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Abstract

Many people suffer from movement disability due to amputation or neurological diseases. Fortunately, with modern
neurotechnology now it is possible to intercept motor control signals at various points along the neural transduction
pathway and use that to drive external devices for communication or control. Here we will review the latest
developments in human motor decoding. We reviewed the various strategies to decode motor intention from human
and their respective advantages and challenges. Neural control signals can be intercepted at various points in the
neural signal transduction pathway, including the brain (electroencephalography, electrocorticography, intracortical
recordings), the nerves (peripheral nerve recordings) and the muscles (electromyography). We systematically
discussed the sites of signal acquisition, available neural features, signal processing techniques and decoding
algorithms in each of these potential interception points. Examples of applications and the current state-of-the-art
performance were also reviewed. Although great strides have been made in human motor decoding, we are still far
away from achieving naturalistic and dexterous control like our native limbs. Concerted efforts frommaterial scientists,
electrical engineers, and healthcare professionals are needed to further advance the field and make the technology
widely available in clinical use.
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Background
Every year, it is estimated that more than 180,000 peo-
ple undergo some form of limb amputation in the United
States alone [1]. In 1996, a national survey revealed that
there are 1.2 million people living with limb loss [2]. The
figure is expected to be more than tripled to 3.6 million
by year 2050 [1]. Besides amputations, various neurolog-
ical disorders or injuries will also affect one’s movement
ability. Examples include spinal cord injury, stroke, amy-
otrophic lateral sclerosis, etc. Patients suffering from these
conditions lose volitional movement control even though
their limbs are still intact. No matter if it is amputation or
neurological disorder, affected patients have their every-
day life and work significantly disrupted. Some may be
forced to give up their original jobs, while some may even
lose the ability to take care of themselves entirely.
Fortunately, although part of the signal transduction

pathway from higher cortical centers to muscles have
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been severed in those aforementioned conditions, in most
of the cases we can still exploit the remaining parts to
capture the movement intention of the subject. For ampu-
tation, the neurological pathway above the nerve stump
is mostly intact. For neurological disorders and injuries,
depending on the site of the lesion, usually upper stream
structures are still intact and functioning. With mod-
ern neural interfacing technology, signal processing and
machine learning algorithms, it is now possible to decode
those motor intentions and use it to either replace the lost
function (e.g. through a prosthesis) or to help rehabilita-
tion (e.g. in stroke [3, 4]).
The signal for movement control can be intercepted

at various points along the neural transduction pathway.
Each of these points exhibits different features and poses
unique advantages and challenges. Some of the methods
are more invasive (e.g. intracortical recording) but also
more versatile because they intercept neural signals at the
upmost stream, so they are less reliant on the presence of
residue functions. However, some others (e.g. surface elec-
tromyogram) while are less invasive, rely heavily on the
presence of downstream functional structures and thus
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any upstream damages undermine their performance.
Ultimately, the choice of signal modality to decode from
depends on the location, type, and severity of the lesion.
In this review, we will discuss the various opportunities
available to decode motor intention from human subject
at different locations along the motor control pathway. It
is our hope that this comprehensive information can help
make the most effective clinical decision on how to help
the patients.
In this review, we will mainly focus on the decoding

of motor intention on human subjects. Although ani-
mal studies are an very important and indispensable part
of motor decoding research, the application on human
subjects is the ultimate goal. Clinical trials on patients
may introduce additional and non-negligible challenges
to the system and experimental design. For example, in
amputees or paralyzed subjects the ground-truth for limb
movement is usually unavailable. Special considerations
must be incorporated into the experimental design to
work around this limitation. Furthermore, although some
methodsmay be working very well on animal studies, their
translation into human use may not be straightforward
due to safety concerns or surgical difficulties. Therefore,
a focus on human studies will allow us to have a more
realistic expectation of the current state-of-the-art perfor-
mance in the field. This knowledge can then in-turn better
inform the decision choosing between risk and benefit of
a decoding strategy.

Main text
Neurophysiology of motor control
To decode the motor intention of human subject, it is
useful to first understand the natural neurophysiology of
motor control, so that we may know where to intercept
the control signal and what kind of signal feature that we
may encounter.
Motor controls in the human body begins at the frontal

and posterior parietal cortex (PPC) [5, 6]. These areas
carry out high-level, abstract thinking to determine what
actions to take in a given situation [7]. For example, when
confronted with a player from the opposing team, a soc-
cer player may need to decide whether to dribble, shoot or
pass the ball to his teammate. The choice of the best action
depends on the location of the player, the opponent and
the ball. It also depends on the current joint angles of the
knees and ankles in relation to the ball. The PPC receives
input from the somatosensory cortex to get information
on the current state of the body. It also has extensive inter-
connection with the prefrontal cortex, which is responsi-
ble for abstract strategic thoughts. The prefrontal cortex
may need to consider other factors beside the sensory
information about the current environment. For exam-
ple, how skillful is the opponent compared to myself?
What is the existing team strategy at the current state of

the game, should I play more aggressively or defensively?
The combination of sensory information, past experience,
and strategic decision in the frontal and posterior parietal
cortex determine what sequences of action to take.
The planning of the action sequence is then carried

out by the premotor area (PMA) and the supplementary
motor area (SMA), both located in Brodmann area 6 of the
cortex. Stimulation in area 6 is known to elicit complex
action sequence and intracortical recording in the PMA
shows that it is activated around 1 second before move-
ment and stops shortly after the movement is initiated [8].
Some neurons in the PMA also appear to be tuned to the
direction of movement, with some of them only be acti-
vated when the hand move in one direction but not in the
other.
After a sequence of action is planned in PMA or SMA,

it requires input from the basal ganglia to actually initiate
the movement. The basal ganglia contains the direct and
indirect pathway [9–11]. The direct pathway helps select a
particular action to initiate, while the indirect pathway fil-
ters out other inappropriate motor programs. In the direct
pathway, the striatum (putamen and caudate) receives
input from the cerebral cortex and inhibits the internal
globus pallidus (GPi). In the resting state, GPi is sponta-
neously activated and inhibits the oral part of the ventral
lateral nucleus (VLo) of the thalamus. Thus, inhibition of
GPi will enhance the activity of VLo, which in turn excites
the SMA. In the indirect pathway, the striatum excites GPi
through the subthalamus nucleus (STN), which then sup-
presses VLo activity and in turn inhibits SMA. In some
neurological disorder like Parkinson’s disease, deficit in
the ability to activate the direct pathway will lead to dif-
ficulty in initiating a movement (i.e. bradykinesia), while
deficit in the indirect pathway will lead to uncontrolled
movement in the resting state (i.e. resting tremor).
After the basal ganglia helps filter out unwanted motor

programs and focus on the selected programs, the primary
motor cortex (M1) will be responsible for their low-level
executions [12]. In the layer V of M1, there are popula-
tion of large neurons pyramidal in shape that project their
axon connections down the spinal cord through the corti-
cospinal track. These axons connect with motor neurons
in the spinal cord monosynaptically to activate muscles
fibers. They also connect with inhibitory interneurons
in the spinal cord to inhibit antagonistic muscles. This
structure allows one single pyramidal cell to generate
coordinated movement in multiple muscle groups.
Motor neurons in the spinal cord receive inputs from

