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Interaction between arbuscular mycorrhizal 
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of crop plants
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Abstract 

Soil microorganisms play an important role in enhancing soil fertility and plant health. Arbuscular mycorrhizal fungi 
and plant growth promoting rhizobacteria form a key component of the soil microbial population. Arbuscular mycor-
rhizal fungi form symbiotic association with most of the cultivated crop plants and they help plants in phosphorus 
nutrition and protecting them against biotic and abiotic stresses. Many species of Bacillus occurring in soil are also 
known to promote plant growth through phosphate solubilization, phytohormone production and protection 
against biotic and abiotic stresses. Synergistic interaction between AMF and Bacillus spp. in promoting plant growth 
compared to single inoculation with either of them has been reported. This is because of enhanced nutrient uptake, 
protection against plant pathogens and alleviation of abiotic stresses (water, salinity and heavy metal) through dual 
inoculation compared to inoculation with either AMF or Bacillus alone.
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Introduction
The soil is a life supporting system rich in microorgan-
isms with many kinds of interactions that determines 
the growth and activities of plants. Microorganisms in 
soil providing nutrients to plants, protecting them from 
biotic and abiotic stresses, and boosting their growth and 
yield is well documented [12, 25]. Rhizosphere is the nar-
row zone of soil around plant roots very rich in microbial 
activity due to the presence of root exudates with nutri-
ents, sloughed off root cells and mucilage released by 
the plant root. Rhizosphere harbours 10–50 times more 
bacteria and 5–10 times more fungi compared to soil 
away from the roots [60]. Interaction between microor-
ganisms in the rhizosphere has profound effects on the 
growth, nutrition and health of plants in agro-ecosystems 
and in natural ecosystems [57]. Numerous studies have 
shown specific effects of plants on the abundance and 

composition of microorganisms in the rhizosphere. A 
recent study brought out that the plant growth strongly 
influences the fungal alpha diversity in the rhizosphere 
than bulk soil [70]. Interactions between microorganisms 
in the rhizosphere influence plant health directly by pro-
viding nutrition and/or indirectly by protecting against 
biotic and abiotic stresses. However, most of the studies 
on rhizosphere microorganisms focused on bacteria than 
fungi [49]. Of the different microorganisms colonizing 
the rhizosphere arbuscular mycorrhizal fungi (AMF) are 
unique because they are partly inside the root and partly 
outside the root, thus influencing other microorganisms 
in the soil and also plant growth. AMF are known for 
their evolutionary history. Plant and AMF association 
has evolved over at least 500 million years which has led 
many to suggest that AMF could have played a major role 
in the colonization of land by plants [59]. This associa-
tion is one of the most ancient symbiotic relationship in 
the biological world. This hypothesis is also supported by 
recent molecular studies done on liverworts which are 
the most ancient plants [61].
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AMF forming symbiotic association with higher plants 
facilitate uptake of diffusion-limited plant nutrients such 
as phosphorus, zinc, copper, etc. [13]. Phosphorus which 
is essential for plant growth has a defined role in plant 
metabolism such as cell division, development, photo-
synthesis, breakdown of sugar, nutrient transport within 
the plant, transfer of genetic characteristics from one 
generation to another and regulation of metabolic path-
ways [13]. Enhanced phosphorus uptake by mycorrhizal 
plants is well documented. Various mechanisms have 
been suggested for increased phosphorus uptake by myc-
orrhizal plants like external hyphae exploring greater vol-
ume of soil for phosphorus away from the root, effective 
phosphorus acquisition by external hyphae by produc-
tion of phosphatases and smaller radii of absorptive sys-
tem [13, 45]. Inoculation with efficient AMF enhancing 
nutrition, growth and yield of crop plants is well docu-
mented [23]. Several studies carried out under phospho-
rus deficient soils have brought out that AMF help in 
the phosphorus nutrition of crop plants to the extent of 

saving 50% P fertilizer application with no adverse effect 
on growth and yield of crops [40, 65]. These fungi also 
protect the plants against biotic and abiotic stresses [47, 
53]. These fungi although not host specific exhibit host 
preference, thereby an efficient fungus for inoculating a 
particular host can be screened and selected [9, 13]. AMF 
are widely used in organic agriculture and plant nurseries 
to improve the growth of economically important spe-
cies [17]. By mediating the nutritional flux between the 
plant and many microbes in the soil, AM symbiosis con-
stitutes the backbone of the plant holobiont. Even though 
the importance of the AM symbiosis has been well rec-
ognized its circadian chronobiology remains almost com-
pletely unknown [42].

