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Abstract 

Background:  Alzheimer’s disease (AD) is a fatal neurodegenerative disorder, and the lesions originate in the entorhi-
nal cortex (EC) and hippocampus (HIP) at the early stage of AD progression. Gaining insight into the molecular mech-
anisms underlying AD is critical for the diagnosis and treatment of this disorder. Recent discoveries have uncovered 
the essential roles of microRNAs (miRNAs) in aging and have identified the potential of miRNAs serving as biomarkers 
in AD diagnosis.

Methods:  We sought to apply bioinformatics tools to investigate microarray profiles and characterize differentially 
expressed genes (DEGs) in both EC and HIP and identify specific candidate genes and pathways that might be impli-
cated in AD for further analysis. Furthermore, we considered that DEGs might be dysregulated by miRNAs. Therefore, 
we investigated patients with AD and healthy controls by studying the gene profiling of their brain and blood sam-
ples to identify AD-related DEGs, differentially expressed miRNAs (DEmiRNAs), along with gene ontology (GO) analysis, 
KEGG pathway analysis, and construction of an AD-specific miRNA–mRNA interaction network.

Results:  Our analysis identified 10 key hub genes in the EC and HIP of patients with AD, and these hub genes were 
focused on energy metabolism, suggesting that metabolic dyshomeostasis contributed to the progression of the 
early AD pathology. Moreover, after the construction of an miRNA–mRNA network, we identified 9 blood-related 
DEmiRNAs, which regulated 10 target genes in the KEGG pathway.

Conclusions:  Our findings indicated these DEmiRNAs having the potential to act as diagnostic biomarkers at an early 
stage of AD.
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Introduction
Alzheimer’s disease (AD) is the most frequent cause of 
dementia, accounting for 60–80% of all such cases [1]. An 
estimated 47 million people were affected by dementia in 
2015, but this number is projected to triple by 2050 [2]. 
AD is an age-related progressive neurodegenerative dis-
order, and the most common type is the late-onset, also 
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referred to as sporadic AD, which is defined as AD with 
an age-onset > 65  years old, and is ascribed to a com-
plex combination of an individual’s genes, environment, 
and lifestyle habits. Whereas, the early-onset AD, also 
called familial AD (FAD), occurs at onset ages ranging 
from 30–65  years old, and its rarely hereditary involv-
ing the amyloid precursor protein, presenilin-1 (PS1), 
presenilin-2 (PS2) and apolipoprotein E (APOE) ɛ4 allele 
genes [3, 4]. More than 90% of AD cases are sporadic, 
characterized by late-onset and it is driven by a complex 
interplay between genetic and environmental factors, 
approximately 70% of sporadic cases are risk associated 
with genetic factors involvement [5]. For example, the 
APOE gene, one of the famous AD-related genes, has 
three variants (ε2, ε3, ε4), and APOE ε4 is considered as 
the single highest risk for sporadic AD, whereas APOE ε2 
is associated with decreased risk of AD [6].

The development of intraneuronal lesions at vulner-
able brain sites is central to AD. The main lesions include 
hyperphosphorylated tau protein, neurofibrillary tangles 
(NFTs) in cell bodies, and neuropil threads in neuronal 
processes [7–9]. Braak staging is extensively used to 
classify the degree of semiquantitative measure of NFTs 
pathology in the brain autopsy of AD. The pathology is 
performed using a modern silver technique and evalu-
ated the development and the topographic expansion of 
the AD lesions [10]. In recent years, a revised procedure 
is used to facilitate the uniform application of the stag-
ing procedure, which is processed by immunostaining for 
hyperphosphorylated tau protein AT8 [11]. The pathol-
ogy of the progression of AD begins in structures of the 
entorhinal cortex (EC) and hippocampus (HIP) in the 
prodromal stage (Braak staging I-II). In this stage, the 
lesions mainly intrude into transentorhinal, entorhinal 
region, and hippocampal Ammon’s horn (CA1/CA2). 
After that, in the early-moderate stage (Braak staging 
III-IV), the lesions invade into the limbic area and the 
mature neocortex. In the moderate-late stage (Braak 
staging V-VI), the neocortical pathology fully extends 
into the motor and sensory regions of neocortical regions 
[10, 11].