the M1 pyramidal cells through the corticospinal track
[13]. They also receive the input indirectly from the motor
cortex and cerebellum through the rubrospinal track,
routed via the red nucleus in the midbrain. Although
its functions is well established in lower mammal, the
functions of the rubrospinal track in human appears to
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be rudimentary. Motor neurons in the ventral horn of
the spinal cord bundle together to form the ventral root,
which exits the spinal cord and joints with the dorsal root
to form a mixed spinal nerve. The spinal nerve further
branches out to smaller nerve fibers that innervate various
muscles of the body. One motor neuron may supply mul-
tiple muscle fibers, collectively known as one motor unit.
A muscle consists of multiple muscle fibers, grouped into
motor units of various sizes, each of which may be sup-
plied by different motor neurons. In large muscles such as
those in the leg, one motor neuron may supply hundreds
of muscle fibers. In smaller muscles, such as those in the
fingers, one motor neuron may only supply 2 or 3 muscle
fibers, enabling fine movement control.
The motor control pathway of the human body goes

from the high level associative area of the brain, mediated
by the motor cortex, through the spinal cord to the indi-
vidual muscle fibers. Each of the stages plays a different
role and uses different mechanisms to ensure that a move-
ment is carried out in a coordinated and smooth manner.
Each of these stages also offers different signal modali-
ties and features that can be exploited for motor decoding.
We will now discuss these features and strategies to uti-
lize them in details below. An overview showing themotor
control pathway and various ways to intercept the control
signal is shown in (Fig. 1).

Cortical decoding of limbmovements
All volitional motor controls originate from the brain.
The motor cortex of the brain plays an especially impor-
tant role in planning and executing motor commands.
For some patients, the brain is the only site where
motor intention can be captured because they have lost

motor functions in all their extremities (e.g. in tetraplegic
patients). Therefore, many efforts have been invested in
cortical decoding.

Electroencephalography (EEG)
EEG is the measurement of weak electrical signals from
the brain on the surface of the scalp. Its origin is
believed to be the summation of postsynaptic potentials
of excitable neural tissues in the brain [14]. The skull, dura
and cerebrospinal fluid between the brain and the EEG
electrodes attenuate the electrical signal significantly, thus
the EEG signal is very weak, typically under 150μV. Those
structures also act like temporal low-pass filters, limiting
the useful bandwidth of the EEG signal to be below 100Hz
[15]. Furthermore, due to the volume conduction effect of
current sources in the head, the effect of a single current
source spreads to several electrodes. The result is a spatial
low-passing of the original signal, leading to a “smearing”
of the signal source and reduction in the spatial resolution.
Thus most EEG setups for motor decoding only involve 64
or 128 electrodes. Setups with higher than 128 electrodes
are uncommon.
EEG signal is traditionally separated into several fre-

quency bands (delta: 0 – 4 Hz, theta: 4 – 7.5Hz, alpha: 8 –
13Hz, beta: 13 – 30Hz, gamma: 30 – 100Hz). Of particu-
lar importance to motor decoding is the brain oscillation
in the alpha band over the motor and somatosensory cor-
tex, also known as the μ-rhythm [16, 17]. It has been
observed that there is a decrease of the signal power in
the 8 – 13 Hz band when a subject is carrying out actual
or even imaginedmovement [18, 19]. Similar observations
can also be found in the lower beta band (12 – 22Hz).
Although some components of the beta band oscillation

Fig. 1 Overview of various ways to intercept motor control signals. Motor control signal is relayed from the primary motor cortex of the brain, via the
spinal cord and peripheral nerve, to the muscle fibers. The control signal can be intercepted at various points using different techniques.
Electroencephalography (EEG) captures the superimposed electrical fields generated by neural activity on the surface of of the scalp.
Electrocorticography (ECoG) measures activity underneath the scalp on the surface of the brain. Intracortical recordings penetrate into the brain
tissue to acquire multi- and single-unit activities. Electrodes can also be placed on the peripheral nerve to monitor the low level signal used to drive
muscle contraction. Finally, electromyograph (EMG) can also be used to monitor the activity of the muscle directly (the figure contains elements of
images adapted from Patrick J. Lynch and Carl Fredrik under Creative Commons Attribution License)
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may be harmonics of the alpha band signals, the com-
mon consensus now is that they are independent signal
features due to having different topographic and timing
characteristics [18, 20]. The mu-rhythm tends to focus
on the bi-lateral sensorimotor area while the beta rhythm
concentrates mainly on the vertex. Collectively, themodu-
lation of the signal band power over the sensorimotor area
is called sensorimotor rhythm (SMR).
This decrease of band power coinciding with an event is

called event-related desynchronization (ERD). The oppo-
site is called event-related synchronization (ERS), which
is the increase of band power coinciding with an event.
ERD/ERS is typically calculated with respect to a reference
period, usually when the subject is wakefully relaxed and
not doing any task [21]:

ERD = R − A
R

× 100%

where R is the band power during the reference period and
A is that during the time period of interest. An example

of ERD topography during motor imagery is shown in
(Fig. 2).
The ERD topography during movement displays an

evolving pattern over time [21]. ERD usually starts around
2 s before actual movement, concentrating on the con-
tralateral sensorimotor area, then spreads to the ipsilat-
eral side and becomes bilaterally symmetrical just before
the start of movement. After the movement terminates,
there is an increase of beta band power (i.e. ERS) around
the contralateral sensorimotor area [21–23], also known
as the “beta rebound”. The occurrence of beta rebound
coincides with reduction in corticospinal excitability [24],
suggesting the rebound may be related to the deactivation
of the motor cortex after a movement terminates. Beta
rebound occurs in actual as well as in imagined move-
ments. An example of the beta rebound can be observed
in (Fig 2a).
Different kinds of motor imagery (MI) produce differ-

ent topograpies of ERD and hence are useful for decoding
the motor intention of the subject. For example, imaging

Fig. 2 Examples of EEG features in motor decoding. EEG features from one of the subject from the BCI Competition IV 2a dataset [214]. a The time
course of the change in band power of the EEG signal filtered between 8-12Hz, in left hand and right hand motor imagery, compared to a reference
period (0-3s). The shaded regions show the standard deviation of the changes across different trials. The experimental paradigm is also shown
below. b The frequency spectrum of the EEG signal during the fixation and motor imagery (c) the topography of the ERD/ERS distribution in
different types of motor imagery
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moving one’s hand will elicit ERD near the hand area of
the motor cortex, which is in the more lateral position.
On the other hand, imaging a foot movement will elicit
ERD near the foot area in some of the subjects, which
is closer to the sagittal line [25], as can be observed in
(Fig. 2c). The beta rebound after MI also displays a simi-
lar somatotopic pattern [22]. Simultaneous ERD and ERS
on different parts of the brain is also evident in some
of the subjects. For example, some subjects showed ERD
in the hand area and ERS in the foot area during a vol-
untary hand movement, and vice versa during a foot
movement[22]. ERD may represent an activation of the
cortical area controlling the motion while an ERS may
represent an inhibition of other unintended movements.
As we recall from the neurophysiology of motor control,
the indirect pathway of basal ganglia contains mecha-
nisms to suppress the thalamic activation to SMA to filter
out unintended movements. There are characteristic pat-
terns of ERD/ERS during different actual and imagined
movements, thus by looking into those patterns we can
detect and distinguish the motor intention of different
body parts.
The most reactive frequency band at which ERD/ERS

occurs may be specific for each subject and even for
the type of motor imagery, and its topography may vary
slightly across different EEG preparations. Therefore, sig-
nal processing and machine learning techniques are usu-
ally employed to adapt to the signal features of the subjects
automatically.
One of the most important signal processing step in

