by ³ 2 £, with
associated densities, k (¢; ³ ). If G is proper we de� ne the mixture distribution

F (¢; G) =

Z
K (¢; ³ ) G (d³ ) : (2.1)

In (2.1) it is useful to think of G (d³ ) as the conditional distribution of ³ given G. Differ-
entiating both sides of (2.1) with respect to (¢) de� nes f (¢; G) =

R
k(¢; ³ ) G(d³ ).

If G is random, say G ¹ DP(̧ G0), then F (¢; G) is random. If the data D are Y1,: : : ,Yn

independentand identicallydistributed(iid) from F (¢; G) then, using the convenientbracket
notation of Gelfand and Smith (1990), we write the posterior of F (¢; G) as

£
F (¢; G) j D

¤
.

Functionals of F (¢; G), which we denote by H(F (¢; G)), are of interest with posteriors
denoted by

£
H(F (¢; G)) j D

¤
.

In the context of (2.1), suppose for each Yi, i = 1,: : : ,n we introduce a latent ³ i and
assume that the Yi ’s are conditionally independent given the ³ i ’s. Assume further that the
³ i’s are conditionally independent and identically distributed given G. As a result the Yi’s
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are marginally independent,with joint density
Qn

i = 1 f (yi; G) =
Qn

i= 1

R
k (yi; ³ i) G (d³ i) :

Adding G ¹ DP( ¸ G0) completes the Bayesian model speci� cation, apart, perhaps, from
a hyperprior on ¸ (see Escobar and West 1995). Antoniak (1974) noted that this Bayesian
model can be marginalized over G to obtain

nY

i = 1

k (yi; ³ i)
£
³ 1; : : : ;³ n j G0; ¸

¤
; (2.2)

where the distribution [ ³ 1,: : : ,³ n j G0; ¸ ] can be developed by exploiting the Polya urn
characterization of the Dirichlet process. In particular, ³ 1 ¹ G0 and for i = 2,: : : ,n, ³ i j
³ 1,: : : ,³ i¡1 is distributed according to the mixed distribution that places point mass ( ¸ + i

¡ 1)¡1 at ³ j , j = 1,: : : ,i ¡ 1 and continuous mass ¸ (̧ + i ¡ 1)¡1 on G0.
Hence, after marginalization, the ³ i are no longer independent but a Markov chain

Monte Carlo (MCMC) simulation method can be implemented (see the references in the
introduction)to obtainsamples essentiallyfrom the posterior,

£
³ 1; : : : ;³ n j D

¤
. Gelfand and

Mukhopadhyay (1995) described how to use these samples to compute posterior moments
of linear functionals associated with F (¢; G).

2.2 THE CLASS OF DISTRIBUTIONS

Using one-to-one transformations if needed, we can assume that the support of K (¢; ³ )
is R1. But then, as observed by Lo (1984, p. 355), the closure of the family of distributions
of the form

F (¢; G) =

Z
K

µ
¢ ¡ ·

¿ 1=2

¶
G(d· ; d¿ ) (2.3)

contains all distributions on the real line. For convenience we take K to be Gaussian.
Inference about the median of (2.1), which we denote by ² (F (¢; G)), requires its pos-

terior, [ ² (F (¢; G))j D]. This contrasts with the semiparametric approach discussed in the
introduction where the median is introduced as a location parameter to a random zero-
median distribution. In our setting, the semiparametric approach corresponds to creating,
by Dirichlet process mixing,F0(¢; G) =

R
K( ¢

¼
)G(d¼ 2) where K (0) = .5 and then F (¢; G; ³ )

= F0(¢ ¡ ³ ; G), whence we would seek [³ j D]. The semiparametric model is easier to
work with but the class F0(¢ ¡ ³ ; G) is not as rich as (2.3) where we mix on both scale and
location. For instance, if K (¢) is symmetric and/or unimodal so is F0(¢ ¡ ³ ; G). Our class
also differs from the mixture class discussed in Doss (1994). There, the family arises as a
mixture of Dirichlet process, rather than by mixing using a mixing distribution which is
drawn from a Dirichlet process.

3. INFERENCE FOR FUNCTIONALS ASSOCIATED WITH F (¢; G)
Section 3.1 describes our computational approach while Section 3.2 provides theoret-

ical support.
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3.1 THE APPROACH WITH EXAMPLES

The marginalization over G resulting in (2.2) enables one to integrate out the in� -
nite dimensional part of the model and thus leaves only a � nite dimensional posterior,£
³ 1; : : : ;³ n j D

¤
. Simulationbasedmodel � ttingprovidessamples from thisposteriorwhich

we denote by ³ ¤
b , b = 1,: : : ,B.

