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Impact of two mycotoxins deoxynivalenol
and fumonisin on pig intestinal health
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Abstract

Mycotoxins are secondary metabolites of fungi that grow on a variety of substrates. Due to their high consumption
of cereals and their sensitivity, pigs are highly impacted by the presence of mycotoxins. At the European level,
regulations and recommendations exist for several mycotoxins in pig feed. Among these toxins, fumonisin B1 (FB1),
and deoxynivalenol (DON) have a great impact on the intestine and the immune system. Indeed, the intestine is
the first barrier to food contaminants and can be exposed to high concentrations of mycotoxins upon ingestion of
contaminated feed. FB1 and DON alter the intestinal barrier, impair the immune response, reduce feed intake and
weight gain. Their presence in feed increases the translocation of bacteria; mycotoxins can also impair the immune
response and enhance the susceptibility to infectious diseases. In conclusion, because of their effect on the
intestine, FB1 and DON are a major threat to pig health, welfare and performance.
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Background
Food safety is a major issue throughout the world. In
this respect, much attention needs to be paid to the
possible contamination of food and feed by fungi and
the risk of mycotoxin production. Mycotoxins are second-
ary metabolites produced by filamentous fungi, mainly by
species from the genus Aspergillus, Fusarium and Penicil-
lium. They are produced on a wide variety of substrates
before, during and after harvest. Mycotoxins are very
resistant to technological treatments and difficult to elim-
inate; therefore they can be present in human food and
animal feed [1]. The ingestion of mycotoxin-contaminated
feed can induce acute diseases, and the ingestion of low
doses of fungal toxins also causes damage in case of
repeated exposure [2, 3].
Monogastric livestock, pig and poultry, are particularly

vulnerable to mycotoxins because of the high percentage of
cereals in their diet and because they lack a rumen with a
microbiota able to degrade mycotoxins before their intes-
tinal absorption. From an intestinal pig health perspective,
the most notorious mycotoxins (Fig. 1) are fumonisins, es-
pecially fumonisin FB1 (FB1) and trichothecenes, especially

deoxynivalenol (DON) [4]. In the European Union,
some recommendations exist for both toxins in pig
feed (Table 1).
This review will summarize the effect of FB1 and DON

on the intestine and analyze the consequences in terms
of pig health.

Toxicity of DON and FB1
Toxicity of DON
DON is a 12,13-epoxy-3α,7α,15-trihydroxytrichothec-9-
en-8-on (Fig. 1). Numerous studies bring information on
the toxic effects of DON in mamals, especially rodents
[5–7]. At the molecular level, DON targets the ribo-
some. It binds to the A-site of the peptidyl transferase
center (PTC) of this organelle [8]. This binding is linked
to the epoxy- and C3- group of the DON molecule [9].
Interaction with the ribosome leads to an inhibition of
the elongation of chain elongation step of protein syn-
thesis leading to an inhibition of RNA, DNA and pro-
tein synthesis [6]. This ribosome binding activates
several ribosome-associated mitogen activated protein
kinases (MAPKs), including p38, c-Jun N-terminal
Kinase (JNK), and extracellular signal-regulated kinase
1 and 2 (ERK1/2), an effect called “ribotoxic stress”
response [10].
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A high concentration DON causes effects and symptoms
similar to those observed during an exposure to ionizing
radiation, such as abdominal distress, salivation, discomfort,
diarrhea, vomiting, leukocytosis and gastrointestinal ble-
eding. This mycotoxin also has high emetic and anorexic
effects resulting in growth suppression [11, 12]. The collo-
quial name of DON is “vomitoxin” due to its strong emetic
effects observed in pigs [13]. The underlying mechanisms
for anorexia are not yet fully understood. Two major medi-
ators of DON-induced anorexia, i.e. pro-inflammatory cyto-
kines and satiety hormones, have emerged from studies
carried out mainly in mice [10, 14]. It is worth to point out
that, contrary to humans or pigs, emesis cannot occur in
rodents, but the abnormal food intake behaviour observed

in mice (or other rodents) is considered indicative of
nausea-induced anorexia [6].
The immune system is sensitive to DON and can be