Recent discoveries indicate that comprehensive bio-
informatical analyses could provide novel therapeutic 
targets participating in the pathology of AD [12–15]. 
However, the diagnosis using AD biomarkers are impos-
sible to detect at early stages of AD, making the identi-
fication of early and noninvasive biomarkers for AD still 
very challenging. MicroRNAs (miRNAs) are a class of 
small non-coding RNAs (ncRNAs) that acts as impor-
tant post-transcriptional regulators of gene expression 
by targeting mRNAs. In the last decade, miRNAs-medi-
ated regulation has signified a new target of therapeu-
tic prospects [16], with numerous pieces of evidence 

undoubtedly showing the involvement of miRNAs in 
both the pathophysiology and pharmacotherapy of neu-
rodegenerative disorders [17], and also uncover the cru-
cial roles of miRNAs during aging, with the identification 
of more miRNAs as biomarkers in the diagnosis of AD 
[12, 18].

Considering the lesions begins in EC and HIP at the 
early stage of AD, and circulating miRNAs in biofluids 
could be detected readily and acted as biomarkers in AD 
diagnosis [19, 20]. In this study, we applied bioinformat-
ics tools to investigate microarray profiles and identified 
differentially expressed genes (DEGs) in both EC and 
HIP, and crucial genes and pathways were analyzed fur-
ther. In addition, we presumed that these DEGs could 
be dysregulated by miRNAs in blood of patients with 
AD; thus, an AD-specific miRNA–mRNA network was 
constructed to identify differentially expressed miRNAs 
(DEmiRNAs) and to explore their involvement in AD.

Materials and methods
Microarray expression profiling and differentially 
expressed genes screening
The workflow of this study was described as the sche-
matic diagram in Fig. 1. Briefly, a dataset GSE5281 con-
taining mRNA expression profiles of EC and HIP samples 
was downloaded from the Gene Expression Omnibus 
(GEO, https://​www.​ncbi.​nlm.​nih.​gov/​geo) [21, 22]. AD 
brain samples were obtained from patients with clinically 
and neuropathologically diagnosed late-onset AD (15 
males and 18 females) with a mean age of 79.9 ± 6.9 years 
[22]. Normal brain samples were from individuals clas-
sified as neurologically normal (10 males and 4 females) 
with a mean age of 79.8 ± 9.1 years [21]. In total, 10 EC 
and 10 HIP AD samples along with 13 EC and 13 HIP 
normal brain samples were used in this study. The raw 
data was normalized and utilized to screen DEGs by 
using the Limma package [23] in R software (https://​
cran.r-​proje​ct.​org/). A |Log2FC(Fold Change)|≥ 1 and 
adjusted to a p-value < 0.05 were considered as statisti-
cally significant. The miRNAs dataset was derived from 
the microarray experiment by Petra Ledinger et al. [24]. 
In this dataset, the expression of miRNAs in peripheral 
blood of 48 patients with AD and 22 unaffected controls 
was analyzed, and 140 significantly dysregulated mature 
miRNAs were displayed.

Heatmaps and Venn diagram drawing
The pheatmap package (https://​cran.r-​proje​ct.​org/​web/​
packa​ges/​pheat​map/) in R software was used to plot 
the heatmap of DEGs. The intersection part of DEGs or 
DEmiRNAs was plotted as a Venn diagram by using the 
VennDiagram package in R software (https://​cran.r-​proje​
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ct.​org/​web/​packa​ges/​VennD​iagram) or TBtools software 
[25].

Gene ontology and pathway enrichment analysis
Gene ontology (GO) enrichment analysis and KEGG 
pathway analysis were used to evaluate the function 
and biological processes of DEGs. GO and KEGG anal-
yses were performed by the online website Database 
for Annotation, Visualization, and Integrated Discov-
ery (DAVID, https://​david.​ncifc​rf.​gov/) [26, 27]. Gene 
counts ≥ 3 and p-value < 0.05 were set as the screening 
threshold.

Protein–protein interaction network construction and hub 
genes identification
We evaluated the functional associations and the inter-
active relationships among the DEGs or target genes of 
DEmiRNAs by uploading all the genes into the online 
STRING database (https://​string-​db.​org/) [28] for 
the prediction of protein–protein interactions (PPI). 

Interactions with a combined score > 0.4 were consid-
ered significant. The PPI network of DEGs was visualized 
using Cytoscape software [29].

The hub genes were extracted by cytoHubba plugin in 
Cytoscape software [30]. A total of 12 topological analy-
ses were provided by this plugin, and three most widely 
used analysis methods were used in our work, as previ-
ously report [31], including maximal clique centrality 
(MCC), the density of maximum neighborhood compo-
nent (DMNC), and maximum neighborhood component 
(MNC). The identified top 20 hub genes were selected 
using each method, and the overlapping genes were 
determined as hub genes using the Venn diagrams by 
TBtools software [25].