SMR-based motor decoding is the estimation of signal
power in the frequency range of choice, typically in the
alpha (8–12 Hz) and beta (12–30 Hz) band. There are
many methods to achieve this. One of the simplest and
most computational efficient method is band-pass filter-
ing [3, 26]. The EEG signal is first band-pass filtered in
the frequency band of interest, then the sum of the square
of the signal is then taken as the power of the signal in
the chosen frequency band. Sum-of-the-square is equiva-
lent to the variance of the signal, so usually the variance
of the signal is used instead. After taking the variance, a
log-transform is commonly employed. The log-transform
can serve two purposes. First, it transforms skewed data to
make them more conforming to the normal distribution
[27], which may help improve performance in some clas-
sification algorithms. Second, the log-transform empha-
sizes the relative change of the signal rather than the
absolute difference (e.g. log(110)−log(100) = log(1100)−
log(1000)), so it can perform an implicit normalization of
the signal and improve the performance of the classifier.
One of the major drawbacks of the simple band-pass fil-

tering approach is that it may be difficult to choose the
best frequency band to perform the filter, as each patient
has their own specific reactive band. To overcome this

limitation, the adaptive auto-regressive (AAR) model is
another commonly employed technique [28–31]. It mod-
els the signal at current time point as a linear combination
of previous p points:

Yt = a1,tYt−1 + a2,tYt−2 + · · · + ap,tYt−p + Xt

where Yt is the signal, Xt is the residue white noise and
ap,t the autoregressive coefficients. The core difference
with the traditional AR model is that in the AAR model,
the coefficients ap,t are dependent on time and are cal-
culated for each signal time point using recursive least
square [32]. AAR coefficients from multiple electrodes
are then concatenated together to form the feature vec-
tor used by a classification system. AAR coefficients can
be seen as the impulse response of a system and so it con-
tains information about the frequency spectrum of the
modeled signal. Compared to the traditional band-pass
filtering, spectrum estimation using AAR can be more
robust against noise. One can also specify the number
of spectrum peaks based on domain knowledge (each
peak requires two coefficients). Another advantage is that
there is no need to choose a subject-specific frequency
band beforehand as all model coefficients are used for
classification. Another way to choose the subject-specific
frequency band automatically is to use a filter bank that
consists of multiple band-pass filters in different frequen-
cies. After filtering, the most informative frequency band
and channels are then selected using some performance
metrics, e.g. whether deleting those feature will lead to a
reversal of the classification label [33, 34].
Due to the volume conduction problem in the human

head, a single current source often appears to be
“smeared” across several EEG electrodes. Spatial filtering
is usually employed to improve the spatial resolution of
the EEG signal. Popular spatial filters include the common
average reference (CAR) and surface Laplacian [35]. These
methods re-reference the signals by subtracting the volt-
age at each electrode from the average (as in CAR) or from
its neighbors (as in surface Laplacian).

VCAR
j = Vj − 1

N

k=1∑

N
Vk

VLAP
j = Vj − 1

n
∑

k∈Sj
Vk

where V is the signal voltage, N is the total number
of electrodes, n the number of neighboring electrodes,
and S is the set of neighboring electrodes in surface
Laplacian (LAP).
These filters enhance the focal activity by acting like

a high-pass spatial filter. There are also other more
advanced spatial filters proposed. For example, the pop-
ular common spatial pattern (CSP) [36, 37] works by
finding a projection of the electrode voltage such that
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the differences in variance between two classes are
maximized. A further variation of the method is to add in
frequency information by filtering the signal by a set of fil-
ter bands and then calculate the CSP for each, and finally
select the most informative feature through a mutual
information criterion [38].
The performance of EEG-based motor decoding has

been improving steadily over the years.While earlier stud-
ies can only distinguish between discrete types of motor
imagery [39], recent studies have already achieve 2D [40]
and 3D control [41–43]. Some of the latest studies even
demonstrate that it is possible to decode different move-
ments in the same limb [44, 45] or even individual finger
movements [46].
Besides being used to replace the lost functions, EEG-

based motor decoding can also be used a tool for rehabil-
itation. For example, it can be used to control a robotic
hand to assist in active hand training in post-stroke reha-
bilitation [4, 47, 48]. This application of motor decoding
as a tool for training is a very promising area, as it can
potentially extend its use to a wider population.

Electrocorticogram (ECoG)
ECoG is the measurement of the electrical signals from
the brain on top of the dura, but underneath the skull.
ECoG measurement is commonly performed before an
epilepsy surgery to delineate the epileptogenic area and
identify important cortical regions to avoid during a resec-
tion [49]. ECoG signal is not affected by the skull and
thus tends to have a higher temporal and spatial resolu-
tion than EEG. It also has a larger bandwidth (0 to 500 Hz)
[50, 51] and higher amplitude (maximum ∼500 μV [52]).
Therefore, generally ECoG has a higher signal-to-noise
ratio than EEG although it is also more invasive.
ECoG and EEG likely arise from the same underlying

neural mechanisms therefore they share many similarities
with each other. Howevers, there are two major signal fea-
tures in motor decoding that are unique to ECoG and are
specifically exploited. The first is the change of signal band
power in the high gamma band (≥75Hz). Many studies
have suggested that the high gamma band contains more
informative features for motor decoding compared to the
alpha and beta band, which are typically used in EEG
decoding [53–57]. Interestingly, the high gamma band
tends to increase during movement, unlike the alpha and
beta band, which typically show desynchronization (i.e.
decrease in power). Therefore, high gamma power may be
produced by a different neural mechanism than the one
that produces the alpha and beta desynchronization.
Another unique feature is the low-frequency amplitude

modulation of the raw ECoG signal, coined as the Local
Motor Potential (LMP) by Schalk et al. [30, 51]. It was
found that the envelop of the raw ECoG shows a strik-
ing correlation to the movement trajectory of the human

hand, as measured by a joystick. The amplitude also shows
a cosine or sine tuning in relation to the movement direc-
tion, similar to what have been observed in intra-cortical
recordings. Since this discovery, many group have incor-
porated the LMP into ECoG motor decoding in addition
to other high frequency features (e.g. [53, 56, 58, 59]).
The LMP is a very low frequency component (2-3 Hz)
of the raw ECoG signal. It is usually extracted by Guas-
sian low-pass filter, running average [30, 53, 59], or the
Savitzky-Golay filter [58, 60, 61].
Due to the robustness of the LMP signal, usually a sim-

ple linear regression is sufficient to decode the motor
intention inmany of the previous studies (e.g. [51, 62, 63]),
although a feature selection or regulation step may
be needed to first remove the uninformative features.
A recent study using deep neural network also show
promises [64], however its improvement compared to
classical techniques is not always significant.
Because ECoG has a better resolution and higher signal-

to-noise ratio, it tends to produce better and finer results
than EEG in motor decoding. Beside decoding the move-
ment of different body parts as in EEG [65, 66], different
hand gestures can also be distinguished [56, 67]. Using the
LMP in addition to frequency features, position and veloc-
ity of 2D arm movement can also be decoded from ECoG
signals [30, 51, 58]. Subsequent studies even demonstrate
that continuous finger positions can also be decoded
[54, 59, 61, 63, 64, 68]. The correlation coefficient between
the predicted and actual finger movement can reach from
0.4 to 0.7 in some of the recent studies [61, 64].
The large majority of studies in ECoG motor decod-

ing are performed on epilepsy patients without a specific
movement disorder or limb injury. However, one of the
strongest motivation for motor decoding is that it can
compensate the lost motor function of a patient. Given
that the brain may re-organize due to disease or injury,
it is vitally important that the decoding experiments be
repeated on those patient population as well to see if
similar decoding performance can be achieved. There
are only a few studies to try ECoG motor decoding in
stroke patients [57, 69] and paralyzed subjects [70], but
the results are encouraging.

