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Abstract

Recently, electrical stimulation as a physical stimulus draws lots of attention. It shows great potential in disease
treatment, wound healing, and mechanism study because of significant experimental performance. Electrical
stimulation can activate many intracellular signaling pathways, and influence intracellular microenvironment, as a
result, affect cell migration, cell proliferation, and cell differentiation. Electrical stimulation is using in tissue
engineering as a novel type of tool in regeneration medicine. Besides, with the advantages of biocompatible
conductive materials coming into view, the combination of electrical stimulation with suitable tissue engineered
scaffolds can well combine the benefits of both and is ideal for the field of regenerative medicine. In this review,
we summarize the various materials and latest technologies to deliver electrical stimulation. The influences of
electrical stimulation on cell alignment, migration and its underlying mechanisms are discussed. Then the effect of
electrical stimulation on cell proliferation and differentiation are also discussed.
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Background
Regenerative medicine and tissue engineering are new
scientific and technological undertakings of biomedicine
that combine aspects of medicine, cell, and molecular
biology, materials science and bioengineering, to regen-
erate, repair or replace tissues or organs [1, 2]. The three
key factors of regenerative medicine and tissue engineer-
ing include seed cell, scaffold, and stimulating factor [3].
Tissue engineering scaffold could deliver specific cells to
the damaged site and as a medium to provide stimuli,
with the help of an appropriate structure, similar com-
position to natural tissue. Scaffold mimic nature tissue’s
mechanical properties and desired biological properties,
to ensure in vivo support, optimum diffusion of nutri-
ents, and encourage cellular communication [4, 5],
which is an indispensable part of tissue engineering.
Seed cell include non-stem cells and stem cells. The
non-stem cells includes: Schwann cells (SCs), osteo-
blasts, fibroblast, and endothelial cells (ECs); the stem

cells can be divided into two types: (1) adult stem cell:
Adipose derived stem cells and muscle derived stem
cells; and (2) non-adult stem cell: Embryonic stem cells
(ESCs), neural stem cells (NSCs) and bone mesenchymal
stem cells (BMSCs) [6]. Stem cells that possess strong
self-renewal and multilineage differentiation potential
[7], in cases better than non-stem cells. A cell-seeded
scaffold is implanted in the patient, and then the cell will
produce the new tissue, is the pillars of tissue engineer-
ing [8, 9]. Providing seed cell for damaged or lost organs
and tissues are the core of tissue engineering [10]. Rapid
and complete regeneration of tissue or organs is a very
challenging problem because transplanted cells are easily
lost in host tissues and have low survival rates [11, 12].
Furthermore, if defective cells migrating to the wound
site will lead to a more severe condition [13]. The loss of
cellular function at the donor site and uncontrollable
differentiation are limitations for the use of stem cell
transplantation in regenerative medicine [13–15]. Thus
they require the manipulation of cell behavior in vitro
and in vivo, including cell proliferation, migration, differ-
entiation, and other cellular processes [16, 17]. The
choice of scaffold material, the surface topography of the
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scaffold, and the additional stimulating factors can ma-
nipulate cell behavior [18–21].
To date, several studies have demonstrated that both