The significant modules in the PPI network were iden-
tified by using molecular complex detection (MCODE) 
plugin in Cytoscape software, which could find clusters 
based on their topology to recognize highly intercon-
nected regions in a network [32]. The parameters of 
MCODE were set as previously reported, as follows: 
MCODE score ≥ 4, degree cut-off = 2, node score cut-
off = 0.2, max depth = 100, k-core = 2 [33].

miRNA‑target genes prediction and miRNA–mRNA 
network construction
The potential miRNAs for the selected hub genes were 
predicted using online miRNet software (http://​www.​
mirnet.​ca/). miRNet provides a comprehensive analysis 
of high-quality miRNA-target interaction data based on 
11 different miRNA databases, including TarBase, miR-
TarBase, miRecords, miRanda, miR2Disease, HMDD, 
PhenomiR, SM2miR, PharmacomiR, EpimiR, and star-
Base [34]. The miRNA–mRNA interaction network was 
analyzed and constructed using Cytoscape software [29].

Statistical analysis
All statistical analyses were performed in Graphpad 
Prism 8 software (GraphPad Software Inc., San Diego, 
CA, USA). Comparison of target genes was performed 
using one-sample Student’s t-tests for parametric data, 
whereas one-sample Wilcoxon tests were used to meas-
ure nonparametric data. The results were considered sig-
nificant when p < 0.05.

Results
Identification of common DEGs in EC and HIP
A total of 2146 DEGs were identified in the EC sam-
ples, including 985 upregulated DEGs and 1161 down-
regulated DEGs (Fig.  2A and Supplementary Data.1). A 
total of 1189 DEGs were identified in the HIP sample, 
including 610 upregulated DEGs and 579 downregulated 
DEGs (Fig. 2B and Supplementary Data.2). After identi-
fication of the common DEGs (CDEGs) in EC and HIP, 

Fig. 1  The schematic diagram of this study
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we found 168 CDEGs in EC and HIP (Supplementary 
Data.3), including 79 upregulated CDEGs (Fig.  2 C, D) 
and 89 downregulated CDEGs (Fig. 2 E, F). The heatmaps 
of upregulated CDEGs (Fig.  2 D) and downregulated 
CDEGs (Fig. 2 F) further presented the expression level 
of these CDEGs in EC and HIP.

Functional annotation of common DEGs
The GO enrichment analysis was conducted three items. 
In the biological process (BP) category, the GO terms 
were mainly associated with canonical glycolysis, cellular 

amino acid biosynthetic process, ATP hydrolysis-coupled 
proton transport, glycolytic process, regulation of macro-
autophagy, and gluconeogenesis (Fig. 3A). In the cellular 
component (CC) group, the GO terms were mainly asso-
ciated with myelin sheath, nucleoplasm, mitochondrion, 
extracellular exosome, nuclear membrane, and replica-
tion fork (Fig. 3B). In the molecular function (MF) group, 
the GO terms mainly involved in proton-transporting 
ATPase activity, protein binding, protein complex bind-
ing, and androgen receptor binding (Fig.  3C). KEGG 
pathway enrichment analysis showed the CDEGs were 

Fig. 2  A total of 2146 differentially expressed genes (DEGs) were identified in the EC samples (A), and 1189 DEGs were identified in the HIP samples 
(B). Then 79 upregulated common DEGs (CDEGs) were found in EC and HIP (C), the heatmap (D) showed the expression level of these upregulated 
CDEGs. Also, 89 downregulated CDEGs (E) were found in both EC and HIP, the heatmap (F) revealed the expression level of these downregulated 
CDEGs
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mainly enriched in synaptic vesicle cycle, biosynthesis 
of antibiotics, carbon metabolism, biosynthesis of amino 
acids, oxidative phosphorylation, and AD (Fig. 3D).