Intra-cortical recordings
Penetration into the cortical tissue offers the closest prox-
imity to the neurons and produces the most precise signal.
Since the discovery of the directional tuning property of
the neurons in the motor cortex [71], a lot of studies have
been trying to decode motor intention from intracorti-
cal recordings, first in non-human primate (NHP), then
in human subjects in recent years. Our review will focus
on intracortical decoding in human as it presents some
unique challenges compared to NHP, and it is also where
the technology will ultimately be applied.
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Penetrating electrodes for motor decoding are usually
implanted into the primary motor area of the brain. There
is a structure in the precentral gyrus resembling a “knob”
that houses a majority of the neurons responsible for
motor hand function [72]. This “motor hand knob” is typ-
ically used as the target for electrode implantation (e.g. in
[73–77]). Another potential target for implantation is the
posterior parietal cortex (PPC). Although PPC has long
been proposed to play an important role in the associative
functions, in recent years more and more evidence sug-
gests that it also encodes the high-level motor intention of
the subject [78]. A recent study suggests that the goal and
trajectory of the movement can be decoded from neural
activities in human PPC [79].
One important property exhibited by the neurons in

the M1 is directional tuning. Some of the neurons are
broadly tuned to a particular direction. They discharge
the strongest when the movement is in their preferred
direction, but they will also discharge less vigorously when
the movement is in other directions. Their firing rates
represent the length of their preferred direction vector.
When the vectors of those neurons are summed together,
it indicates the final direction of the movement. This pop-
ulation encoding of movement is a striking property of

the nervous system. Similar analog of population encod-
ing can also be found in the super colliculus representing
the direction of eye movement [80]. An example show-
ing the directional tuning property of M1 in a non-human
primate is shown in (Fig. 3).
Currently, the only FDA-approved, commercially avail-

able microelectrode array for temporary (<30 days) intra-
cortical recordings is the Neuroport System (Blackrock
Microsystem, Inc, USA). As a result, majority of the
work on human intracortical decoding are performed
on that platform. Other intracortical electrodes do exist
but they are either mainly for acute intraoperative mon-
itoring (e.g. Spencer Depth Electrode, Ad-Tech; Neuro-
Probes, Alpha Omega Engineering Ltd; microTargeting
electrodes, FHC), or for EEG applications (e.g. DIXI Med-
ical Microdeep Depth Electrodes).
The activities of the neurons in the implanted site are

represented by their action potentials, which manifest as
spikes in extracellular recordings. Therefore, detecting the
occurrence of a spike is often the first step in intracorti-
cal signal processing. There are many methods for spike
detection [81, 82]. The signal is typically first band-passed
filtered in the spike frequency band (e.g. 300-5000Hz),
then various methods are used to transform the filtered

Fig. 3 Examples of directional tuning in intra-cortical signals. Diagrams showing the directional tuning properties of the neurons in non-human
primate M1 from the data in [215, 216]. a Spike raster plots from one of the neurons (Neuron 31). Each plot shows the spike timing of the neuron
aligned to the time point (t=0) at which the movement speed of the hand exceeds a pre-defined threshold. Each dot in the plot represents an
action potential. Different plots indicates the neuronal activity when the hand is moving in different directions. b The von Mises tuning curve of
some of the representative neurons. c The preferred direction of all the neurons. The length of the vector represents the modulation depth of the
neuron, here defined as the magnitude of the tuning curve divided by the angle between the maximum and minimum point on the curve
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signal to improve its signal-to-noise ratio (SNR). A detec-
tion threshold is then calculated to distinguish spikes
from background noise. One of the most common spike
detection methods is to use the root-mean-square of the
signal

Thres = C ∗
√√√√ 1

N

N∑

n=1
x[n]2

where Thres represents the detection threshold above
which a signal time point is considered belonging to a
spike. However, the RMS value may be easily contami-
nated by artifacts, so another way is to use the median to
set the detection threshold [83]

σ = median
( |x|
0.6745

)

Thres = 4 ∗ σ

The non-linear energy operator is also another popular
method [83]. It first transforms the signal such that the
high frequency component is amplified to improve the
SNR.

ψ(x[ n] ) = x[n]2 −x[n + 1] x[n − 1]

Thres = C
1
N

N∑

n=1
ψ[ x(n)]

Other more advanced techniques like continuous wavelet
transform [84] and EC-PC spike detection [82] can offer
a better accuracy but at a higher computational cost.
Although there are a lot of ways to detect spike accurately
offline, not every one of them are fast enough to be used
in real-time. Therefore in online decoding the choices are
usually limited to the simpler algorithms. Manually set-
ting a threshold by an operator still remains one of the
most commonly used method. Another popular method
in online decoding is the RMS method due to its high
efficiency.
An electrode may record signals from multiple neu-

rons nearby. Isolating the activity of a single neuron (i.e.
signal-unit activity) from this multi-unit activity usually
leads to better results in motor decoding. This process
is called spike sorting. There is a large body of literature
on spike sorting that cannot be exhausted here. Interested
readers are encouraged to consult other excellent reviews
[85–87]. In practice, the most popular way to do online,
real-time spike sorting is via template matching. A set
of spike templates are collected during a period of initial
recording, then subsequent spikes are classified by com-
paring their similarity with the templates. However, it may

not be really necessary, or may even degrade the decod-
ing result, to do online spike sorting. The spike clusters
obtained from recordings may not be stable across differ-
ent sessions of experiments. The total number of single
units sorted from recording may change from sessions
to sessions [79]. Thus a decoder trained on some sorted
spikes may not work well on future sessions. Spike sorting
may also introduce additional latency in online decoding,
as accurate spike sorting is a computationally expensive
process. In fact, many recent decoding studies do not use
spike sorting at all, e.g. [79, 88–94].
A decoding algorithm reconstructs motor kinematics

from neural activity. Since the discovery of the directional
tuning property of motor neurons, one of the earliest
decoding algorithm for intracortical spike signal is the
population vector algorithm[95, 96]. In its simplest form,
the firing rate of a neuron can be related to its preferred
direction by

f = f0 + fmaxcos(θ − θp)

where f is the neural firing rate, f0 and fmax are regression
constants and θ and θp are the current and preferred direc-
tion respectively. However, for cosine function the width
of the modulation is fixed. Amore flexible tuning function
that allows adjustable width of the modulation is the von
Mises tuning function [97]:

f = b + k exp(κcos(θ − μ))

where b, k, κ , μ are the regression constants, and θ is the
current movement direction. When μ = θ , the function
will be at maximum, so μ can also be interpreted as the
preferred direction of the neuron. Examples of the von
Mises tuning curves are shown in (Fig. 3b).
The preferred directions of each of the neurons then can

be summed together to predict the target direction [96].