These samples are limited in terms of inference about F (¢; G). In Escobar and West
(1995), they were used to obtain the predictivedistributionF (y j D) or the Bayesian density
estimate f (y j D) which are the posterior mean of [F (y; G) j D] and [f (y; G) j D],
respectively. In Gelfand and Mukhopadhyay (1995) they were used to obtain posterior
moments of linear functionals.

Working exclusively with expectations limits inference. For instance, how would we
obtain an interval estimate for F (c; G) at a given c? Furthermore, many features of F (¢; G)
are not expressible as expectations. These include the median, in fact, arbitrary quantiles,
and the interquartile range. Following Section 2, we denote the latter two by ² p(F (¢; G))
and ² :75(F (¢; G)) - ² :25(F (¢; G)).

Also of interest are derived distributions from F (¢; G), for example, (F (¢; G))N and
N (F (¢; G))N¡1 f (¢; G), the distribution function and density function, respectively, of
the maximum of a sample of size N from F (¢; G). In an extreme value analysis we
might wish a point and interval estimate for the 1 ¡ ¬ th quantile of the distribution of
max(Y1,: : : ,YN ). Features of the distribution of other order statistics and, perhaps, of the
range might be useful as well. Other derived functions from F (¢; G) include the cumulative
hazard, ¤(y; G) = ¡ log(1 ¡ F (y; G)) and the hazard ¶ (y; G) = ¡ d log(1 ¡ F (y; G))/dy

= f (y; G)/(1 ¡ F (y; G)). Apart from inference for ¤(¢; G) or ¶ (¢; G), comparison of these
between populations might be desired.

In order to enrich our inferential capability we propose to approximately sample
[H(F (¢; G))j D] which in turn requires sampling [G j D]. First, if H is a linear func-
tional,

H(F (¢; G)) =

Z
H(K(¢; ³ 0))G(d³ 0): (3.1)

Hence, givenG if ³ ¤
0b, b = 1,: : : ,B, are a sample from G, B¡1

PB
b= 1 H(K(¢; ³ ¤

0b)) is a Monte
Carlo integration for a realization H(F (¢; G)). Next, since

£
³ ; G j D

¤
/

£
G j ³

¤ £
³ j D

¤
,

given a posterior sample ³ ¤
b , b = 1,: : : ,B, if for each ³ ¤

b we draw G ¤
b ¹ [G j ³ ¤

b ] we obtain
a realization from [G j D]. Then, each G ¤

b can be used with the Monte Carlo integration
for (3.1) to obtain H ¤

b = H(F (¢; G ¤
b )), a realization from [H(F (¢; G))j D]. The sample of

H ¤
b provides point and interval estimates for H(F (¢; G)).

To sample [G j ³ ¤
b ] we recall that this distribution (Ferguson 1973) is DP( ¸ ¤ G¤

0b)
where ¸ ¤ = ¸ + n, G¤

0b = ( ¸ + n)¡1( ¸ G0 +
Pn

i = 1 ¯ ³ ³³ ¤
bi
) with ³ ¤

b = (³ ¤
b1,: : : ,³ ¤

bn) and ¯ a a
degeneratedistributionat a. An actual realization from [G j ³ ¤

b ] is almost surely of the formP 1
j = 1 !j ¯ ³ ³³ j where !1 = z1, !j = zj

Qj¡1
s = 1(1 ¡ zs), j = 2,3,: : : , fzs, s = 1,2,: : : g are iid

from Be(1; ¸ ¤ ) and independently f³ j , j = 1,2,: : : g are iid from G ¤
0b (Sethuraman 1994).

Following Sethuraman and Tiwari (1982), Doss (1994), and Muliere and Tardella (1998),
we use a partial sum approximation,

PJ
j = 1 !j ¯ ³ ³³ j . To choose J , we note that 1 ¡

PJ
j = 1 !j
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=
QJ

s = 1(1 ¡ zs) so E(
PJ

j = 1 !j ) = 1 ¡ ( ¸ ¤ =(̧ ¤ + 1))J . For a given n with ¸ = 1, we choose
° suf� ciently small, for example, ° = :0001 in our examples, and solve ((n + 1)/(n + 2))J