AMF interact with wide range of microorganisms in 
the root and in the rhizosphere. AMF specifically har-
bor gene sets and metabolic machineries responsible for 
successful colonization in plant roots. Till date 321 spe-
cies of AMF belonging to 36 genera have been described 
(http://www.amf-phylo​geny.com). These unique species 

Fig. 1  Internal Transcribed spacer (ITS) based phylogenetic analyses showing the relationship between selected free living fungi and AMF. The 
values at the nodes indicate bootstrap values. For phylogenetic analyses, ITS sequences were downloaded from NCBI, aligned using CLUSTAL-W 
option in MEGA 7 and phylogenetic tree was generated using Neighbour Joining method

http://www.amf-phylogeny.com
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are phylogenetically quite diverse and have evolved dif-
ferently from the free living fungi. Figure 1 shows a lim-
ited phylogenetic analysis of selected free living fungi and 
AMF, indicating their phylogenetic relationship. These 
fungi enhancing the number and activity of beneficial 
soil microorganisms with consequential beneficial effect 
on plant growth has been reported by earlier workers [2, 
32]. In recent years there has been considerable interest 
on plant growth promoting rhizobacteria (PGPR), which 
improve plant growth by providing growth promot-
ing substances and suppressing root pathogens [29, 55]. 
Synergistic interaction between AMF and PGPR benefit-
ting the growth of plants compared to single inoculation 
with either of them has been reported by earlier workers 
[19, 24]. AMF and PGPR in soil and plant tissues mutu-
ally cooperate with each other in benefitting plant growth 
through increased nutrition, hyphal permeability in plant 
roots, bacterial survival and protection against biotic 
and abiotic stresses. Impressive molecular works have 
revealed a number of basic principles underlying plant–
microbe interactions like (i) signals from microbes that 
are perceived by cognate plant immune receptors to ini-
tiate defense or symbiotic responses [39], (ii) microbial 
DNA and/or protein secretion systems that transport 
molecules into the host plant cell to modulate cell func-
tions [18, 36]. Signaling between plants and microorgan-
isms through transport signaling compounds is another 
important finding. Communication through signalling 
molecules, such as flavonoids, strigolactones and sesquit-
erpenes, is important for regulation of these interactions. 
Strigolactones released in low concentrations by rhizos-
phere microorganisms is known to facilitate colonization 
of plants by AMF. Among the PGPR, Bacillus is one of 
the important genus that exists in soil or as an endophyte 
and being a spore former with better saprophytic ability 
and competitiveness, it can survive in soil for long period 
of time under harsh environmental conditions. Bacillus 

spp. assist plants in its defense against pathogen attack 
and also enhance stress tolerance by inducing the expres-
sion of stress-response genes, phytohormones and stress-
related metabolites [33]. The interactive effect of AMF 
with Bacillus spp. in soil and their potential to improve 
plant growth is discussed in this review.

Synergistic interaction of AMF with Bacillus species 
in enhancing plant growth
Most of the Bacillus species directly stimulate plant 
growth either through enhancement in acquisition of 
nutrients or through stimulation of host plant’s defense 
mechanisms prior to infection or can associate with AMF 
and enhance plant growth [3]. Co-inoculation of AMF 
and PGPR has been proposed as an efficient method to 
increase plant growth by many workers. Several research-
ers have investigated the potential of AMF + Bacillus spp. 
association in enhancing the growth of plants (Table 1). 
Medina et  al. [48] studied the effects of two Bacillus 
strains (Bacillus pumilus and B. licheniformis) on Med-
icago sativa plants with single or dual inoculation with 
three AMF and compared it with P-fertilization. The 
effectiveness of AMF species was determined by the 
bacterial strain associated for most of the plant param-
eters studied. The most efficient treatment was the dual 
Glomus deserticola + B. pumilus inoculation in terms of 
dry matter production. The different AMF had differ-
ent effects on Bacillus spp. studied, indicating ecologi-
cal compatibilities between microorganisms. Adriana 
et  al. [1] investigated the interaction between three dif-
ferent AMF isolates (Glomus constrictum autochthonous 
(GcA); G. constrictum from collection (GcC); and com-
mercial Glomus intraradices (Gi) and a Bacillus megate-
rium (Bm) strain isolated from Mediterranean calcareous 
soil and their effect on Lactuca sativa plant growth. Inoc-
ulation with the consortium (GcA + Gi + Bm) increased 
plant growth but decreased when Bm was in combination 