P(M) =
N∑

i=1
wi(M)Ci

whereCi is the preferred direction for the i-th neuron, and
wi(M) is the weighting function combining the contribu-
tions of each neuron in directionM to the final population
vector. However, this method requires a large number of
neurons to be accurate and may lead to error if the distri-
bution of the preferred direction is not uniform [98]. For
example in (Fig. 3c), we can see that the preferred direc-
tions are not distributed evenly. For this reason, a simple
linear regression scheme is usually employed instead in
recent studies [73],

u = Rf = R(RTR)−1RTk

where R is the neural response matrix (e.g. firing rate), f is
the linear filter (or the regression constants) and k is the
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motor kinematic values (e.g. joint angles or cursor posi-
tions). It has been suggested that this regression scheme
can provide more accurate prediction compared to the
summation of preferred direction vectors, especially when
those vectors are not uniformly distributed [98].
In recent years, the Kalman filter is usually employed

instead of the simple linear regression (e.g. in [75–77,
99, 100]). The Kalman filter incorporates the information
both from an internal process model and actual measure-
ment to estimate the states of a system [101]. A Kalman
gain variable is used to determine the “mixing weight”
of the model and measurements. If the model is more
accurate, then it will trust the model more. The same
goes for the measurement. Kalman filter is especially
useful if the states are not directly observable or if the
measurement is very noisy, which are often both true in
motor decoding. In motor decoding, the subjects usually
lost their limb or ability to move, therefore the internal
state (e.g. motor intention) of the system is not directly
observable. The observable variables (e.g. neural activity)
are also very noisy. A typical Kalman filter for motor
decoding assumes no control variable and the system can
be formulated as two linear equation [102, 103]):

�xt = A�xt−1 + �wt−1

�yt = C�xt + �vt
where x is the state of the system one want to decode,
e.g. joint kinematics or cursor position. y is the observed
variables, e.g. neural firing rate. �wt and �vt are the process
and measurement noises drawn from wt ∼ N(0,Q) and
vt ∼ N(0,R) respectively. A, C, Q and R are the Kalman
constants that need to be defined according to the decod-
ing model. For the internal state x, if it is a cursor position,
it can be expressed as

xt =[ post , velt , 1]T

With themodel defined, the Kalman gainK and the esti-
mation error covariance P then can be updated with the
typical two-step update equations:
Predict:

x̂−
t = Ax̂t−1 + But

P−
t = APt−1AT + Q

Update:

Kt = P−
t CT

CP−
t CT + R

x̂t = x̂−
t + Kt(yt − Cx̂−

t )

Pt = (I − KtC)P−
t

where x̂− and x̂ are the a prior and a posterior state esti-
mates respectively. u is the control variable. Typically it is
set to 0 in motor decoding, here we have included it for
completeness.

One crucial aspect of performing online motor decod-
ing is the training and re-calibration of the decoding
model. Although the neural features for similar move-
ments are relatively stable within a few days [104], the
neural tuning curve may start to change when the sub-
ject is learning to perform a new task [105]. It is also
very difficult to track the same neuron for an extended
period of time [106, 107], due to the micro-movement of
electrodes and fluctuations of other noise sources. Fur-
thermore, training data are often acquired in an open-loop
fashion, meaning that no feedback is provided by the
decoder during training. However, in actual decoding ses-
sion, feedback is provided and the subject may attempt to
change his motor imagery in order to “learn” the decoder.
This may lead to changes in the underlying neural fea-
tures [108]. Therefore, re-calibration of the trained model
is often necessary and will be ideal if it can be performed
online. A successful re-calibration method is the ReFIT-
KF algorithm proposed by Gilja et al [109]. ReFIT-KF
assumes the subject’s true intention is tomove towards the
target, so it can generate a pseudo-ground truth from the
decoded result automatically even though the prediction
of the current model may be wrong. It can then calibrate
the model using the estimate ground truth to adapt for the
instability of the neural signals. It is able to produce better
results than Kalman filter alone [92, 93, 109].
Due to the more robust signals obtained by intracor-

tical recordings, it has been utilized successfully to help
tetraplegia patient control the environments in various
ways, including 2D cursor control [73, 76, 94], virtual and
real prosthetic hands [77, 79, 92, 110, 111] and functional
electrical stimulation of the patients’ own paralyzed hands
[90, 91, 93].

Peripheral decoding of limbmovements
Signals from the central nervous system (CNS) even-
tually arrive at the peripheral nervous system (PNS)
and drive the contraction of different muscle fibers.
Compared to CNS, signals in the peripheral structures are
usually more specific. They contain detailed instructions
on the contractions of individual muscle fibers, there-
fore potentially can enable dexterous prosthetic control.
Surgeries involved in peripheral interface are usually less
complicated than those involving the intracortical struc-
tures. Therefore, many studies are also devoted to motor
decoding in the peripheral structures.

Peripheral nerve recordings
Peripheral nerves contain the low-level neural signals sent
to activate the contraction of specific muscles. Previous
studies on peripheral neural recording mainly focus on
afferent sensory information because it is not easy to
get efferent signals in anesthetized animals [112]. How-
ever, in recent years, more studies have appeared trying
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to explore the possibility of decoding efferent periph-
eral nerve signals for prosthetic control. Because the
peripheral nerves contain low-level information target-
ing each muscle, it may be possible to regain high-
dexterity and naturalistic control by exploiting this rich
information.
One of the major challenges in peripheral nerve record-

ings is accessing the axons in the nerves. Axons in spinal
nerves are bundled in fascicules and multiple fascicules
are grouped together to form a peripheral nerve. Those
axons are enclosed in three sheaths of connective tissues
– the epineurium that covers the entire nerve, and the
perineurium that encloses a fascicle and the endoneurium
that holds the neurons and blood vessels together within a
fascicle. Due to these multiple layers of lamination around
an axon, the amplitude of a peripheral nerve signal is
usually very small, can be around 5 – 20 μV [112].
There are multiple electrode configurations designed to

get a better signal from the peripheral nerves [113]. The
cuff electrode [114], as its name suggests, works like a
cuff to wrap around a nerve. Its main advantage is that it
causes minimal damage to the neural tissues as it does not
require any incision on the nerve itself. However, since it
only measures the electrical potential at the surface of a
nerve, it can only obtain a grand summation of the neural
activity in different fascicles. Another variation of the cuff
electrode is the flat interface nerve electrode (FINE) [115].
It works like a clip to apply pressure on the nerve andmake
it flattened into an oval shape, thus increasing its surface
area and reducing the distance from the electrode to the
fascicles. There are also other types of electrodes that are
implanted into the nerves. They offer higher selectivity
due to their direct contact with the fascicles. However,
they are also more invasive and may cause more damage
to the nerve. The longitudinal intrafascicular electrodes
(LIFE) are long, thin wires implanted longitudinally into
the nerve fascicles [116]. On the other hand, the trans-
verse intrafascicular multichannel electrodes (TIME) are
implanted transversely into the nerves, accessing multiple
fascicles at the same time. There is also the Utah Slanted
Electrode Array [117], which consists of an array of elec-
trodes with different lengths, such that when the array
is inserted into the nerve, the tip of the electrode can
get into contact with different fascicles. Recently, there
is also development of the regenerative peripheral neural
interface (RPNI) [118], which uses a muscle graft to wrap
around severed fascicles endings. The nerve endings grow
into and innervate with the graft, creating a new interface
for acquiring neural signal. Of the different types of elec-
trodes introduced, only the cuff electrode is currently used
in commercial FDA-approved systems for vagus nerve
stimulation (e.g. VNS Therapy, Cyberonics, USA). Most
of the others are still in research or undergoing clinical
trials [119].