Hub gene analysis and PPI network construction
To get hub genes of CDEGs, the cytoHubba plugin in 
Cytoscape software was used to extract hub genes. The 
cytoHubba plugin can score and rank nodes in a network 

Fig. 3  Significant common differentially expressed genes (CDEGs) were enriched in the biological process (BP) (A), cellular component (CC) (B), and 
molecular function (MF) (C) terms. KEGG pathway analysis showed that the CDEGs were mainly enriched in the synaptic vesicle cycle, biosynthesis 
of antibiotics, carbon metabolism, biosynthesis of amino acids, oxidative phosphorylation, and Alzheimer’s disease (D)
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based on different algorithms [30]. A total of 12 scor-
ing methods were provided in the cytoHubba plugin 
to analyze a network, and the top-ranked nodes of a 

particular scoring method were identified as hub genes. 
In this work, we identified the 20 top-ranked nodes 
as hub genes using the three most widely used analysis 

Fig. 4  A protein–protein interaction (PPI) network of all common differentially expressed genes (CDEGs) included 96 nodes and 144 edges (A). One 
significant module was selected using the MCODE plugin, this module consisted of 10 nodes and 25 edges (B). Using miRNet online tools, 1047 
predicted differentially expressed microRNAs (DEmiRNAs) of 79 upregulated CDEGs (C), and 832 predicted DEmiRNAs of 89 downregulated CDEGs 
(D) were identified in EC and HIP samples. The DEmiRNAs from EC and HIP were intersected with the DEmiRNAs from blood samples, 55 common 
DEmiRNAs (CDEmiRNAs) were further identified, including 30 downregulated CDEmiRNAs (C) and 25 upregulated CDEmiRNAs (D)
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algorithms, namely MCC, DMNC, and MNC. Then, the 
15 overlapping hub genes were determined (Fig. S1A), 
including PYGB, GPI, PFKFB3, ATP5C1, ENO1, ATP5B, 
EIF3G, ATP6V1H, PMPCA, ALDOC, ME3, ATP6V0D1, 
ATP6V1E1, NDUFV1, and PFKM. Then, a PPI network 
of these hub genes were constructed using the online 
STRING database and visualized using Cytoscape soft-
ware (Fig. S1B). EIF3G didn’t interact with other factors 
in STRING database, so EIF3G was excluded in this PPI 
network.

Next, we explored the significant modules and hub 
genes by using the MCODE plugin in Cytoscape. After 
constructing of a PPI network of all CDEGs, which 
includes 96 nodes and 144 edges (Fig. 4A), one significant 
module from the PPI network was screened (Fig.  4B). 
This module consisted of 10 nodes and 25 edges, and all 
nodes within this module also existed in the hub genes, 
which were identified by the cytoHubba plugin. We 
inferred that these 10 nodes acted as key hub genes in all 
of the CDEGs (Fig. 4B and Table 1).

Prediction of miRNAs and identification of common 
DEmiRNAs
Further, we explored the predicted miRNAs of CDEGs 
in EC and HIP using miRNet online tools [34]. We 
found 1047 predicted differentially expressed micro-
RNAs (DEmiRNAs) of the 79 upregulated CDEGs 
(Fig.  4C, Supplementary Data. 4), and 832 pre-
dicted DEmiRNAs of the 89 downregulated CDEGs 
(Fig. 4D, Supplementary Data. 5). Also, 140 specifically 

dysregulated DEmiRNAs (58 downregulated and 82 
upregulated DEmiRNAs) in blood samples of patients 
with AD were identified and used in our work, accord-
ing to the report by Petra Leidingger et  al. (Supple-
mentary Data. 6) [24]. The DEmiRNAs from EC and 
HIP were intersected with the DEmiRNAs from blood 
samples; the common DEmiRNAs (CDEmiRNAs) 
were identified. In total, we found 55 CDEmiRNAs 
(Supplementary Data. 7), including 30 downregulated 
CDEmiRNAs (Fig.  4C) and 25 upregulated CDEmiR-
NAs (Fig. 4D).

Identification of 10 target genes in the KEGG pathway 
and construction of an miRNA–mRNA network
Finally, we identified further, the target genes of the 55 
CDEmiRNAs. In total, we found 59 target genes of all 
CDEmiRNAs, including 30 upregulated target genes of 
the 30 downregulated CDEmiRNAs (Supplementary 
Data. 8), and 29 downregulated target genes of the 25 
upregulated CDEmiRNAs (Supplementary Data. 9). 
GO enrichment analysis, and KEGG pathway analysis 
of 59 target genes was processed further. In the BP cat-
egory, the GO term was mainly associated with canon-
ical glycolysis, glycogen catabolic process, protein 
folding, and glycolytic process (Fig. 5A). In the CC cat-
egory, the GO term was focused on the myelin sheath, 
cytosol, nucleoplasm, extracellular exosome, nuclear 
membrane, cytoplasm (Fig.  5B). In MF, the GO term 
was associated with protein binding, kinase binding, 
and poly(A) RNA binding (Fig. 5C). The KEGG path-
way enrichment analysis showed that the target genes 
mainly enriched in AD, carbon metabolism, glycolysis/
gluconeogenesis, and Huntington’s disease (Fig. 5D).