either stimulated or suppressed depending on dose, ex-
posure frequency, timing and the functional immune
assay being employed [10]. Leukocytes, most notably
mononuclear phagocytes, play a likely central role in the
acute and chronic toxicity evoked by DON. Low concentra-
tions of DON induce expression of early response and pro-
inflammatory genes at the mRNA and protein levels, while
high concentrations promote rapid onset of leukocyte
apoptosis. This immune dysregualtion is a consequence of
the ribotoxic stress. Indeed, activation of p38 and ERK1/2
triggers two competing signaling pathways, one down-
stream of p38 favoring apoptosis and one downstream of
ERK1/2 favoring survival and cytokine expression [6]. DON
also impairs humoral and cell-mediated responses, alters
serum IgA levels, IgA-associated nephropathy [15].
Others studies show, that DON can also have repro-

ductive and teratological effects, with increase of skeletal
abnormalities, neural arch defects or fusion, and geno-
toxic effects with the induction of oxydative stress medi-
ated DNA damage on cells [16]. By contrast, there is
inadequate evidence in experimental animals for the
carcinogenicity of DON and the International Agency
for Research on Cancer (IARC), placed DON in Group
3, “not classifiable as to its carcinogenicity to humans”.

Toxicity of FB1
Fumonisin B1 (FB1) is the diester of propane-1,2,3-tricarb-
oxylic acid and 2-amino-12,16-dimethyl- 3,5,10,14,15-
pentahydroxyeicosane (Fig. 1). Its toxicity have been
broadly reviewed [17, 18]. The primary amine function
and the tricarballylic acid side chains appears necessary
for the biological activity of FB1, as N-substituted fumo-
nisin and hydrolized fumonisin fail to elicit effects both
in vitro and in vivo [19, 20]. FB1 has an unsubstituted
primary amino group at C2 and competitively inhibits
ceramide synthase, which results in disruption of the de
novo biosynthesis of ceramide and alteration of the
sphingolipid metabolism. An immediate consequence of
the ceramide synthase inhibition is accumulation of the
enzyme’s substrates sphinganine (Sa) and, to a lesser de-
gree, sphingosine (So) in tissues, serum, and urine. In
facts, increase in the Sa:So ratio in tissues and bio-fluids
are explored as biomarker to fumonisin exposure in sev-
eral species though these modifications of sphingoid base
profiles are transient [21, 22].
A correlation between the fumonisin-induced Sa accu-

mulation and the onset of apoptosis and mitosis has been
shown in the liver and kidney of several species including
pig [23, 24]. Moreover, the depletion of specific sphingoli-
pids associated to the membrane lipid rafts involved in
folate transport was suggested as the mechanism by which

Fig. 1 Chemical structure of Fumonisin B1 and Deeoxynivalenol.
These two mycotoxins belong to different families, with many
different chemical structures and so various effects induced

Table 1 Recommendations for DON and FB1 in pigs feed and
feedstuffs. Depending of the mycotoxin and the type of feed
intended to pigs, different directive and recommendation exist
about the concentration authorized. (EC Recommendations
2006/576/EC and 2013/165/EU)

Mycotoxins Pig feeds Max. content
mg/Kg (ppm)

DON Cereals (without maize by-products) 8 (12)

Complete and complementary feeding
stuffs for pigs

0.9

FB1 + FB2 Cereals 60

Complete and complementary feeding
stuffs for pigs, horse and rabbit

5
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FB1 disrupts the 5-methyltetrahydrofolate uptake in cells
[25]. The primary consequence of the disrupted folate up-
take may be the teratogenic effect reported with FB1 given
intraperitoneally to pregnant dams leading to neural tube
defects in embryo [26]. Folate deficiency as a risk factor
for neural tube defects is well established [27]. Besides the
neural tube defects in newborns, the symptoms induced
by FBs are unusually broad and include, brain lesions in
horses, lung edema in swine as well as cancer in experi-
mental animals. The International Agency for Research on
Cancer (IARC) classified FB1 in Group 2B as ‘possibly
carcinogenic to humans’.
Especially in pigs, fumonisins are poorly absorbed

from the gastrointestinal tract. The calculated bioavail-
ability for FB1 was approximately 0.041 of the dose [28].
The absorbed fraction remains in the tissues (prefe-
rentially in liver and kidneys) for an extended period of
time, and enterohepatic recirculation contributes to the
long biological half-life of the mycotoxin [28, 29].
The fumonisin toxicosis in pig is well documented. His-