Studies on the human decoding of peripheral signals are
still very limited, partly due to the challenge of acquiring
nerve signals with sufficient SNR, and may also due to the
cross-talk between neural signals and EMG, as the periph-
eral nerves are usually located in close proximity with
the limb musculature. The majority of existing studies
focus on upper limb decoding, as upper-limb amputation
tends to have a bigger impact on the everyday life of the
patients. Neural recording are performed on the ulnar,
medial and/or the radial nerve. Different types of elec-
trodes are used, but the more common ones in human
decoding are the Utah slate electrode (e.g. in [120, 121])
and the LIFE (e.g. [122–124]).
The analysis of peripheral signals commonly involves

the detection of action potentials in the nerve. The detec-
tion procedures are similar to those used in intracortical
studies, but the step of clustering spikes is not usually
performed. Due to the low SNR of the peripheral sig-
nals, sometimes they need to be first de-noised (e.g. by
wavelet [124]) before detection. The firing rate of the
action potential can then be fed into a regressor (e.g.
in [103, 120–122]) or a classifier (e.g. in [123, 124]) for
decoding. The difference in using a regressor or a classi-
fier lies in whether a discrete gesture or a continuous joint
trajectory is decoded.
Support-vector machine (SVM) is the most commonly

used classifier for peripheral decoding (e.g. in [123, 124]).
For regressor, simple linear regression or a Kalman fil-
ter have been used ([103, 120–122]). Kalman filter allows
the online recursive update of the model in real-time, and
is especially helpful when the measurement of the target
variable is noisy (as often in the case of motor decoding,
since it is not possible to measure the actual movement of
the missing limb).
The issue of obtaining ground truth for training the

decoder is also very important. While for discrete grasp
type classification, it may be sufficient to ask the sub-
ject to imagine holding a particular grasp, for position
decoding a more precise approach have to be used. One
common solution is to show a shadow hand on a screen,
and ask the subject to try to follow the movement of the
hand, either through a manipulandum controlled by the
mirrored movement in the intact hand [121] or through
imagined phantom limb movements only.
Currently, the performance of human peripheral nerve

decoding is still not very satisfactory, partly due to the
difficulty in obtaining clear signal and EMG cross-talk.
In discrete grasp classification, a 4-class classification
task with 3 grasps (power grip, pinch grip, flexion of lit-
tle finger) and rest have obtained 85% accuracy [124],
but state-of-the-art surface electromyogram (EMG) can
already distinguish between 7 gestures [125]. Regression-
based decoding enables proportional control of a pros-
thetic hand, and hence can be more intuitive. Decoding
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based on Kalman filter is able to classify 13 different
movements offline, but only 2 movements can be decoded
online successfully due to the cross-talk between different
degree-of-freedoms (DoFs) [121].
The peripheral nerves offer a promising target for

motor decoding. It is more downstream in the motor
control pathway and contains more specific information
about muscle activities. This property can be poten-
tially exploited to enable high dexterity control. Access to
peripheral nerves is also relatively easier than intracortical
structures. However, peripheral recordings are plagued
by their low SNRs due to the multiple levels of lamina-
tion around an axon. This may be improved by better
electrode designs, and ultra-low-noise neural amplifiers
that can resolve the small amplitude of the nerve signals
(e.g. [126]).

Electromyogram (EMG)
EMG signals are the sum of the electrical activities of
the muscle fibers, which are triggered by spike trains,
i.e. impulses of activation of the innervating motor neu-
rons. EMG signals can be measured in two ways, either
on the surface of the skin above a muscle (surface EMG),

or directly inside a muscle fiber using a needle elec-
trode (intramuscular EMG). An example of EMG data in
different hand gestures is shown in (Fig. 4).
Myoelectric signals have been used as the control

source for decades in prostheses, in which muscle sig-
nals are recorded and translated into control commands
to induce prosthesis motions. Intramuscular EMG sig-
nals are believed to be of a higher resolution and less
susceptible to cross-talks compared with surface EMG
because of its more invasive electrode deployment and
direct targeting of specific muscles.
Despite decades of research and development,

amputees still do not use state-of-the-art myoelectric
prostheses more frequently than the basic, body-powered
hooks [127], and an estimate of 40% of upper-limb
amputees actually reject using a prosthesis [128]. One
primary limitation of clinically available hand-prosthesis
is the number of simultaneously and proportionally
controllable degrees of freedom (DoFs), which is rarely
greater than 2 [129, 130] and has focused mostly on
wrist DoFs without the hand [131], although func-
tions of hand-movement are more essential for daily
living.

Fig. 4 Examples of EMG signal in different hand gestures. Diagram showing EMG signals from 12 surface electrodes in 3 different hand gestures. The
original data are from [217]. a EMG signals from both able-bodied and amputee subjects. The last row shows the hand gestures performed for their
respective EMG segments. b Locations of the 12 EMG electrodes
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Myoelectric control can be categorized into direct con-
trol and pattern recognition control. Direct control refers
to the type of methods that use the amplitude of two
surface EMG inputs from an antagonistic muscle pair to
control the two directions (ON and OFF) at a prosthetic
DoF. Due to the inadequate remaining musculature, signal
crosstalk contamination, and attenuation of deep mus-
cle signals at the skin level, the number of independent
myosites in the residual forearm is typically limited to
two, only allowing the control of one DoF at a time. As a
result of this constraint, patients need to toggle between
modes using quick co-contraction at the myosites to
sequentially control multiple DoFs. Pattern recognition
control relies on machine learning algorithms to train a
separate classifier for each DoF. Multiple classifiers have
been proposed and evaluated, including quadratic dis-
criminant analysis [132], support vector machine [133],
artificial neural network [134], hidden Markov models
[135], Gaussian mixture models [136], and more. How-
ever, as training of the computational models involves the
movement of only 1-DoF, the trained classifiers do not
support simultaneous control of multiple DoFs. A more
promising approach based on machine learning is adopt-
ing a regression-based control scheme (instead of classi-
fication) that inherently facilitates continuous control (as
opposed to ON and OFF), in which a linear or nonlinear
mapping from EMG signal features to the changes of pros-
thesis DoFs is learned. Commonly used methods for this
purpose include artificial neural networks [137], support
vector machine [138], and kernel ridge regression [131].
A major shortcoming of regression-based control is the
requirement for large amount of training data that include
an exhaustive combination of movements of all prosthesis
DoFs, which is impractical to be clinically implemented.
One of the fundamental issues with EMG based pros-

thesis control is the scarcity of independent signals with
which to control prosthesis DoFs. EMG signals are inher-
ently heavily correlated and lacks the resolution and the
information capacity needed for simultaneous and pro-
portional control of multiple DoFs. A potential solution to
this problem is to record motor commands directly from
the peripheral nerves, such as ulnar and median nerves
that directly innervate all five fingers. However, this comes
at the costs of invasive surgical implantation of electrodes
and the risks of tissue infection and nerve damage.
There have been works to extract more invariant and