= ° for J . At j = J we replace !J with 1 ¡
PJ¡1

j = 1 !j =
QJ¡1

s = 1 (1 ¡ zs); an alternative would

be to rescale the partial sum approximation by
PJ

j = 1 !j . If there is concern with regard to
a particular empirical selection for J , obvious sensitivity analysis could be carried out. We
note that Muliere and Tardella (1998) allow J to be random and offer an algorithm to select
J according to a desired accuracy. Such ° -Dirichlet processes are valuable for approximate
� tting of Dirichlet process models. Under modeling in the form of Dirichlet process mixing,
such approximation in model � tting can be avoided; we can sample

£
³ 1; : : : ;³ n j D

¤
to

arbitrary accuracy. For us, such approximation is employed only after the model is � tted, as
a device for obtainingrealizationsfrom the posteriorof (3.1). This feature also distinguishes
our approach from that of Ishwaran and Zarepour (2000) where the Dirichlet process is � rst
approximated by easier to work with random distributions and then the resulting mixture
model is � tted.

Immediately, the set of T ¤
b = T (H ¤

b ) are a sample from the posterior of T (H(F (¢;G)))
for an arbitrary function T . In this way, we can sample the “distribution function-at-a-
point” functional or the “cumulative hazard-at-a-point” functional for any order statistic
from a sample of arbitrary size N . Moreover, given the linear functionals H1(F (¢; G)) and
H2(F (¢; G)), if G ¤

b ¹ [G j D] then the pair H ¤
1b = H1(F (¢; G ¤

b )), H ¤
2b = H2(F (¢; G ¤

b )) are
a realization from [H1; H2 j D] and T ¤

b = T (H ¤
1b; H ¤

2b) is a realization from the poste-
rior of T (H1; H2). In this way we can sample the posterior of the log-likelihood, that is,
[
Pn

i= 1 logf (yi; G)j D] which is of interest for model determination,as in Dempster (1997).
In addition, we can sample the “hazard-at-a-point” functional and the “density-at-a-point”
functional for any order statistic.

Next, for a grid of y values, y1 < y2 < ¢ ¢ ¢ < yL and a sample G ¤
b , b = 1,: : : ,B

approximately from [G j D] we can create an L £ B matrix of realizations F (yl; G ¤
b ). The

lth row of this matrix provides a sample from the posterior [F (yl; G)j D]. Each column
provides (with interpolation) a random realization of the cdf F (¢; G) from [F (¢; G)j D].

But then, given a random F (¢; G¤ ), we can invert to � nd a random ² ¤
p = ² p(F (¢; G ¤ ))

and thus a sample ² ¤
p;b from [ ² p(F (¢; G))j D]. Obviously, we can also obtain a sample from

the posterior of the interquartile range of F (¢; G). Finally, suppose we want quantiles for
the distribution of order statistics associated with F (¢; G). For instance, suppose we seek
a sample from the posterior of the pth quantile of the distribution of max(Y1,: : : ,YN ). The
preceding discussion shows how to obtain realizations from [(F (y; G))N j D]. A matrix
similar to the above L £ B matrix with (F (yl; G¤

b ))N replacing F (yl; G ¤
b ) can be created;

by inversion a sample of quantiles can be obtained.

3.2 THEORETICAL JUSTIFICATION FOR THE APPROACH

Again, the approach in Section 3.1 introduces the partial sum approximation only in
the posterior sampling of H(F (¢;G)). The ³ ¤

b are obtained using customary Gibbs sampling
under the Dirichlet process mixing speci� cation. This contrasts with the work of Muliere
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and Tardella (1998) who begin with an ° -Dirichlet process approximation in the � tting of
the model and then provide convergence results for functionals of G. Our use of the partial
sum approximation, with a � xed J , after the model � tting allows stronger convergence
results, in the process providing formal justi� cation for our approach. Following Section
3.1, for J = 2,3,: : : , let

GJ =

J¡1X

j = 1

!j ¯ ³ ³³ j +

(
J¡1Y

s = 1

(1 ¡ zs)

)

¯ ³ ³³ J (3.2)

be the J th partial sum approximation to G =
P 1

j = 1 !j ¯ ³ ³³ j . We study the limiting behavior
of the sequence of random variables

H(F (¢; GJ)) ¡ H(F (¢; G)) =

Z
H(K(¢; ³ ))GJ(d³ ) ¡

Z
H(K(¢; ³ ))G(d³ );

where H is a linear functional, providing convergence results for linear functionals and
continuousfunctionsof linear functionals.A result for the quantile functional is established
as well.