biochemical and biophysical cues could influence cell
behaviors [17, 22, 23]. Different forms of stimulating fac-
tors can induce cell proliferation, differentiation, to
complete tissue repair, inappropriate ES could cause cell
death or no effect [24]. As a result select suitable stimu-
late factor could maximize the repair effect [25]. Bio-
chemical cues include supplying chemical reagents [26]
and performing chemical surface modification on scaf-
folds [27]. On the one side, adding growth factors,
surface-immobilised biosignals, cytokines, and small
molecule drugs would be immediately diluted by blood
or metabolized by organisms. On the other side, the sur-
face fixation methods of chemical reagents is also not
perfect, methods such as silanization or co-precipitation
are complexity and low efficiency, requiring more sur-
face treatment to improve connection efficiency [28] and
increasing the deposition rate [29]. Biophysical cues in-
volve surface topography, substrate stiffness, compres-
sion and stretching, electric or magnetic fields,
ultrasound stimulation, and photostimulation [30–34].
Biophysical cues have the advantages of cost-
effectiveness, long life, easy to characterize, and high re-
producibility, which is facilitated for a large-scale oper-
ation. As a biophysical cue, electrical stimulation (ES)
has been shown to effectively relieve pain, promote
blood circulation, reduce vascular and skeletal muscle
tension, and promote reabsorption of edema and joint
fluid in the clinic [35]. Also, many studies show that ES
could effectively manipulate cell behaviors in vitro and
in vivo. For example, Jaatinen et al. [36] demonstrated
that the mouse myoblast cell line undergoes dramatic
changes in cell morphology, viability, cell structure, and
cell adhesion under pulsed monophasic currents. Kumar
et al. [37] showed that the cell proliferation and osteo-
genic differentiation of preosteoblast could favourably be
regulated under dynamic electric field conditions. Be-
sides, with the specific parameter of ES, the neurite out-
growth of NSCs could be improved [19], and the
differentiation of NSCs could also be matipulated [38].
In the human body, every cell subjected to some form of
stimulation, local bioelectrical signals affect cells in a
variety of tissues [39]. Indeed, providing ES is a consid-
erable method based on recent research. ES triggers the
cells themselves to deliver signals through intrinsic path-
ways, consequently leads to direct cell activities, includ-
ing migration, differentiation, and proliferation, etc.
Meanwhile, ES can be used synergistically with other
techniques, reducing the cost of the whole process, has
the potential of alleviating some of the problems that
currently prevail in tissue engineering and regenerative
medicine [17, 40–42].

Here, we provide an overview of the recent develop-
ments of ES in tissue engineering, for better application
in regenerative medicine and tissue engineering. The
main part of the review is organized into three parts: (1)
summarized the conductive materials that can be applied
to tissue engineering scaffolds, including types and their
advantages and disadvantages. (2) Three methods of pro-
viding ES include direct coupling, capacitive coupling,
and using an electromagnetic field, and their advantages
and disadvantages. (3) The specific regulation of ES on
cell behaviors include cell alignment, migration and its
underlying mechanisms, proliferation and differentiation.
Comprehensively demonstrate the potential that ES has
for tissue engineering.

Different materials and methods to deliver ES
Tissue engineering attempts to imitate the structure and
function of the tissues or organs through the use of
engineered scaffolds, which optimize the response of
cell-biomaterials and mimic the native environment [43].
ES has received considerable attention to influence cellu-
lar or tissue behaviors as stimulation factor of tissue en-
gineering [44]. As a bridge to deliver ES, scaffolds need
to meet requirements: excellent biocompatibility, prom-
inent electrochemical performance, and no byproduct
generation [45].

Materials to deliver electrical stimulation
To provide ES for tissue regeneration or functional re-
covery, a number of materials have been developed to
make scaffolds. To date, metallic biomaterials include
platinum, and gold is increasingly used in medical appli-
cations due to their high mechanical strength, long-term
stability, good conductivity, and biocompatibility [46].
However, except noble metals, most metallic materials
are easily oxidized, and present weak corrosion resist-
ance [47, 48], the release of metal ion may also cause al-
lergies or carcinogenesis. Surface modification of
metallic materials is considered to be an effective
method to solve the above problems, include preparation
of coatings, and covalent chemical conjugation of bio-
active molecules [48]. Conducting polymers, such as
poly (3,4-ethylene dioxythiophene), polyaniline, polypyr-
role (PPy) have been studied as possible candidates [49].
Although the cracks or delamination of conducting poly-
mers under long-term stimulation restrict the electrode
performance, cross-link with a specific agent or in-situ
polymerization of the conjugated polymer improving the
physical stability while allowing the exploration of their
superior properties [50, 51]. Carbon materials such as
graphene, carbon nanotubes and carbon aerogels have
excellent electrical properties and the ability to be easily
bio-functionalized, as well as drug loadings [52–54].
However, the biocompatibility of carbon relative
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materials is still a significant challenge. Scientists have
modified carbon relevant materials to eliminate defects.
Depositing and fixing graphene can avoid the damage to
cells due to direct contact interaction and wrapping
mechanisms [55]. The direct exposure of the carbon
nanotubes inside the body presents a high probability of
detachment. The above issue was overcome by reinfor-
cing the carbon nanotube patterns inside the biocompat-
ible soft polymer matrix [56]. Table 1 lists the forms of
different materials, the electrical conductivity and the
advantages and disadvantages.