independent information from EMG signals without inva-
sive recordings. One major group of the efforts focuses
on extracting muscle synergy features from EMG record-
ings, i.e., the complex muscle activation patterns that are
executed by users as high-level control inputs regard-
less of any neurological origin [139]. Muscle synergies are
believed to be capable of describing complex force and
motion patterns in reduced dimensions and can be used

as a robust representation for decoding outputs consis-
tent with user’s intent. Non-negative matrix factorization
(NMF) [140] has been commonly used to extract muscle
synergies frommultichannel EMG signals for simultaneous
and proportional control of multiple DOFs [137, 141–143].
Another group of works focuses on directly extracting the
neural codes of motor neuron activities that govern the
muscle movements through the nerve pathway. This nor-
mally requires advanced recording setups such as high-
density EMG with a sufficient number of recording sites
that are closely spaced. A number of algorithms have been
proposed to extract the underlying neural information
[144, 145]. Among them, convolution kernel compensa-
tion (CKC) has been most extensively used as a type of
multichannel blind source separation method [146–149].
Despite the promise of extracting neural contents from
high-density EMG signals, the demonstration of utiliz-
ing such scheme in online experiments remains difficult.
More in-depth investigation and significant efforts are
needed to build neural interface and achieve direct neural-
based control based on this framework.

Decoding of speech motor activities
Although this review mainly focuses on the decoding
of movement in the extremities, recently there are also
another line of research in decoding motor speech activ-
ities [150, 151]. Speech production is a complex process
involving multiple areas of the brain and dozens of mus-
cles fibers. The muscle activities need to be highly coordi-
nated to produce different speech sounds (i.e. phonemes)
which concatenate together to form intelligible words and
sentences.
Multiple brain regions are associated with language pro-

duction [152], but there are two major areas that have
received more attentions in speech decoding. The left
ventral premotor cortex has been suggested to repre-
sent high-level phonemes in speech [153, 154], while the
ventral sensorimotor cortex contains rich representations
of different speech articulators (e.g. lip, tongue, larynx
etc.) [155, 156]. Therefore most of the decoding efforts
concentrate on these two brain regions.
Historically, various neural signals have been exploited

to decode speech. EEG is non-invasive but its low signal-
to-noise ratio and EMG contamination from facial mus-
cles make it very difficult to be used for decoding speech
[151]. There has been some success in using multielec-
trode array to decode phenomes from multi-unit activi-
ties [157]. However, the cortical representation of speech
articulators cover a large area that may not be suitable
for the very localized recording region of a multielec-
trode array [156, 158]. Furthermore, speech decoding
often require overt speech to serve as the ground truth,
and that requires the subjects to be capable of speak-
ing clearly. It is difficult to justify implanting penetrating
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electrodes in the otherwise healthy eloquent cortex to
conduct experiments. Currently, ECoG obtains a greater
success in speech decoding due to its high signal quality
and less invasive nature. ECoG recordings are also com-
monly employed during brain resection to avoid damage
to the eloquent cortex, so it is well-integrated into exist-
ing surgical procedures. Studies using ECoG for speech
decoding mainly focus on the high gamma band (70-
170Hz), as it has been shown that the high gamma activity
correlates strongly with ensemble firing rate [159].
Earlier speech decoding efforts have focused on the

direct decoding of simple words or phonemes [150, 157,
158, 160–162], but their performance is not very satisfac-
tory. Decoding from a limited dictionary or phoneme set
may produce a higher accuracy (e.g. >80% for 10 words
[160] or 9 phonemes [157]), but it can only cover a very
narrow range of human spoken expressions. Studies try-
ing to decode the full range of English phonemes result
in a lower classification accuracy (10-50% [150, 155, 162]).
The low classification accuracy can be partly mitigated
by incorporating a pronunciation dictionary and language
model (e.g. in [150]), which can limit the output of the
decoder to more probable words.
On the other hand, recently attentions have been shifted

to focus more on decoding the intermediate representa-
tion of speech (e.g. articulator movements) rather than
decoding phonemes directly. Part of the shift may be
motivated by the growing body of evidence suggesting
that the speech motor cortex is able to generate differen-
tial activation patterns encoding the kinematics of speech
articulators [156, 163–165]. Advances in deep learning
has made the prediction of articulator trajectories from
acoustic signal (i.e. acoustic-articulatory inversion) accu-
rate enough to act as the ground-truth for decoding, as
the traditional ways of implanting coils or magnets in the
mouth via articulography is invasive and not compatible
with neural recordings [166]. In one very recent study
[167], a deep neural network is used to decode ECoG fea-
tures to articulator trajectories. The trajectories are then
decoded by another neural network to acoustic features
(e.g. pitch, mel-frequency cepstral coefficients etc.), which
are then converted to audible voice using a voice synthe-
sizer. Even mimed speech can be decoded, although with
a lower accuracy. In another study [168], ECoG features
are decoded into mel-scaled spectrograms directly using a
neural network, then a neural network vocoder is used to
construct the spectrogram into audible waveforms. These
recent results show great promises in decoding human
speech from ECoG signals. A summary of the different
methods of motor decoding is shown in Table 1.

Challenges and future direction
Although great strides have been made in decoding
human motor intention, there are still some significant

challenges remain to be solved. One of the biggest
challenge preventing the adoption of motor decoding out-
side the laboratory is the limited longevity of the decoding
model. Typically, some calibration session is needed to
collect data to train the decoding model, then the model
is tested on subsequent sessions on the same or next few
days. While it is acceptable in a scientific study due to
the limited time and clinical resources available, in actual
daily use, the trained model must be able to maintain its
performance for an extended period of time.
The limited longevity can be due to several reasons.

First is the instability of the electrode interfaces. Micro-
movement of the electrodes may cause a shift in the
feature space. If the decoder is not robust enough, this
shift may result in a deterioration of the decoding per-
formance. Another reason is the different environment
noises injected into the acquired signals. Neural signals
used for decoding usually have a very small amplitude
and thus are susceptible to interference by environment
noises. A cell-phone, fluorescence lamp or other elec-
trical appliances all inject various types of noise in the
acquired signal. As the subjects are performing various
tasks in daily lives, they may come into the influence of
different noise sources not covered in the trained data set
and results in performance degradation. The third reason
is the slow build up of immune response on the elec-
trode interface. Glial scars may encapsulate the electrode
and increase its impedance [174]. Neurodegeneration as a
result of immune response will also lead to a weaker sig-
nal [175]. The model longevity problem is multifaceted
and must be carefully addressed. First, a better electrode
design can help secure the electrode onto its anchor-
ing structure and reduce their relative movement. An
implantable solution will also produce more stable feature
than one that requires repeated dismantling and rein-
stallation every time (e.g. EEG and EMG). Second, the
model should be trained with more robust features and
tested in an environment typical of its everyday use. A
shielded chamber may help acquire very clean signals that
are good for the demonstration of a prototype. However, it
is unlikely that the same quality of signals can be acquired
in everyday environment. Thus it is also important to con-
sider how a decoder is tested rather than just looking at
offline numerical metrics. Thirdly, advancement in the
electrode materials or special organic coatings can poten-
tially reduce its immune response [176]. A flexible instead
of rigid electrode may also cause less neuronal damage
and inflammation [177, 178].
The second challenge is how to account for the dif-

ference in features during open-loop training and close-
loop control. The training dataset is typically obtained
in an open-loop fashion, meaning that the subjects are
instructed to carry out a particular motor imagery with-
out any feedback. However, in actual use the system will
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Table 1 Comparison of different methods for motor decoding