torically, outbreaks of a fatal disease in pigs fed Fusarium
verticillioides-contaminated maize crop in mid-western
and south-eastern USA in 1989 led to the identification of
FB1 as the causative agent of porcine pulmonary edema
(PPE) [30]. Within 4–7 days of initial feeding of highly
contaminated feed, pigs show respiratory distress and
cyanosis that is rapidly followed by death due to acute
pulmonary edema and hydrothorax [31]. Non-lethal pul-
monary edema has also been reported following longer
term, lower dose exposures [32]. The fumonisin-induced
pulmonary edema appears to result from acute left-sided
heart failure, as FB1 has been shown to decrease cardiac
contractility, mean systemic arterial pressure, heart rate
and cardiac output, and increases mean pulmonary artery
pressure and pulmonary artery wedge pressure [33, 34].
This cardiotoxicity was also documented in horse follow-
ing intraveinous administration of purified FB1 [35].
Additional findings reported in pig from chronic expos-

ure studies include right ventricular hypertrophy due to
pulmonary hypertension, hepatic injury characterized by
icterus with severe hepatic fibrosis and nodular hyperplasia
and effects on both specific and non-specific immun-
ity [36, 37]. FB1 decreased phagocytosis and inhibited
sphingolipid biosynthesis in pig pulmonary macrophages,
and decreased clearance of particles and bacteria from the
pulmonary circulation [38, 39].
Regarding the immunity, dietary exposure to FB1, even at

low doses is associated to sex-specific decrease of antibody
titers following vaccination and increased swine suscep-
tibility to opportunistic pathogens [40, 41]. Of note,
gender-dependent immunosuppression following sub-
acute exposure to FB1 has also been described in mice,
and the authors hypothetized that the selective alter-
ations in lymphocyte functions and dramatic reduction

in specific thymocytes in females may be related to
FB1-induced alterations in estrogen metabolism and
signaling [42].

Effects of DON and FB1 on the pig intestine
The toxicity of DON and FB1 varies according to several
parameters such as the dose, the duration of exposure,
the age and the sex of the animal, as well as nutritional
factors [43–45]. Their effects on performance are greater
in males and young pigs [41, 45].
The intestinal tract is the first target for mycotoxins

following ingestion of contaminated feed. The intestinal
epithelium is a single layer of cells lining the gut lumen
that acts as a selective filter, allowing the absorption of
dietary nutrients, essential electrolytes, and water from
the intestinal lumen into the blood circulation [46]. It
also constitutes the largest and most important barrier
to prevent the passage of harmful intraluminal substances
from the external environment into the organism, in-
cluding foreign antigens, microorganisms, and their
toxins [47, 48]. Following the ingestion of mycotoxin-
contaminated feed, intestinal epithelial cells may be
exposed to high concentrations of toxins, potentially
affecting intestinal functions [49–51].

Effect on Feed intake
DON and to a letter extend FB1 have an effect on feed
intake and subsequent animal growth.
The colloquial name of DON, vomitoxin, refers to its

emetic effect observed both in field reports and in experi-
mental intoxications where high doses of the toxin were
given orally or intravenously to pigs. Complete feed refusal
was observed at levels of 12 and vomiting at 20 mg DON/
kg feed. Pig feeding trials with naturally or artificially con-
taminated diets have shown decreased feed consumption
and weight gain at doses from 0.6 to 3 mg DON/kg feed
[52]. A meta-analysis showed that deoxynivalenol reduced
feed intake and weight gain by 26 %; the same analysis also
demonstrated a 16 % reduction of feed intake in response
to aflatoxin B1 (AFB1) [45].
Consumption of pure FB1 or FB1-contaminated feed

also induces a slight reduction of feed intake and body
weight in piglets. Although FB1 is poorly absorbed and
metabolized in the intestine, it induces intestinal distur-
bances (abdominal pain or diarrhea) and cause extra-
intestinal organ pathologies [53].

Effect on intestinal digestion and nutrient absorption
At the molecular level DON and FB1 have been shown
to alter the absorptive functionality of the intestine.
The sodium-glucose dependent transporter (SGLT-1)

activity is particularly sensitive to DON. SGLT-1 is the
main apical transporter for active glucose uptake in the
small intestine [54]. Inhibition of SGLT-1 by DON has
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nutritional consequences and could explain diarrhea
associated with DON ingestion, since this transporter is
responsible for daily absorption of water in the gut [5].
DON not only impairs the intestinal absorption of sugars
(glucose and fructose), but also alters the uptake of palmi-
tate and monocarboxilates in the jejunum [55].
In contrast to DON, sodium-dependent glucose ab-

sorption is up-regulated in pig after acute or long term
exposure to FB1 [56, 57]. Pigs consuming corn culture
extracts containing FB also showed a markedly lowered
activity of aminopeptidase N [56]. Likewise, exposure to
1.5 mg/kg b.w. FB1 has been shown to induce sphingo-
lipid depletion in pig intestinal epithelium, which can
result in a deficiency of folate uptake [50, 58].