Methods to deliver electrical stimulation and its parameters
The methods to deliver ES can mainly divide into three
types: direct coupling, capacitive coupling, and using an
electromagnetic field.
Direct coupling shows in Fig. 1a. The electrodes are

inserted directly into the culture medium and attached
to the scaffold to deliver ES. This method is most widely
used because of its easy operation. However, drawbacks
are apparent such as insufficient biocompatibility of the
electrode, contact with the medium lead to temperature
rise, pH changes, and the generation of harmful bypro-
ducts [59]. Prabhakaran et al. [19] demonstrated that ES
applied to the NSCs cultured on the electrospun Poly-L-
lactide/polyaniline fibers scaffold exhibited extended
neurite outgrowth. Briefly, a silver electrode and a plat-
inum electrode were inserted into the opposite ends of
the nanofiber scaffold placed in the medium and con-
nected to constant unipolar trapezoidal pulses. The aver-
age length of neurite extended from NSCs with
stimulation were nearly 100% higher than the average

length of those without ES. In other circumstances, the
scaffold is used as substrate-cathode. Stewart et al. [60]
induced human NSCs differentiation with a two-
electrode device, placing a platinum mesh electrode on
top, and using a PPy-coated Au-mylar surface as a work-
ing electrode. ES on PPy induced hNSC to differentiate
into neurons expressing β-III Tubulin (Tuj1), and a
small number of glial cells expressing glial fibrillary
acidic proteins, accompanied with longer neurites and
significant branches.
Capacitive coupling is more biologically safe compared

with direct coupling. As shown in Fig. 1b, two electrodes
are placed at opposite ends to provide a uniform electric
field to the cells seeded on the scaffold which locates be-
tween the electrodes. This system is non-invasive and
does not require a conductive scaffold to provide uni-
form ES. Vaca-Gonzalez et al. [61] used a capacitive
coupling system to provide chondrocytes with a 4mV/
cm ES, which significantly increased the cell prolifera-
tion. When applied an 8mV/cm ES, the glycosaminogly-
can secreted by chondrocytes remained stable, which is
essential to maintain tissue moisture, lubrication, and
protection of articular surfaces.
The third type is inductive coupling, as shown in Fig.

1c. Inductive coupling usually uses a controllable elec-
tromagnetic field generated by a conductive coil placed
around the cell culture system, called pulsed electromag-
netic field stimulation (PEMF). The stimulus is transmit-
ted by the pulse to mimic the natural potential transfer
in the human body [40]. PEMF provide potential near
the target cell, rather than directly apply ES to the cells.
The main drawback of PEMF treatment is taking time
and resource consumption. For example, some therapies

Table 1 The forms, electrical conductivity, advantages and disadvantages of different materials

Materials Forms Electrical conductivity Advantages Disadvantages

Platinum-gold alloy [46] Discs Gold 4.52 × 107 S/m
Platinum 9.6 × 106 S/m

High mechanical strength,
long-term stability, good
biocompatibility and good
corrosion resistance

Expensive, cell death caused
by ion release

Magnesium (Mg) alloys [48] Discs ≈2 × 107 S/m High strength, fracture resistance,
good electrical conductivity

Poor biocompatibility; cell
death caused by high ion
release, and change of
local pH

Polypyrrole [57] Coating 102~ 103 S/cm Good compatibility and
support cell adhesion and
growth

Rigid, insoluble and poorly
processable

Polyaniline [58] Film 5~ 10 S/cm Good environmental stability,
low cost, good biocompatibility

Poor mechanical properties and
complicated manufacturing methods

Graphene [55] Coating 106 ~ 108 S/m Good mechanical properties,
easy bio-functionalization and
drug loading

Moderate toxicity

Carbon nanotubes [52, 53] Doping with
other materials

1.8 × 107 S/m High mechanical resilience,
good support for active materials,
high chemical stability, elasticity