We found 10 target genes involved in the KEGG 
pathway, including CALM1, AP2M1, NDUFV1, 
ENO1, PFKM, ATP5B, ATP5C1, GPI, ME3, CDK5R1 
(Table 2). Among these 10 target genes, ENO1, PFKM, 
ATP5B, ATP5C1, and GPI also belonged to the 10 
key hub genes (Fig.  4B and Table  1). Subsequently, 
we measured the expression level of these 10 target 
genes in the AD samples, and each gene was com-
pared with the mean expression level in the control 
individuals. We found that, except CDK5R1, which 
was an increased gene, the other 9 target genes all 
decreased in expression in the AD samples than that 
in the control samples (Fig.  5E). Moreover, we found 
that 9 CDEmiRNAs were involved in the regulation 
of these 10 target genes (Table  3). For better visuali-
zation, we constructed the miRNA–mRNA network 
of target genes and CDEmiRNAs using Cytoscape 
software (Fig.  5F). The 9 downregulated target genes 
were regulated by hsa-miR-4659a-3p, hsa-miR-625-5p, 
hsa-miR-484, hsa-miR-125a-5p, hsa-miR-339-3p, 

Table 1  Ten key hub genes were screened by using cytoHubba 
and MCODE plugins in Cytoscape software. All these genes were 
involved in energy metabolism. GPI, PYGB, PFKM, ALDOC, and 
ENO1 were glycolytic metabolism-related genes. ATP5C1, ATP5B, 
ATP6V1E1, ATP6V0D1, and ATP6V1H were ATP metabolism-
related genes

Symbols Full Names Gene IDs

GPI Glucose-6-phosphate isomerase 2821

PYGB Glycogen phosphorylase B 5834

PFKM Phosphofructokinase, muscle 5213

ATP5C1 (ATP5F1C) ATP synthase F1 subunit gamma 509

ATP5B (ATP5F1B) ATP synthase F1 subunit beta 506

ATP6V1E1 ATPase H + transporting V1 subunit E1 529

ALDOC Aldolase, fructose-bisphosphate C 230

ATP6V0D1 ATPase H + transporting V0 subunit d1 9114

ENO1 Enolase 1 2023

ATP6V1H ATPase H + transporting V1 subunit H 51,606
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hsa-miR-30b-5p, hsa-miR-378a-5p, and hsa-miR-
30a-5p, while the increased gene, CDK5R1, was regu-
lated by hsa-miR-26b-5p.

Discussion
EC and HIP at the early stage of AD pathology
AD is the single, most prevalent, irreversible cause of 

Fig. 5  Significant biological process (BP) (A), cellular component (CC) (B), and molecular function (MF) (C) terms enriched in target genes of 55 
common differentially expressed microRNAs (CDEmiRNAs). KEGG pathway analysis showed the target genes were mainly enriched in Alzheimer’s 
disease, carbon metabolism, glycolysis/gluconeogenesis, and Huntington’s disease (D). 10 target genes were found in the KEGG pathway analysis, 
including CALM1, AP2M1, NDUFV1, ENO1, PFKM, ATP5B, ATP5C1, GPI, ME3, and CDK5R1 (E). CDK5R1 was an increased gene, the other 9 target 
genes were all decreased its expression in AD samples, *** p < 0.001, **** p < 0.0001. An miRNA–mRNA network of target genes discovered 
that 9 CDEmiRNAs were involved in the regulation of these 10 target genes (F). The nine downregulated target genes were regulated by 
hsa-miR-4659a-3p, hsa-miR-625-5p, hsa-miR-484, hsa-miR-125a-5p, hsa-miR-339-3p, hsa-miR-30b-5p, hsa-miR-378a-5p, and hsa-miR-30a-5p, and the 
increased CDK5R1 was regulated by hsa-miR-26b-5p, red labels represented upregulated miRNAs and target genes, and green labels represented 
downregulated miRNAs and target genes
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dementia, and has become an immense global societal 
concern. Generally, AD is divided into familial and spo-
radic cases, with the latter having no familial aggregation, 
with ~ 70% estimate of AD heritability associated factors 
[3–5]. The pathology progression of AD begins at EC 
and HIP based on Braak staging I-VI, relative to disease 
severity. Moreover, MRI studies in patients with AD also 
found the apparent volume losses in EC and HIP [35–37]. 
Atrophy in EC and HIP reflects the early pathological 
changes of AD, and the changes in EC and HIP provides 
potential markers in AD diagnosis [38–40]. In this study, 
the first purpose was to find the DEGs in EC and HIP, as 