Effect on intestinal histomorphology
Consumption of mycotoxin-contaminated feed induces
histological damage on intestinal tissue. Epithelial lesions
(multifocal atrophy, villi fusion, apical necrosis of villi,
vacuolation of enterocytes and edema of lamina propria)
in the intestine of pigs fed with a diet naturally contami-
nated with DON have been observed [52, 59]. No effect
was observed on crypt depth. Jejunal lesions, including
shortened and coalesced villi, lysis of enterocytes, and
edema, were also observed in an ex-vivo model of in-
testinal tissues after exposure to DON [60–62]. Ex-
posure to FB also induces changes in intestinal villi
morphology such as reduced villi height and villi fu-
sion and atrophy [52]. As described in poultry, the
morphological changes may lead to a decrease of nu-
trients absorption by enterocytes, a reduced energy
and nutrient uptake and impaired growth [63].

Effect on barrier function
Both DON and FB1 alter intestinal barrier functions.
Several studies have investigated the effect of DON on
the transepithelial electrical resistance (TEER), a good
indicator of the integrity of the barrier function. DON
decreases TEER in pig intestinal epithelial cells in a time
and dose dependant manner [9, 51, 60, 64]. In piglets
jejunal explants the paracellular passage, assessed in
Ussing chambers, was significantly increased in presence
of 20 to 50 μM of DON [65]. Similarly to DON, FB1 im-
paired the integrity of porcine intestinal epithelial cell
line derived from the jejunum (IPEC-J2) monolayer via
altered viability and reduced TEER [66]. It has also been
observed that a prolonged exposure to FB1 prevents the
establishment of the TEER and alters the resistance of
an already established monolayer of porcine intestinal
epithelial cells [67].
At the molecular level, these toxins affect the intestinal

epithelium permeability through modulation of the tight
junction complexes [50, 51]. A defective expression of
occludin and E-cadherin has been observed in the ileum

of piglets fed low doses of FB1 [61]. The FB-induced
alteration of the sphingolipid biosynthesis pathway and
the associated lipid rafts could also contribute to impair-
ing the establishment and maintenance of tight junctions
[53]. Likewise, the activation of MAPKs by DON affects
the expression and cellular localization of proteins for-
ming or being associated with tight junctions such as
claudins and ZO-1, which results in increased intestinal
paracellular permeability [60].
The loss of tight junction integrity and resulting in-

creased paracellular permeability may lead to increased
bacterial translocation across the intestine and increased
susceptibility to enteric infections. Such an increase in
bacterial passage through intestinal epithelial cells has
major implications for pig health in terms of sepsis,
inflammation and enteric infection.
Differentiated IPEC-J2 cells treated 24 h with 0.1-10 μM

DON in a co-exposure with Salmonella Typhimurium
bacteria show a significant increase of the translocation of
the bacteria across intestinal epithelial cells [68]. On dif-
ferentiated IPEC-1 cells treated 48 h with DON an in-
crease translocation of Escherichia coli was observed in
17, 50 and 63 % with 5, 10 and 20 μM DON respectively
[65]. So, DON is able to increase the passage of macro-
molecule and bacteria in intestinal epithelial cells.
Two separate studies analyzed the effect of low to mod-

erate doses of FB1 on intestinal colonization and mucosal
response to pathogenic strains of E. coli [69, 70]. They
both demonstrated a higher susceptibility of intestinal E.
coli infection of piglets exposed to the toxin. Transloca-
tion of bacteria to the mesenteric lymph nodes and dis-
semination to the lungs, and to a lesser extent to liver and
spleen, were observed in FB1-treated pigs in comparison
to untreated animals [70].