Poor biocompatibility, poor
dispersion, insoluble and toxic
to the cells
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need to last 10 h per day [62] or quite high voltage. Hess
et al. [63] created a device using ferromagnetic core cov-
ered by the first current-carrying coil, and the culture
chamber with connected silicone tube as the second coil.
When applied an alternating voltage to the first coil, the
second coil only influenced by the electrical potential
without any interfering magnetic field or biochemical re-
actions. The combination of inductive coupling and high
sulfated hyaluronan derivative substrate can synergistic-
ally stimulate BMSCs, the bone-related proteins (RUNX-
2, ALP, OPN) in BMSCs were significantly improved
then cells show an osteogenic differentiation. Table 2
lists the advantages and disadvantages of each methods
mentioned above.
The different parameters of ES are quite considerable

for regulating cell behavior. ES can provide in the form
of monophasic and biphasic, where the waveform has
pulse, sinusoidal, square, triangular, and sawtooth pat-
tern. The use of intermittent or continuous stimulation
is another parameter. According to the stimulation pa-
rameters setup, monophasic stimulation is effective in
polarizing the target tissue [65] but may produce react-
ive oxygen species through the oxidation-reduction
process due to the Faradaic reaction at the surface of a
metal electrode [66]. Especially in the case of large
current pulses delivered at long durations and/or high
frequencies, cell damage may result from the Joule heat-
ing effect [67]. However, the impact of localized ionic or
electrochemical imbalance caused by the small Faradaic

impact on the experiment cannot be ignored [66]. On
the contrary, biphasic stimulation may be more advanta-
geous since it prevents the charge accumulation, gener-
ates lower levels of electrolysis products at the
electrodes, outside of the limitations of monophasic
stimulation and can be applied for more extended pe-
riods and at higher voltages [68–70]. For instance, bi-
phasic stimulation is usually selected in clinical
application to stimulate neural tissue, because of the few
charge accumulation and toxic by-products and is less
likely to cause neuronal loss [69, 71]. Monophasic stimu-
lation can be used for short-term experiments, but long-
term applications require biphasic stimulation [72, 73].
Improper stimulation parameters can lead to results that
are contrary to experimental expectations. The cell mi-
gration rate is positively correlated with the intensity of
ES, and is discussed in next section. For stimulus fre-
quency, ES frequency below 1 kHz augment cell prolifer-
ation through significantly affected the cell cycle,
increasing the proportion of cells and synthesizing DNA
[74]. Experiments show that ES frequency above 1 kHz
can induce cell differentiation, but must maintain low
intensity [75, 76]. High intensity above 100 V/cm can
cause cell membrane electroporation, an immediate in-
crease in intracellular Ca2+ and reactive oxygen species,
then induce cell apoptosis [24, 77]. When high intensity
is unavoidable, pulse electrical stimulation should be
used to avoid continuous high intensity to reduce
damage.

Fig. 1 Three ways to deliver electrical stimulation: (a) direct coupling, (b) capacitive coupling, and (c) inductive Reprinted with permission from
reference [40]

Table 2 The advantages and disadvantages of three methods of providing ES

Methods Advantages Disadvantages

Direct coupling [59] Easy operation Insufficient biocompatibility of the electrode,
contact with the medium lead to temperature
rise, pH changes, and the generation of
harmful byproducts

Capacitive coupling [64] More biologically safe High voltage between the electrodes,
longer treatment time

Inductive coupling [62] Mimic the natural potential
transfer in the human body,
does not directly touch cells

Tumorigenesis in unexpected area, taking
time and resource consumption
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The effects of electrical stimulation on cell alignment and
migration
By participating in tissue formation, tissue regeneration,
and wound healing, directed cell migration and align-
ment can be very beneficial for regenerative medicine
[78–81]. The ability to regulate cell migration and align-
ment would be an invaluable asset for regenerative
medicine. The mechanisms underneath the cell align-
ment and migration are thought to be responsible for
these effects, including voltage-gated ion channels, G-
protein coupling receptors, integrins, cell polarization,
and endogenous electric fields [82]. In literature, ES as
the physical methods has attracted much attention be-
cause it can activate specific signaling pathways in cells
near the cathode or anode and induce cell migration and
alignment [83].

The effects of electrical stimulation on cell alignment
Numerous methods are capable of inducing cell migra-
tion and alignment by external factors, such as the
addition of bioactive factors, providing individual surface
patterns, and studies have shown that physical methods
ES over all other techniques to guide cell migration and
alignment [17, 41, 84].
ES has a significant effect on cell alignment and redir-