shown in the schematic diagram (Fig. 1). We found 168 
CDEGs in both EC and HIP, including 79 upregulated 
(Fig.  2C, D) and 89 downregulated (Fig.  2E, F) CDEGs. 
To further explore the potential functions of these 
CDEGs, GO enrichment and KEGG pathway analyses 
were performed. GO enrichment demonstrated these 
CDEGs were associated with various energy metabolism 
pathways, including canonical glycolysis, ATP hydrolysis-
coupled proton transport, glycolytic process, and glu-
coneogenesis (Fig.  3A-C). In KEGG pathway analysis, 
CDEGs also could be enriched in oxidative phosphoryla-
tion (Fig. 3D). Endogenous reactive oxygen species (ROS) 
are the byproducts of oxidative phosphorylation that 
form as a result of inefficient oxidative phosphorylation. 
Studies have demonstrated that chronic oxidative stress 
contributes to the onset of AD and antioxidants can elim-
inate ROS and improve neuron survival to restore cogni-
tion in AD [41, 42]. Considering impaired brain energy 
metabolism and oxidative stress are implicated in cog-
nitive decline in AD, our analysis results suggested that 
the contribution of these CDEGs in AD progression was 
worthy of further investigation.

Hub genes involved in the energy metabolism
After that, we further identified 10 key hub genes (GPI, 
PYGB, PFKM, ATP5C1, ATP5B, ATP6V1E1, ALDOC, 
ATP6V0D1, ENO1, ATP6V1H; Fig.  4B and Table  1), 
and found these key hub genes were involved in energy 
metabolism and could be divided into two groups. The 
first group was glycolytic metabolism-related genes, 
including GPI, PYGB, PFKM, ALDOC, and ENO1. GPI 
is a member of the glucose phosphate isomerase pro-
tein family. In the cytoplasm, GPI works as a glycolytic 
enzyme [43]. However, outside the cell, GPI functions as 
a neurotrophic factor called neuroleukin, playing the role 

Table 2  Ten target genes were involved in the KEGG pathway, including CALM1, AP2M1, NDUFV1, ENO1, PFKM, ATP5B, ATP5C1, GPI, 
ME3, CDK5R1, which were mainly enriched in Alzheimer’s disease, carbon metabolism, glycolysis/gluconeogenesis, and Huntington’s 
disease. The bold label (ENO1, PFKM, ATP5B, ATP5C1, and GPI) meant these genes also belonged to the key hub genes

Symbols Full Names Gene IDs

CALM1 Calmodulin 1 801

AP2M1 Adaptor related protein complex 2 subunit mu 1 1173

NDUFV1 NADH:ubiquinone oxidoreductase core subunit V1 4723

ENO1 Enolase 1 2023

PFKM Phosphofructokinase, muscle 5213

ATP5B (ATP5F1B) ATP synthase F1 subunit beta 506

ATP5C1 (ATP5F1C) ATP synthase F1 subunit gamma 509

GPI Glucose-6-phosphate isomerase 2821

ME3 Malic enzyme 3 10,873

CDK5R1 Cyclin dependent kinase 5 regulatory subunit 1 8851

Table 3  Nine common differentially expressed miRNAs 
(CDEmiRNAs), which were predicted to regulate 10 target genes 
in the KEGG pathway