Modulation of intestinal immune response
DON and FB1 impact the systemic and/or the local
immune response (review [5, 10, 53]). As far as pig is
concerned, several studies have investigated the effect of
theses mycotoxins on the intestinal immune system.
The effect of ingestion of FB1 was measured on the intes-

tinal production of 5 inflammatory cytokines (IL-1β, IL-6,
IL-12, TNF-β and IL-8). Both in vitro and in vivo data indi-
cate that FB1 specifically decreases expression of IL-8
mRNA [71]. IL-8 being involved in the recruitment of
inflammatory cells in the intestine during infection [72–74],
this specific decrease of intestinal IL-8 may contribute to
the observed increased susceptibility of FB1-treated piglets
to E. coli infection [70]. The increased susceptibility to in-
testinal infection is also correlated with a reduced intestinal
expression of IL-12p40, an impaired function of intestinal
antigen presenting cells (APC), a decreased upregulation of
Major Histocompatibility Complex Class II molecule
(MHC-II) and reduced T cell stimulatory capacity [69].
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DON modulates intestinal immunity both directly
(through activation of signalling pathways) and indirectly
(through crossing of luminal bacterial antigens, which was
observed together with bacterial translocation following
mucus layer alteration and tight junction opening) [75]. In
a pig jejunal explant model, DON has been shown to trig-
ger the innate as well as adaptative immunity [76]. In-
testinal exposure to DON induced a pro-inflammatory
response with a significant increase of expression of TNF-
α, IL-1α, IL-1β, and IL-8. Moreover, DON up-regulated
the expression of genes involved in the differentiation of
Th17 cells (STAT3, IL–17A, IL-6, IL-1b) at the expenses
of the pathway of regulatory T cells (FoxP3, RALDH1).
DON also induced genes related to the pathogenic Th17
cells subset such as IL–23A, IL-22 and IL-21 and not
genes related to the regulatory Th17 cells such as TGF-b
and IL-10 [76]. Likewise, DON potentiated the up-
regulation of IL-1β, IL-8, MCP1 and IL-6 induced by S.
Typhimurium in pig intestinal loops [68].

Intestinal microbiota
As other fungi secondary metabolites especially antibi-
otics, several mycotoxins have demonstrated antimicro-
bial properties [77, 78]. As a consequence, mycotoxins
may modify the intestinal microflora. Surprisingly, this
impact of mycotoxins has been poorly investigated. Two
studies have investigated the impact of DON and FB1 on
the intestinal microflora [79, 80].
The first study investigated the impact of DON on the

intestinal microflora by Capillary Electrophoresis Single-
Stranded Conformation Polymorphism (CE-SSCP). Con-
sumption of feed naturally contaminated with DON
(2.8 mg/kg feed) for four weeks had a moderate effect
on total faecal Aerobic Mesophilic Bacteria and Anaer-
obic Sulfite-Reducing. By constrast, DON changed the
faecal microflora balance; it did not impact the diversity
index but modulate the richness index [79].
In the second study, pigs received feed contaminated

with 12 mg FB/kg feed for 63 days. This diet transiently

Fig. 2 Summary of the intestinal toxicity of the main mycotoxins present in feed pig. DON and FB1 can induce several effects on the intestine,
with at the end a global impact on the pig intestinal health

Pierron et al. Porcine Health Management  (2016) 2:21 Page 5 of 8



affected the balance of the digestive microbiota during
the first four weeks of exposure as measured by SSCP
feacal microbiota profiles; a co-infection with S. ty-
phimurium amplified this phenomenon and change the
microbiota profile. As already observed with DON, aer-
obic mesophylic bacteria count was not change by FB1

treatment [80].

Conclusion
Regulations and recommendations exist for six myco-
toxins (AF, FB, Ochratoxin A (OTA), zearalenone (ZEN),
T2/HT2 toxins (T2/HT2) and DON) present in pig feed.
Among them, DON and FB have been studied for their
toxicity in the intestine of pig. The intestine is a target
for mycotoxins and as illustrated in this paper, the fact
that the intestine is a target for DON and FB1 have some
consequences in terms of pig health (Fig. 2). Theses
mycooxins are not only locally toxic for the intestine,
but also dysregulate many intestinal functions and im-
pair the local immune response. This results in systemic
toxicity leading to many symptoms, alteration of zoo-
technical parameters. Feed contamination with myco-
toxins also increases impair the barrier function of the
intestine, leading to translocation of bacteria across the
intestine and thus intestinal and systemic infections.
Global surveys indicate that animals are generally ex-

posed to more than one mycotoxin [81]. Indeed fungi
are able to produce several mycotoxins simultaneously;
and it is common practice to use multiple grains in
animal diets. Unfortunately, the toxicity of mycotoxin
mixtures cannot be predicted based on their individual
toxicities. Interactions between concomitantly occurring
mycotoxins can be antagonistic, additive, or synergistic
[82]. The data on combined toxicity of mycotoxins are
limited and therefore, the health risk from exposure to a
combination of mycotoxins is incompletely understood
[83, 84] and deserves further investigation.
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