ect random cells to be aligned, the direction of cell align-
ment changes gradually as the direction of the ES
changes [84–86]. Some types of cell are aligned perpen-
dicular to the direction of the electric field vectors to
minimize the field gradient across the cell, such as car-
diac adipose tissue-derived progenitor cells [18], endo-
thelial progenitor cells [87], vascular ECs [77], BMSCs
[88], adipose-derived stromal cells [89], etc. At the same
time, some cells are aligned parallel to the field vectors
due to the ES causes rearrangement of the cell cytoskel-
eton, such as ventricular myocytes [20], cardiomyocytes
[86], myoblasts [85], PC-12 cells [90], obsteoblasts [84],
etc. The ES intensity usually < 10 V/cm, and the cells
aligned better with the ES intensity increased, but the
cell activity is relatively decreased [77, 87, 91].
In the presence of 100 mA monophasic ES, the osteo-

blasts elongation and proliferation were mainly reliant
on the ES, whereas the topographical features played a
minor role [84]. In our present study [90], perpendicular
electrical field vectors from the pattern may reorientate
the PC-12 cell alignment, while parallel vectors could
further increase neuritis extension compared with per-
pendicular vectors. On the contrary, some types of cell
are aligned perpendicular to the vectors under ES. The
murine adipose-derived stromal cells exhibited a con-
stant perpendicular alignment with the field vectors [89].
BMSCs consistent perpendicular alignment to the field
vectors [88]. The long axis of cobblestone-like ECs
transformed into highly ordered, perpendicular to the

field vectors with applied ES, then the cell morphology
presents similarly to the inner surface topography of the
blood vessel, which shows excellent potential in angio-
genesis [77].

The effects of electrical stimulation on cell migration
As well as cell alignment, ES plays a significant role in
cell migration. The directional migration of cells in re-
sponse to ES is called electrotaxis [77]. The guiding ef-
fect of ES on cell migration also differs depending on
the cell type. Among different types of cell, NSCs [92],
macrophages [93], mouse neural precursor cells (NPCs)
[94], osteoblasts [95] and endothelial progenitor cells
[87] toward the cathode [20, 89, 92, 96], BMSCs [97],
human dermal fibroblasts [98] and SCs [99, 100] toward
the anode. Reversal of the ES polarity reversed the mi-
gration direction of cells [87, 92]. The ES intensity can
stimulate cell migration from a minimum of 0.1 V/cm to
a maximum of 12 V/cm and did not cause any signifi-
cant damage to cells, did not affect cell phenotype or the
differentiation potential [101–103]. At the same time,
cells showed gradually increased migration rate and dis-
tance with higher ES strength [101, 104, 105].
As NPCs shows a cathodal migration, Liu et al. [103]

demonstrated that reversing the ES direction resulted in
a reversed direction of NPCs migration. This behavior is
beneficial to long-distance migration of neural cells for
nerve repair. ES also directs some types of cell migrate
to the anode, such as BMSCs [97, 106], human dermal
fibroblasts [37] and SCs [99, 100, 107]. Forciniti et al.
[100] indicated an increase in average displacement of
the SCs to anodal with 0.5 V to 1 V ES, which is of great
value in optimizing conductive polymers for different
biomedical applications such as nerve repair. Moreover,
even different cell lines of the same specie have different
responses to ES in the migration. Li et al. [108] demon-
strated different cell lines of non-small cell lung cancer
cells (H460, and H1299) showed great different in mi-
gration direction, while H460 migrated toward cathode,
H1299 exhibited anodal migration. This discovery has
led to a better understanding of the mechanism of can-
cer, which is beneficial for cancer therapy.
mASCs exhibited a positive correlation between cell

migration rate and ES intensity (from 1 V/cm to 10 V/
cm) [89]. The same performance showed in human
BMSCs, as the ES intensity is above the physiological
level, the migration rate increases while physiological
levels of ES do not affect cell motility, this behavior
may be essential for maintaining transplanted cells at
the lesion site [88, 105]. Different research groups have
conflict results in the same cell type. Forciniti et al.
[100] showed ES conditions (from 0 to 0.5 V) produced
a significant increase in SCs migration rate but did not
affect migration direction. Different from others, Li
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et al. [99] demonstrated the ES did not significantly
affect the SCs migration speed, but as the ES intensity
increases from 50 mV/mm to 200 mV/mm, the orienta-
tion and displacement of the anode migration increase
significantly.