The following theorem, whose proof is given in the Appendix, yields a strong result
for linear functionals with H(K (¢; ³ )) bounded, as a function of ³ .

Theorem 1. Suppose H is a bounded linear functional. Then H(F (¢; GJ )) ¡
H(F (¢; G)) converges almost surely to 0 as J ! 1.

In particular, for the “distribution function-at-a-point” functional we obtain Corollary
1.

Corollary 1. For any � xed c on the support of K (¢; ³ ), F (c; GJ ) ¡ F (c; G) converges
to 0 almost surely as J ! 1.

Note that the “density function-at-a-point” functional is not bounded for 1
¿ 1=2 k( ¢¡ ·

¿ 1=2 )
over ³ = ( · ; ¿ ). Theorem 1 applies if we bound ¿ away from 0. Alternatively, Theorem 2
provides a quadratic mean convergence result, whose proof is given in the Appendix.

Theorem 2. Consider a linear functional H for which Ef(H(K(¢; ³ )))2 j ³ ¹ G0g
< 1. Then EfH(F (¢; GJ )) ¡ H(F (¢; G))g2 ! 0 as J ! 1.

Applied to the “density-at-a-point” functional we have Corollary 2.

Corollary 2. For any � xed c on the support of K(¢; ³ ), Eff (c; GJ ) ¡ f(c; G)g2 !
0 as J ! 1, provided Ef(k(c; ³ ))2 j ³ ¹ G0g < 1.

The condition of Corollary 2 depends on the speci� c choice of k(¢; ³ ) and G0. For
the class F (¢; G) de� ned in (2.3), where k(c; ³ ) ² k(c; · ; ¿ ) is the density of a N (· ; ¿ )
distribution, it holds if we take G0( · ; ¿ ) = N ( · j m; ½ ¿ )IG( ¿ j a; b), with m, ½ , a and b

speci� ed hyperparameters.
Combining Corollaries 1 and 2 and using standard results, Theorem 3 provides con-

vergence results for all the functionals discussed in Section 3.1 other than the quantile
functional.

Theorem 3. Consider � xed points c and d on the support of K(¢; ³ ). Let g1, g2 and
g3 be continuous R -valued functions on [0,1], [0,1] £ R + and R+ £ R + , respectively.
Then
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Table 1. A Sample of Velocities for 82 Galaxies of the Corona Borealis Region, from Roeder (1990).
A “ + ” indicates the observation is in the sample of size 10 and a “ ¤ ” that it is in the sample of
size 40.

Velocity (in km/sec £ 10¡ 3)

9.172¤ 19.349¤ 20.196 22.209 23.706¤

9.350¤ 19.440¤ 20.215 22.242 23.711
9.483 19.473¤ 20.221 22.249 24.129¤

9.558+¤ 19.529¤ 20.415¤ 22.314¤ 24.285¤

9.775 19.541¤ 20.629+ 22.374¤ 24.289¤

10.227¤ 19.547¤ 20.795¤ 22.495¤ 24.366¤

10.406 19.663¤ 20.821 22.746¤ 24.717¤

16.084+ 19.846¤ 20.846¤ 22.747 24.990
16.170+ 19.856 20.875+¤ 22.888 25.633+

18.419 19.863 20.986 22.914 26.960¤

18.552¤ 19.914¤ 21.137 23.206 26.995
18.600+¤ 19.918 21.492 23.241+ 32.065¤

18.927¤ 19.973+¤ 21.701 23.263 32.789+

19.052 19.989¤ 21.814 23.484 34.279
19.070¤ 20.166 21.921 23.538¤

19.330¤ 20.175 21.960 23.542¤

19.343¤ 20.179¤ 22.185 23.666

(a) g1(F (c; GJ )) converges almost surely to g1(F (c; G)) as J ! 1.
(b) g2(F (c; GJ ),f (c; GJ )) converges in probability to g2(F (c; G),f (c; G)) as J ! 1.
(c) g3(f(c; GJ ),f(d; GJ )) converges in probability to g3(f (c; G),f (d; G)) as J ! 1.

Finally, Theorem 4, whose proof is in the Appendix, handles the quantile functional.

Theorem4. For any � xed p in (0,1), outsidea set ofLebesguemeasure 0, ² p(F (¢; GJ ))
¡ ² p(F (¢; G)) converges in probability to 0 as J ! 1.