Accession miRNAs IDs Target 
genes 
symbols

MIMAT0004702 hsa-miR-339-3p ATP5B

MIMAT0002174 hsa-miR-484 NDUFV1

MIMAT0000420 hsa-miR-30b-5p ATP5C1

MIMAT0019727 hsa-miR-4659a-3p CALM1

MIMAT0003294 hsa-miR-625-5p CALM1

MIMAT0000731 hsa-miR-378a-5p GPI

MIMAT0000087 hsa-miR-30a-5p ME3

MIMAT0000443 hsa-miR-125a-5p PFKM

MIMAT0002174 hsa-miR-484 ENO1

MIMAT0000443 hsa-miR-125a-5p ENO1

MIMAT0002174 hsa-miR-484 AP2M1

MIMAT0003294 hsa-miR-625-5p AP2M1

MIMAT0004702 hsa-miR-339-3p ATP5B

MIMAT0002174 hsa-miR-484 NDUFV1

MIMAT0000420 hsa-miR-30b-5p ATP5C1

MIMAT0000083 hsa-miR-26b-5p CDK5R1
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of a cytokine and neuroprotective factor. Knockdown of 
GPI in neuronal cells leads to caspase-dependent apop-
tosis [44, 45]. PYGB is a glycogen phosphorylase that is 
predominantly expressed in the brain but also expressed 
in several types of cancer [46, 47]. The brain PYGB func-
tions as an enzyme that metabolizes glycogen to pro-
vide energy for an organism in an emergency state [48, 
49]. PFKM, ALDOC, and ENO1 are also key regulatory 
enzymes of the glycolytic cycle. PFKM is a muscle type 
phosphofructokinase (PFK) involved in the conversion 
of fructose-6-phosphate to fructose-1,6-diphosphate 
[50, 51]. AD is a progressive neurodegenerative disorder 
characterized by misfolded Aβ, aggregated Aβ deposi-
tion causes impairments in brain regions responsible 
for learning and memory, and accumulation of Aβ in the 
brain is the primary influence driving AD pathogenesis 
and strongly correlated with the onset of AD [52, 53]. A 
study has shown that virgin olive oil upregulated the gene 
expression of PFKM to protect against the Aβ-induced 
cytotoxicity and oxidative stress by enhancing energy 
metabolism in vitro [54]. ALDOC catalyzes the reversible 
aldol cleavage of fructose-1,6,-biphosphate and fructose-
1-phosphate to dihydroxyacetone phosphate and either 
glyceraldehyde-3-phosphate or glyceraldehyde [55, 56]. 
ALDOC is highly expressed in some tumor cells [57, 58], 
and cerebral spinal fluid (CSF) ALDOC is also expressed 
markedly higher after traumatic brain injury (TBI) [59]. 
ENO1, also known as 2-phospho-D-glycerate hydrolase, 
is a glycolytic enzyme that is expressed in most tissues 
and responsible for the conversion of 2-phosphoglyceric 
acid to phosphoenolpyruvic acid in the glycolytic path-
way. A previous study using Redux proteomics reported 
dysregulation of ENO1 in cases of mild cognitive impair-
ment (MCI) and is associated with modified hippocam-
pus proteins and malfunction, indicating that inactivation 
of ENO1 leads to the development of AD from MCI [60].

The other five key hub genes were associated with ATP 
synthesis and cellular transport. ATP5C1 and ATP5B 
encode a subunit of mitochondrial ATP synthase. It has 
been reported that the mitochondrial ATP synthase 
dysfunction associates with AD progression, proven by 
many studies [61–63], and the mitochondrial ATP syn-
thase could also act as a drug target for aging and demen-
tia [64]. Moreover, ATP5C1 and ATP5B were proved as 
hub genes in AD progression [14, 65, 66]. ATP6V1E1, 
ATP6V0D1, and ATP6V1H encode a component of vacu-
olar ATPase (V-ATPase), which mediates acidification 
of eukaryotic intracellular organelles [67–69]. V-ATPase 
is ATP-driven proton pumps which function to acidify 
intracellular compartments, and V-ATPase dependent 
acidification is necessary for intracellular processes such 
as protein sorting, intracellular membrane trafficking, 
protein degradation, and neurotransmitter uptake [69]. It 

is essential to maintain a highly acidic pH in lysosomes 
lumen in order to perform its digestive function [70]. Lys-
osomal pH gradients are maintained by V-ATPase, and 
the lysosomal system in neurons is easily affected when 
lysosomal hydrolysis is impaired. Thus, the dysfunction 
of V-ATPase would indeed affect lysosomal acidification 
and disrupts its clearance of substrates, likely to lead to 
failure in autophagy in AD [71, 72].