Mechanism of ES on cell migration
The specific mechanism leading to electrotaxis is still
unclear. Many factors may be included, such as en-
dogenous microenvironment, ion channels, membrane
receptors, transport proteins, and competing signal path-
ways such as Wnt/GSK3β and TGFβ1/ERK/NF-κB
[109–111]. According to the literature, the main mech-
anism involved in ES induced cell migration is shown in
Fig. 2.
The importance of epidermal growth factor receptors

(EGFR) in ES induced cell migration has attracted the
attention of numerous scientists [77, 87, 112]. ES regu-
lates downstream growth factors and cytokine produc-
tion through a feedback mechanism by EGFR.
Asymmetric expression of EGFR in front of and behind
cells activates signaling pathways and leads to cell migra-
tion [112, 113]. Pilipos et al. [114] demonstrated that
blockade of EGFR via erlotinib significantly attenuate
NPCs electrotaxis. EGFR activation stimulates several
signaling pathways, including MAPK-ERK1/2 and PI3K/
Akt pathway. MAPK-ERK1/2 are generally involved in
signal transduction from extracellular sources in

different signaling pathways. Downstream protein ERK1
and ERK2 are fully activated by phosphorylation of
MEK, which is involved in cell migration. Hammerick
et al. [89] proved that inhibiting the MAPK pathway
leading to migration inhibited suggests the participation
of this pathway in mASCs electrotaxis. It has been re-
ported that static monophasic ES can regulate epithelial
cell proliferation and migration by activating the MAPK
signaling cascade ERK1/2 [115].
The other and the most critical pathway is the PI3K/

Akt signaling pathway, which has been mostly explored
in the cellular response to ES. ES significantly increase
the expression of downstream protein PIP3 and phos-
phorylation of Akt, at the same time, induce the asym-
metric distribution of PIP3 and cytoskeletal proteins
migrate toward cathode [113, 116]. Meng et al. [116] ex-
hibited the cathode migration of NPCs under ES needed
the activation of the PI3K signal pathway. Pharmaco-
logical inhibition or genetic disruption of PI3K/Akt
pathway will inhibit the electrotaxis, then applied ES in-
creases Akt phosphorylation and PIP3 fluorescence,
demonstrate the importance of the PI3K/Akt pathway in
ES driven directed migration of NPCs. PTEN is a phos-
phatase that inhibits PI3K signaling transduction includ-
ing Akt. Zhao et al. [117] demonstrated genetic
disruption of PTEN within keratinocyte enhanced ES in-
duced ERK and Akt phosphorylation, cell performed a
significantly higher directionality compared with

Fig. 2 Mechanism of ES-induced cell migration
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controls. This result supports the antagonistic relation-
ship between PI3K and PTEN.
In addition to signal pathways, ion channels such as

voltage-gated Ca2+ channels is a vital part of membrane
polarization and cell response during ES [118]. All living
cells have a transmembrane potential. The current in-
duces a flow of ions (Na+, Cl−, K+, Ca2+, etc.) by ion
channels and transporters [16]. In response to ES, intra-
cellular molecular and transport channel polarization,
then ion flow takes place and trigger cytoskeleton
changes to direct cell migration, in consequence, the cal-
cium influx contribute to persistent cell migration to-
wards cathode [101]. In the review of Balint et al. [40],
the ES effect will be impaired or completely blocked if
block the calcium channels, intracellular store and the
calmodulin by verapamil and nifedipine, TMB-8, W-7,
respectively. Zhao et al. [102] reported that a 115 V/m
monophasic ES could cause a calcium influx mediated
NPCs mobility improved and cathodal migration.

The effects of electrical stimulation on cell proliferation
and differentiation
In addition to the impact on the migration, ES also plays
a significant role in influencing proliferation and guiding
differentiation [50, 119, 120]. A major challenge in re-
generative medicine is to compensate cells that lost as a
result of injury or disease [15]. For instance, after exces-
sive cell loss, most tissues produce scars, such as fibrous
collagen scars in the heart, causing an ischemic environ-
ment and limiting oxygen delivery [121]. However, the
inevitable problems are the difficulty in harvesting suffi-
cient cells for implantation. In these circumstances, the
capabilities of proliferation and multilineage differenti-
ation of seed cells have attracted much attention [122].
Table 1 summarizes the specific conditions of ES to in-
duce cell proliferation and differentiation.