The proof of Theorem 4 makes use only of the convergence in distribution of F (c; GJ )
to F (c; G), for any � xed c. Hence, implementingTheorem 3, similar convergence results for
the quantiles of the distributions of order statistics associated with F (¢; G) can be obtained.

4. EXTREME VALUE ANALYSIS IN THE ONE SAMPLE
PROBLEM

Suppose Y1,: : : ,Yn is a sample from F (¢; G) with F (¢; G) de� ned in (2.3). We illustrate
the approach of Section 3 in terms of extreme value distributions. That is, we assume
[(F (¢; G))N j D] is of interest for an arbitrary N . Note that we are inferring about the
distribution of Y(N) without observing samples of Y(N)’s, as is assumed in customary
parametric extreme value theory. See, for example, Johnson,Kotz, and Balakrishnan (1995,
chap. 22). We are not aware of any other Bayesian nonparametric approach in this context.

We consider an astronomical dataset (Table 1) from Roeder (1990) which records
velocities in km/sec £ 10¡3 for 82 galaxies of the Corona Borealis region. Roeder focused
on estimating the velocity density, as did Escobar and West (1995) and Richardson and
Green (1997). Using random samples of size 10 and 40, from the 82, we seek inference
regarding the distribution of Y(82), which is, in fact, observed to be 34.279. A Normal-
Inverse Gamma form G0( · ; ¿ ) = N ( · j m; ½ ¿ )IG( ¿ j a; b), facilitates sampling from the
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Figure 1. For the galaxy data, Bayesian point estimates of the density. For N = 82, the dotted line denotes the
density corresponding to the sample of size 10 and the dashed-dotted line to that of size 40. For N = 150, the
dashed line corresponds to the sample of size 10 and the solid line to that of size 40.

full conditionals for the ³ i’s and makes Corollary 2 and Theorem 3 applicable.Based upon
a range which is conservatively between 5 and 40, we set the prior mean for · at m = 22.5
with ½ = 1.0. The choice a = 2.0 and b = 0.03 provides an in� nite variance for ¿ with
expectation roughly (35/6)2. Finally we set ¸ = 1.0.

The posterior mean of the density is shown for each of the two sample sizes in Figure
1. Additionally, the posterior median and 95% equal tail interval estimates for the median
and .95 quantile of the distribution of Y(82), obtained from the sample of size 10, are 36.347
(30.600,49.551) and 43.168 (35.405,64.395), respectively. The corresponding estimates
obtainedfrom the sample of size 40 are 32.263(27.965,41.827)and 39.294 (32.591,57.932).
Were we to sample say 150 galaxies what might we expect to see for the distribution of
Y(150)? The density estimates again using the two samples are also shown in Figure 1. Some
shift to the right relative to that of Y(82) is seen but not a lot, re� ecting the lack of skewness
in our samples. In fact, there is essentially no skewness in the entire sample of 82 velocities
(Roeder 1990, � g. 1). Again we can obtain point and interval estimates for the median
and .95 quantile of the distribution of Y(150). For the sample of size 10, they are 37.859
(31.710,53.839) and 44.561 (36.566,68.064), respectively, and for the sample of size 40,
33.821 (29.149,46.897)and 40.694 (33.595,62.789), respectively.

Regarding computational details, convergence of the Gibbs sampler was assessed
through multiple chains. Then for the � rst chain, after discarding the � rst 10,000 itera-
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Table 2. Per Capita Public School Expenditures for 1977 (in $1,000) for the Contiguous United States
Broken into Five Regions, from Snedecor and Cochran (1989)

NE SE SC NC MP

1.33 1.66 1.16 1.74 1.76
1.26 1.37 1.07 1.78 1.75
2.33 1.21 1.25 1.39 1.60
2.10 1.21 1.11 1.28 1.69
1.44 1.19 1.15 1.88 1.42
1.55 1.48 1.15 1.27 1.60
1.89 1.19 1.16 1.67 1.56
1.88 1.26 1.40 1.24
1.86 1.30 1.51 1.45
1.99 1.74 1.35

1.53 1.16

n 10 7 9 11 11
y 1.763 1.330 1.179 1.563 1.507

S 2 0.1240 0.0335 0.0057 0.0448 0.0404

tions, we thinned the output keeping every 50th and 150th iteration for the samples of size
10 and 40, respectively. In both cases, we � nally obtainB = 1,000 draws from the posterior.
For the algorithmproviding inference for functionalswe work with a grid of 275 equidistant
points over the interval (15,70). Following the suggestion of Section 3.1 for the number of
terms in the partial sum approximation,we set J = 140, for the sample of size 10, and J =

450 for that of size 40. Finally, the sample size for the Monte Carlo integrationwas taken to
be 1,000. Similar choices were used for the examples in the following sections, adjusting
J appropriately to the data sample sizes. All the computations were implemented using
FORTRAN 90, with IMSL subroutines for random number generations, on a PC equipped
with a Pentium III processor. The programs (not the most ef� cient), providing all the results
for the samples of size 10 and 40, executed at 21 and 29 minutes, respectively. Computing
times were essentially identical for N = 82 and N = 150.