It is confirmed that AD is a neurodegenerative disease 
that not only impairs cognitive function but also disturbs 
energy, glucose, lipid metabolism [22, 73]. Impaired func-
tioning of the glycolytic pathway would indeed weaken 
the integrity of astrocytic-neuronal partnership, impair 
the brain homeostasis, and also perturbed amyloid clear-
ance [74]. Metabolic deficits of glucose availability and 
mitochondrial function are well-known hallmarks in the 
aging brain and AD [75]. Brain metabolic dyshomeosta-
sis plays a pivotal role in AD pathology; hence, the novel 
trends of AD therapy are focused on energy metabolism 
and regulation, including ketogenic diet [76], pharmaco-
logical, lifestyle interventions [77], and has promoted the 
development of some new drugs [78]. Energy and glucose 
metabolism alterations occur at the early stage of AD 
and strongly influence the progression of AD [79, 80]; 
our findings revealed that the functions of these 10 key 
hub genes are mainly to maintain the metabolic homeo-
stasis. However, we still need more evidence to further 
prove that the dysregulation of these energy metabolism-
related genes in EC and HIP could contribute to the early 
progression of AD.

Crosstalk between miRNAs and mRNAs
miRNAs are a group of small and non-coding RNAs, 
each consisting of only 20–22 nucleotides [81]. miR-
NAs regulate more than 60% of protein expression and 
are associated with many neurodegenerative diseases. 
Accumulating evidence indicates that dysregulation of 
specific miRNAs involved in key regulatory genes is asso-
ciated with pathogenesis and progression in AD; there-
fore, miRNAs-mediated regulation provides a new target 
of significant therapeutic prospects [16, 17]. miRNAs 
are stable enough in biological fluids such as the serum, 
plasma, and CSF; thus, their analysis in body fluids is a 
relatively simple, safe, and noninvasive approach [82, 83]. 
Analysis of miRNAs in body fluids of patients with AD 
seems to be useful, and circulating miRNAs is as reli-
able to serve as potential biomarkers in AD diagnosis [12, 
84–86].

As shown in the schematic diagram of Fig.  1, to fur-
ther explore the blood-related miRNAs, which could 
act as biomarkers in AD, the predicted DEmiRNAs 
from EC and HIP were intersected with the DEmiR-
NAs from blood samples, and a total of 55 CDEmiRNAs 
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were identified (Fig.  4C, D). Then, 59 target genes of 
55 CDEmiRNAs were further identified. Moreover, 
we found 10 target genes, including CALM1, AP2M1, 
NDUFV1, ENO1, PFKM, ATP5B, ATP5C1, GPI, ME3, 
CDK5R1 (Fig.  5E and Table  2), which were mainly 
enriched in AD, carbon metabolism, glycolysis/gluco-
neogenesis, and Huntington’s disease, as revealed in the 
KEGG pathway analysis (Fig.  5D). Intriguingly, ENO1, 
PFKM, ATP5B, ATP5C1, and GPI also belonged to the 10 
key hub genes (Fig. 4B and Table 1).

After construction of an miRNA–mRNA network, 
we found these 10 target genes to be regulated by 
hsa-miR-4659a-3p, hsa-miR-625-5p, hsa-miR-484, 
hsa-miR-125a-5p, hsa-miR-339-3p, hsa-miR-30b-5p, 
hsa-miR-378a-5p, hsa-miR-30a-5p, and hsa-miR-26b-5p 
(Fig. 5F and Table 3). In these 9 miRNAs, the expression 
level of hsa-miR-26b-5p was downregulated in the serum 
of patients with AD, and identified as the key miRNA 
associated with AD [86, 87], and a meta-analysis of gene 
expression data predicted the dysregulation of hsa-miR-
30a-5p in the HIP of brains with AD [88]. We suspected 
that at the early stage of AD progression, the disease-
associated miRNAs in blood or other body fluid could be 
transported and released into the brain tissues, such as 
EC and HIP. Then, these miRNAs dysregulated the target 
gene expression to disturb the metabolism homeostasis 
of brain tissues. Thus, these miRNAs, such as has-miR-
26b-5p and has-miR-30a-5p, also have the potential to 
act as diagnostic biomarkers. However, more evidence 
of these miRNAs functions and regulation mechanisms 
needs to be explored further in future studies.

Conclusions
Our study identified 10 key hub genes in EC and HIP 
of patients with AD, discovered to be involved in the 
glycolytic pathway or ATP metabolism, suggesting the 
metabolic dyshomeostasis contributed to the early AD 
progression. Moreover, after the construction of an 
miRNA–mRNA network, we identified 9 blood-related 
miRNAs, which regulated 10 target genes from the 
KEGG pathway, indicating that these miRNAs, such as 
has-miR-26b-5p and hsa-miR-30a-5p, had potential to 
act as diagnostic biomarkers. However, this research 
is only processed bioinformatics mining, our analysis 
results need to be verified by more samples especially 
those at the early stage of AD, and also be investigated in 
more basic and clinical studies in future.
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