The effects of electrical stimulation on cell proliferation
Proper ES can promote cell proliferation, usually under
continuous stimulation of < 1 V/cm [37, 95, 120]. Within
the ES intensity range the cell proliferation rate increases
with increasing intensity [95]. Preosteoblasts [123],
obsteoblasts [37], unrestricted somatic human stem cells
[124], human umbilical vein ECs [125], NSCs [126], hu-
man dermal fibroblasts [127] exhibited 0.2 to 1.5 times
proliferation, with increasing cellular metabolic activity,
and do not affect cell phenotype [123]. High-intensity ES
of > 100 V/cm is also favorable for cell proliferation in a
short period (< 1 ms) single stimulation, but excessively
high intensity leads to cell death [128].
Shao et al. [17] demonstrated that in the presence of

100 mA direct current (DC), the viability of osteoblasts
did not affect, and the degree of proliferation increased

significantly compared with no stimuli group and other
current stimuli groups. This finding indicates that
proper ES can be used for bone regeneration and frac-
ture healing. Zhu et al. [126] revealed that compared
with the control group, NSCs proliferation was increased
35% with ES, which condition is 100 μA and pulse rates
of 100 Hz with 100 μsec duration for 24 h. A possible
cause is that ES upregulates the proliferation of cell nu-
clear antigen, which is a DNA polymerase-associated
protein, and activate extracellular signal-regulated ki-
nases 1 and 2 pathways involved in transduction of pro-
liferative signals. Meanwhile, the differentiation potential
of NSCs has not been affected by the promotion of pro-
liferation. In the study of Sun et al. [129] SCs underwent
a remarkable degree of proliferation under ES (100 mV/
cm, 1 h per day) than without ES, especially in day 5. It
might because ES promoted SC myelin gene expression
and neurotrophin secretion, then led to SCs prolifera-
tion. This result indicated the promising potential of ES
on peripheral nerve repair and regeneration. Kapeller
et al. [119] pointed out that with 1 μADC stimuli, cardi-
omyocytes showed better proliferation behavior with no
morphological changes in vitro. At the same time, ES
also affects matrix metalloproteinases (MMP) in cardio-
myocytes, which involved to keep the balance between
matrix synthesis and degradation. It shows that ES has a
certain positive effect on heart repair.

The effects of electrical stimulation on cell differentiation
Cell differentiation based therapy provides a promising ap-
proach for regeneration medicine. Short-term (several mi-
nutes), low-intensity (0.06~6 V/cm) ES can promote
cardiac differentiation of human induced pluripotent stem
cells, muscle precursor cells, with the formation of embry-
oid bodies [130, 131]. Neural progenitor cells, neural pre-
cursor cells, and NSCs can differentiate into neurons
instead of glial cells under ES [102, 106, 132]. The stimula-
tion intensity is basically < 2 V/cm and sustain more than
7 days. The differential medium can appropriately added
with FBS, retinoic acid, and nerve growth factor. ES can
induce bone marrow stromal cells, BMSCs, MC3T3-E1
cells osteogenic differentiation instead of cartilage, stimu-
lation intensity should be < 2 V/cm and sustain 14~28
days, the medium need to add dexamethasone in most
cases [6, 63, 120, 133–135]. Therefore, the application of
ES could provide a valid approach to induce cell differenti-
ation in tissue engineering.
Hernández et al. [131] demonstrated human induced

pluripotent stem cells (Foreskin)-2 cell line exhibit car-
diac differentiation under ES (65 mV/mm or 200mV/
mm, biphasic current pulses), by significantly increased
the expression of cardiac transcription factors nkx2.5
and tbx5, as well as the cardiac contractile muscle
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proteins ACTC1, TNNT2, MYH7, and MYL7, compared
with the unstimulated control group. In the study of
Chan et al. [130], human ESCs cultured in the presence
of ES (6.6 V/cm, 1 Hz, and 2ms pulses) showed an in-
crease in the proportion of ventricular-like cardiomyo-
cytes, by significant upregulation of cardiac-specific gene
expression including hcn1, mlc2v, scn5a, serca, kv4.3,
and gata4. Matsumoto et al. [135] induced the differenti-
ation of mouse bone marrow stromal cells into neural
cells using ES (10 Hz, 100 mV, 2.0 ms, 30 min, rectangu-
lar pulse). Neurogenin2 was detected as increased ex-
pression through the β-catenin signaling pathway after
ES, which is involved in neural differentiation and in-
hibits astrocytic differentiation. Sun et al. [129] demon-
strated ES (100mV/cm, 1 h) could induce PC-12 cell
differentiation into SCs and synaptic elongation even
without nerve growth factor treatment, which is a kind