Cortical Peripheral

EEG ECoG Intra-cortical Peripheral nerves EMG

Decoding site Scalp On the surface of
the brain

Penetrated into
cortical tissues
(e.g. PPC, M1)

Peripheral nerves
(e.g. ulna,
median, radial
nerves)

Muscles

Types of
electrode

Disk electrodes Flexible electrode
array

Utah array Cuff, intra-neural
electrodes

Surface
electrodes,needle
electrodes

Typical spatial
resolution [14,
169–173]

5-9 cm <5 mm 3-5 μm 0.5-2 mm >10 mm

Frequency
spectrum

0.5-100Hz 0-500Hz 100Hz-20kHz 0.1-10kHz 0.1Hz-10kHz

Decodable
intention

Movement of
different body
parts, 2D and 3D
direction of
movement,
different
movements of
the same limb,
individual finger
movement

Movement of
different body
parts, different
hand gestures,
2D position and
velocity of
movement,
continous finger
position

2D direction of
movement,
different hand
gestures

Different hand
gestures

Different hand
gestures,
proportional
control of grasps

Signal-to-noise
ratio

Low Medium High Low High

Signal feature Bandpower,
ERS/ERD

Bandpower, LMP Spike firing rate,
LFP

Action potential
firing rate

Various signal
features (e.g. RMS,
variance, mean
absolute value etc.)

Invasiveness Low High Very high Medium Low

Advantages Non-invasive,
easily deployable

Fine-grained and
robust feature,
mature surgical
procedures as
part of epilepsy
treatment

Fine-grained and
robust feature

Less invasive,
potentially
contains detailed
information
about muscle
activations

Non-invasive,
mature
technology, easily
deployable

Disadvantages Low signal-to-
noise ratio, high
variability of
features between
sessions,
time-consuming
to setup

Invasive,
long-term
implantation not
common

Very invasive,
require
implantation
surgery

Low
signal-to-noise
ratio

Limited DoF,
exessive cross-talk
between different
channels

provide feedback to the subject based on the decoder
outputs. When the decoder output is wrong, the subject
may try to correct it deliberately, and that may lead to dis-
crepancy in the offline and online performance [179]. One
of the solutions is to introduce a small calibration session
with feedback at the beginning of the testing session, like
in many EEG-based motor decoding studies. The origi-
nal model is trained with an open-loop paradigm, then
the model is further fine-tuned with feedback in the cal-
ibration session. However, this is only possible if a clear
ground truth is available. For the case in which the ground
truth is not available, e.g. in the case of a tetraplegic
patient where it is very difficult to know the true intention

of the subject, the ReFIT algorithm is another approach
to address this problem [109]. The basic idea of the ReFIT
algorithm is that it tries to construct a pseudo ground
truth by assuming that the subject is constantly trying
to correct the wrong output of the decoder. Thus the
directional vector of the motor intention is taken to be
always pointing towards the target from the current cur-
sor position. Using this method, it is possible to train a
decoder from scratch with as few as 3 min of data [94].
Online calibration with feedback can offer a more realis-
tic prediction on how the decoder is able to perform in
real-life. This approach can also let the decoder quickly
adapt to any shift in the feature space due to change in
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the electrode interface or environmental noises. However,
online calibration demands that the model can be updated
quickly, which puts an constraint on the complexity of the
decoding model. More research is needed to study how to
update the decoder efficiently in real-time.
Besides advancement in decoding algorithms, develop-

ment of new electrodes and neural amplifiers also play a
very important part in advancing motor decoding. Recent
trends in electrode development mainly focus on improv-
ing four areas of electrode design: density, flexibility,
biocompatibility and connectivity. Denser electrode can
improve the spatial resolution of neural recordings. High-
density electrode has been created from silicon wafer and
carbon fiber monofilament [180, 181]. Electrode mate-
rial with a flexibility closer to that of brain tissues can
reduce neural damage and inflammatory response. Many
flexible polymers have been used to make neural elec-
trode, including polyimide [182, 183], parylene [184],
PDMS [185] etc. Biocompatibility is always an important
issue in electrode design because inflammatory response
and encapsulation deteriorate signal quality over time
and undermine the quality of chronic neural recordings.
Strategies to improve biocompatibility including using
inert metals like gold or platinum, using flexible materi-
als to reduce tissue damage, or coating the electrode with
biocompatible materials like conducting polymer [186]
and carbon nanotubes [187]. Read-out connection from
the electrodes will also quickly become a problem when
the density and number of electrode continue to increase.
Incorporating transistors into the electrodes directly to
enable connection multiplexing is one of the ways to mit-
igate this problem [188, 189]. Readers interested in neural
electrode designs are suggested to consult other more
in-depth reviews in this area [119, 172, 176, 177, 190].
Development of neural amplifiers also plays a very

important role in advancing the science of motor decod-
ing, as we first need to acquire a clear neural signal before
any processing and decoding can be done. There are mul-
tiple lines of research trying to improve the different
aspects of the amplifier design. Firstly, the power con-
sumption of an amplifier can be reduced by resource shar-
ing (e.g. one amplifier sharing multiple electrodes [191]
or multiple amplifiers sharing one analog-to-digital con-
vertor [192]), power scheduling (e.g. switching off unused
components [193], dynamically adjusting the amplifier
parameters [194]), or reduction of supply voltage [195].
Secondly, the channel count can be increased by multi-
plexing or integrating amplifiers directly with the elec-
trodes [191, 196]. Thirdly, the circuit noise can be reduced
by trimming [197], chopping [198, 199], auto-zeroing
[200] or frequency-shaping [201] etc.. Fourthly, wire-
less transmission of power or data can be achieved by
an inductive link [193, 202, 203], short-distance power
harvest [193, 204] or even ultrasound [205]. Finally, the

functionality of the amplifier can also be expanded by
integrating more signal processing on-chip, e.g. spike
detection [203], spike sorting [206, 207] and data com-
pression [208, 209]. Interested readers are encouraged to
consult othermore focused reviews in this area [210–213].

Conclusions
Every year, a large number of patients suffer from vari-
ous degrees of movement disability due to amputation or
neurological disorders. Their everyday lives and works are
severely affected.Withmodern neurotechnology, it is now
possible to intercept and decode the motor intention at
different points along the neuro-muscular control path-
way and use that information to drive a prosthetic device
to restore movement. In this paper, we have reviewed the
various signal features and techniques to decode motor
intention in human. Although motor decoding perfor-
mance is improving steadily with the advancements in
electrode configurations, neural amplifier designs and
decoding algorithms, we are still very far away from the
goal of achieving naturalistic and dexterous control like
our native limbs. The eventual successful clinical appli-
cation of motor decoding will depend on the concerted
efforts of both healthcare and engineering professionals,
and likely also needs to be tailored-made according to the
conditions and ability of each patient. We hope our review
can provide a useful overview of the current state-of-the-
art in motor decoding, so that researchers interested in
the field can be aware of the neural features that they can
exploit, potential problems they may encounter and the
available solutions that they can adopt.
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