5. THE K-SAMPLE PROBLEM
Consider data Yij , i = 1,: : : ,k, j = 1,: : : ,ni with Yij drawn from Fi. Standard analysis

of variance modeling sets Fi = N (· i; ¼ 2) and seeks comparison of means. Inference relies
heavily upon the normality and homogeneity of variance assumptions. We assume the Fi

arise under Dirichlet process mixing and investigate comparison of medians.
We consider a small dataset taken from Snedecor and Cochran (1989, p. 231) consisting

of public school expendituredata per capita in 1977 for the 48 contiguous states of the U.S.
broken into � ve regions, Northeast (NE), Southeast (SE), South Central (SC), North Central
(NC), and Mountain Paci� c (MP). The data are supplied in Table 2 along with the usual
summary statistics. It will be hard to con� rm normality with the small sample sizes and the
homogeneity of variance assumption clearly seems untenable. A Kruskal–Wallis test � nds
signi� cant differences between the regions (p < .0001). Pairwise comparisons at the .05
level, using average ranks, � nds NE different from SE, NE different from SC, NC different
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Table 3. For the Public School Expenditure Data, Bayesian and Classical Point and Interval Estimates
for the Population Median

Bayesian estimates (median) Classical estimates (median)

Region Point estimate Interval estimate Point estimate Interval estimate

NE 1.7934 (1.4674,2.0258) 1.87 (1.402,2.028)
SE 1.3494 (1.1869,1.5414) 1.21 (1.190,1.528)
SC 1.1970 (1.1095,1.3023) 1.16 (1.119,1.258)
NC 1.5707 (1.4318,1.7154) 1.53 (1.381,1.743)
MP 1.5255 (1.3750,1.6569) 1.56 (1.341,1.695)

from SC and MP different from SC.
Instead, we adopt the “analysis of densities” framework of Tomlinson and Escobar

(1999),assumingFi = F (¢; Gi) as in (2.3). TheGi are assumed to be independentrealizations
from DP( ¸ G0), where ¸ = 1.0 and G0( · ; ¿ ) = N ( · j m; ½ ¿ )IG( ¿ j a; b) with m = 1.75,
½ = 10.0, a = 2.0, and b = 16.0. To clarify these choices, using a range for Y which is
conservatively between 1.0 and 2.5 suggest a prior mean for · centered at 1.75. ½ = 10.0
implies our prior knowledge about · is worth 1/10 of an observation. If 2:5 ¡ 1:0 = 1:5 is
roughly a 6 standard deviation range, we can set E( ¿ ) = (1.5/6)2. The choices for a and b

provide this mean with in� nite variance.
In Table 3, for each group, we provide the posterior median and a 95% equal tail

interval estimate for the population median using our approach. Shown, for comparison,
are the sample median and an interval estimate based upon the sign test. In Figure 2 we plot
the posterior mean, E(f (y; Gi) j D) over a grid of y values for i = 1,: : : ,5. Differences in
center and in dispersion are evident. Also noteworthy is the bimodal form for the Northeast
region, not surprising given that four observations in this sample lie between 1.33 and
1.55 while the other six lie between 1.86 and 2.33. Finally, in Table 4 we contrast the
populationmedians in pairs, summarizing the

¡5
2

¢
posteriors, [ ² (F (¢; Gi)) - ² (F (¢; Gj))j D]

with posterior median and interval estimates. We agree with the Kruskal–Wallis results
though the latter does not provide interval estimates. For such comparisons, assuming a
shift model, we present the customary point and interval estimates, based upon the Mann–
Whitney test. The inference is similar though the shift estimates � nd two more signi� cances
than we do.

6. A COMPARISON OF POPULATIONS OF SURVIVAL DATA
The literatureonnonparametricmodelingand inferencefor survivaldatawith censoring

is very large. No review is attempted here. After the early fully nonparametric Bayesian
work of Susarla and Van Ryzin (1976) and Corn� eld and Detre (1977), the Bayesian effort
moved in the direction of semiparametric modeling as summarized in the recent article
by Sinha and Dey (1997). In current work such models are � tted by MCMC methods.
Censoring is handled through the introduction of latent survival time variables.