of nerve growth regulator that promotes both neuron
nutrition and neurite outgrowth.
In the study of Wang et al. [120] ES (200 mV/cm, 1 Hz

to 100 kHz, 30 min) promote MC3T3-E1 cells osteogenic
differentiation via examined alkaline phosphatase activ-
ity. During stimulation, 100 Hz could up-regulate the
mRNA levels of collagen I, collagen II, and RUNX2,
which are osteosis-related genes. On the other hand, 1
Hz to 10 Hz could improve calcium deposition in the
intracellular matrix, which contribute to treat the bone
fracture and bone nonunion. Hronik-Tupaj et al. [6]
demonstrated ES (20 mV/cm, 60 kHz) improved hMSC
osteogenic differentiation potential based on calcium de-
position, because of the two-fold increase of alkaline
phosphatase and collagen type 1.
Table 3 The specific conditions of ES to induce cell

proliferation and differentiation.

Table 3 The specific conditions of ES to induce cell proliferation and differentiation

Cell type Type of ES Electrical parameters Major findings

Osteoblast DC 100mA Celluar proliferation, elongation were
improved

NSCs Biphasic current pulses 100 μA, 100 Hz with 100 μsec
duration

NSCs proliferation was promoted
associating with upregulated
neuronal gene expression level and
increased microtubule-associated
protein 2

Cardiomyocytes DC ~1 μA Enhances proliferation with no
morphological changes in vitro,
modulate the expression of MMPs
and TIMPs in vitro and in vivo

Human induced pluripotent stem
cells (Foreskin)-2 cell line

Biphasic current pulses 65mV/mm or 200mV/mm for 5
min, 1 Hz, and 1ms pulse width

The cell showed cardiac
differentiation with increased the
expression of NKX2.5 and TBX5, as
well as the proteins ACTC1, TNNT2,
MYH7, and MYL7

Human ESCs N/A 6.6 V/cm, 1 Hz, and 2ms pulses Upregulation of gene expression
including HCN1, MLC2V, SCN5A,
SERCA, Kv4.3, and GATA4; cellular
elongation, and an increase in the
proportion of ventricular-like hESC-
derived cardiomyocytes

Mouse bone marrow stromal cells Rectangular pulse 100 mV, 10 Hz, 2.0 ms, 30 min Induced the differentiation of mouse
BMSCs into neural cells with
enhanced neurogenin2 (Ngn2)
expression

SCs & PC12 cell N/A 100mV/cm, 1 h Promote SCs proliferation, and
promoted PC12 cell differentiation
into SCs and axonal extension

Mouse embryonic osteoblast
precursors Mc-3 T3-E1

Rectangular pulses 200 mV/cm, 1 Hz to 100 kHz, 30
min

100 Hz could up-regulate the mRNA
levels of collagen I, collagen II and
Runx2, accelerate cells differentiation
and proliferation, down-regulate the
mRNA levels of osteopontin (OPN). 1
Hz to 10 Hz could improve calcium
deposition in the intracellular matrix.

BMSCs N/A 20mV/cm, 60 kHz An increase in ALP and col1
transcript, and NADH, FAD, lipofuscin
was detected, improved hMSC
differentiation potential to bone
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Summary
In this review, we have highlighted the effects of ES as a
physical stimulator on cellular behavior for the purposes
of applying to regenerative medicine and tissue engin-
eering. In most cases, ES facilitates cell proliferation and
differentiation, enhance cell cathode migration and
alignment to field vectors, and mainly through EGFR,
PI3K and Ca2+ related mechanism. ES can be delivered
through tissue engineering scaffolds made of metallic
biomaterials, conducting polymers, or carbon materials,
the main methods are direct coupling, capacitive coup-
ling, and using an electromagnetic field.
In the future, the combination of specific material/

structure and ES will offer many advantages over other
types of stimulations and allow for precise cellular regu-
lation. Developing safe and effective partition-type scaf-
fold combine with ES that can distinguish different areas
to perform different stimulation still requires some chal-
lenges to be overcome. Although still in its early stages,
the field of ES is rapidly evolving, and new next-
generation regenerative medicine and tissue engineering
will make it possible to take advantage of ES. Studying
the low risk ES method for wearable application is also a
future direction. With increasing research, electrical
stimuli have the potential to play a significant role in tis-
sue engineering and regenerative medicine.
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