We use Dirichlet process mixing to provide nonparametric modeling of the survival
distribution. We also handle censoring using latent variables, as in, for example, Kuo and
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Figure 2. For the public school expenditure data, Bayesian point estimates of the � ve densities. The solid line
denotes NE, the dashed line SE, the more sparse dotted line SC, the dashed-dotted line NC, and the dotted line
MP.

Mallick (1997). We work on the log-scale in order to more comfortably employ (2.3).
Semiparametric accelerated failure time models also use yi = log ti in order to model
errors on R1. We make no claim that our analysis is better than the other nonparametric
ones. However, we are drawn to the richness of (2.3) and the full inference with regard to
individual distributions and comparison of distributions.

We work with a dataset involving survival time after bone marrow transplantation
for treatment of leukemia, taken from Klein and Moeschberger (1997, pp. 464–467). The
data samples three populations: an ALL group with sample size 38; an AML low-risk
group with sample size 54; and an AML high-risk group with sample size 45. See Klein
and Moeschberger for further details. Censoring is fairly heavy, 14/38, 31/54, and 11/45,
respectively. In the AML high-risk group, the censored times are larger than all but one
of the observed survival times, suggesting the possibility of a second mode or at the least
a very heavy tail for this population. We adopt priors following the same logic as in the
previous two sections. We take ¸ = 1.0, ½ = 20.0 and, using a conservative range of (0,12)
for log t, m = 6.0, a = 2.0 and b = 0.25.

In Figure 3 we plot the Kaplan–Meier estimates for each of the groups and overlay
the posterior mean of the survival function. Note the implicit data-determined smoothing
which our model provides. In Table 5 the median survival time for each population is sum-
marized by posterior median and interval estimate. In the classical theory, to obtain interval
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Table 4. For the Public School Expenditure Data, Bayesian and Classical Point and Interval Estimates
for Contrasts of Population Medians in Pairs

Bayesian estimates Classical estimates

Contrast Point estimate Interval estimate Point estimate Interval estimate

NE-SE 0.4318 (0.0441,0.7121) 0.4250 (0.0700,0.7301)
NE-SC 0.5934 (0.2436,0.8327) 0.6650 (0.2501,0.8401)
NE-NC 0.2106 (¡0.1483,0.4911) 0.1800 (¡0.0900,0.5000)
NE-MP 0.2674 (¡0.0798,0.5724) 0.2800 (¡0.0501,0.5398)
SE-SC 0.1512 (¡0.0454,0.3719) 0.1000 (0.0300,0.3300)
SE-NC ¡0.2215 (¡0.4626,0.0231) ¡0.2100 (¡0.5100,¡0.0499)
SE-MP ¡0.1745 (¡0.3893,0.0818) ¡0.2100 (¡0.3899,0.0300)
SC-NC ¡0.3740 (¡0.5437,¡0.1996) ¡0.3800 (¡0.5801,¡0.2101)
SC-MP ¡0.3223 (¡0.4924,¡0.1473) ¡0.3400 (¡0.4900,¡0.1700)
NC-MP 0.0482 (¡0.1537,0.2573) 0.0500 (¡0.1600,0.2499)

estimates, either a density estimate at the median is required or, alternatively, the interval
estimate is only available implicitly through an approximate probability statement regard-
ing the estimated survival function. Also in Table 5 we contrast the median survival times,
obtaining the posterior medians and interval estimates for the differences. The median sur-
vival time for group 2 is signi� cantly larger than for groups 1 and 3. Also the median for
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Figure 3. For the bone marrow transplantation data, Kaplan–Meier and Bayesian point estimates of the three
survival functions. For the ALL group both are denoted by the dashed line, for the AML low-risk group by the
dotted line and for the AML high-risk group by the solid line.
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Table 5. Inference Summary for the Bone Marrow Transplantation Data

Median survival time

Group Point estimate Interval estimate

ALL 573.49 (333.85,1418.58)
AML low-risk 2545.53 (1162.84,24771.04)
AML high-risk 292.92 (187.71,524.88)

Contrasts of median survival times

Contrast Point estimate Interval estimate

AML low-risk-ALL 2009.75 (382.69,24370.11)
ALL-AML high-risk 271.67 (¡52.76,1123.29)

AML low-risk-AML high risk 2271.15 (829.49,24489.15)

group 1 is nearly signi� cantly larger than that for group 3. We are unaware of any classical
nonparametric approach to obtain such interval estimates.

APPENDIX: PROOFS
Proof of Theorem 1: Since

P1
j = 1 !j ¯ ³ ³³ j is almost surely a realization of G, realiza-

tions of H(F (¢; G)) are almost surely of the form
P 1

j = 1 !jH(K(¢; ³ j )). For any J , let XH
J

= H(F (¢; G)) ¡ H(F (¢; GJ )). By (3.2) we have, almost surely, that XH
J =

P 1
j = J Aj , where

Aj = !j (H(K(¢; ³ j)) ¡ H(K (¢; ³ J ))). Note that by assumption, there exists M such that
jAjj µ 2M!j , almost surely, for all j. Hence P (

¯̄
XH

J

¯̄
< 1) = 1, since

P 1
j = 1 !j = 1. By

the same argument
¯̄
XH

J

¯̄
µ 2MYJ , almost surely, for all J , where YJ =

QJ¡1
s = 1 (1 ¡ zs).

Since the zs are drawn independently from Be(1; ¸ + n), it is straightforward to show that
E(jYJ jr) = f( ¸ + n)/(̧ + n + r)gJ¡1, for any integer r > 0. Consequently, for each r, YJ

converges to 0 in rth mean as J ! 1 and therefore YJ converges to 0 in probability as
J ! 1. Moreover P (0 µ YJ + 1 µ YJ ) = 1 yielding almost sure convergence of YJ to 0 as
J ! 1. Thus,

¯̄
XH

J

¯̄
converges almost surely to 0 as J ! 1, establishing the result. &

Proof of Theorem 2: Let X ¤ H
J =

P 1
j = J j!j(H(K(¢; ³ j)) ¡ H(K(¢; ³ J)))j, for J

= 1,2,: : : . Using the Cauchy–Schwarz inequality and
P 1

j = 1 !j = 1, we obtain (X ¤ H
J )2 µ

SJ , almost surely, where SJ =
P 1

j = J !j(H(K(¢; ³ j )) ¡ H(K(¢; ³ J )))2. Now E(SJ ) =
µn

P 1
j = J + 1 E(!j), where µn = 2var(H(K(¢; ³ ))j ³ ¹ G ¤

0b) with G ¤
0b de� ned in Section

3.1. In this calculation we have used, in turn, the monotone convergence theorem, the
independence of the sequences fzs, s = 1,2,: : : g and f ³ j , j = 1; 2; : : :g and the fact that
the ³ j are a sample from G ¤

0b. Since G ¤
0b is a mixed distribution with continuous mass on

G0 and a � nite number of point masses, the assumption of the theorem yields µn < 1.
Moreover, E(!j) = ( ¸ +n)¡1f( ¸ +n)/(̧ +n+1)gj , for each j and therefore � nally E(SJ )
= µnf( ¸ + n)/(̧ + n + 1)gJ < 1. This proves that P (X ¤ H

J < 1) = 1 and hence P (XH
J

< 1) = 1, with XH
J de� ned in the proof of Theorem 1. Furthermore,

¯̄
XH

J

¯̄2 µ (X ¤ H
J )2 µ

SJ , almost surely, with limJ ! 1 E(SJ ) = 0, yielding limJ ! 1 E(
¯̄
XH

J

¯̄2
) = 0 and thus the

result. &
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Proof of Theorem 4: Working with a continuous distribution with distribution func-
tion F (¢; G), we have for any p 2 (0,1) that F ( ² p(F (¢; G)); G) = p. Fix some " > 0. Then

P ( j ² p(F (¢; GJ)) ¡ ² p(F (¢; G))j µ ") = P ( ² p(F (¢; GJ)) µ y1)

¡ P ( ² p(F (¢; GJ)) < y2)

= P (F (y1; GJ ) ¶ p) ¡ P (F (y2; GJ) > p);
(A.1)

where y1 = ² p(F (¢; G)) + " and y2 = ² p(F (¢; G)) ¡ ". If p is a point of continuity of the
distribution functions of the random variables F (yi; G), i = 1,2, then the right hand side in
(A.1) converges to P (F (y1; G) ¶ p) ¡ P (F (y2; G) ¶ p) = 1, as J ! 1, as a consequence
of Corollary 1. Since the sets of points of discontinuity of these distribution functions are
at most countable, the result is established. &
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