Table 1  Interaction between AMF and Bacillus spp. promoting plant growth

AMF Bacillus spp. Plant References

Glomus deserticola and two other AMF B. pumilus and B. licheniformis Medicago sativa Medina et al. [48]

G. constrictum G. intraradices B. megaterium Lactuca sativa Adriana et al. [1]

G. fasciculatum B. subtilis Tagetes erecta Flores et al. [27]

G. mosseae B. subtilis Artemisia annua Awasthi et al. [10]

G. aggregatum, G. fasciculatum, G. intraradices and G. mosseae B. subtilis Pelargonium graveolens Alam et al. [5]

G. intraradices B. polymyxa +other PGPR Stevia rebaudiana Vafadar et al. [66]

G. mosseae B. subtilis +other PGPR Cucumis sativus Rabab [58]

Funneliformis mosseae B. sonorensis Capsicum annuum Thilagar et al. [65]

Acaulospora laevis and Claridioglomus etinucatum B.licheniformis Withania somnifera Anuroopa and Bagyaraj [6]

Funneliformis mosseae B. sonorensis Solanum lycopersicum 
and Capsicum annuum

Desai et al. [22]
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with GcC. Plants inoculated with GcC + Bm had highest 
glucose-6-phosphate dehydrogenase (G6PDH) and the 
lowest glutamine synthetase (GS) enzymatic activities, 
whereas Gi + Bm inoculated leaves showed the high-
est GS activity and it is well known that these enzymatic 
activities are related to plant growth and performance.

Interaction between Glomus fasciculatum and Bacil-
lus subtilis was studied by Flores et al. [27] on marigold 
for flower yield and quality. The plants were inoculated 
with  Glomus and/or  Bacillus  at sowing and transplant-
ing time. The  dual inoculated plants produced nearly 
20% more inflorescence than uninoculated plants. Flow-
ers in the inoculated treatment did not differ in size, 
however they had significantly higher fresh weight than 
control.  The AMF improved xanthophyll content where 
as the bacterium enhanced flower clarity and yellow 
color. Awasthi et  al. [10] reported that dual inoculation 
with Glomus mosseae and Bacillus subtilis increased the 
artemisinin content in the medicinal plant Artemisia 
annua, while individual inoculation with Glomus mos-
seae or  Bacillus subtilis  was not effective in increasing 
artemisinin content. Inoculation of Bacillus subtilis with 
four different AMF,  Glomus aggregatum, Glomus fas-
ciculatum, Glomus intraradices  and  Glomus mosseae, 
alone and in combinations were evaluated for the pro-
ductivity of geranium by Alam et  al. [5]. Plants inocu-
lated with  the consortium of B. subtilis + G. mosseae 
significantly increased the herb yield and the total oil 
yield over untreated control which was validated by field 
experiment.

Vafadar et  al. [66] studied the effect of AMF Glomus 
intraradices, and PGPR Bacillus polymyxa, Pseudomonas 
putida and  Azotobacter chroococcum on Stevia rebau-
diana. The results showed increased effects due to dual 
compatible mixtures of inoculants resulting from their 
strong synergistic relationship among themselves. All 
growth parameters including stevioside content recorded 
were significantly higher in plants inoculated with G. 
intraradices + B. polymyxa. Similarly, Anuroopa and 
Bagyaraj [6] investigated the effect of individual as well 
as microbial consortia of Acaulospora laevis, Claridioglo-
mus etinucatum and Bacillus licheniformis on the growth 
of Withania somnifera. Plant growth, dry biomass, plant 
nitrogen and phosphorus, withanolide concentration, 
mycorrhizal spore count and root colonization were 
found to be maximum in plants inoculated with A. lae-
vis + B. licheniformis when compared with individual 
inoculated treatments and uninoculated plants. Rabab 
[58] conducted a field experiment to study the interac-
tion of Bacillus subtilis and Trichoderma harzianum 
with AMF Glomus mosseae on growth parameters of 
Cucumis sativus. The study showed that the consor-
tium increased the number of mycorrhizal spores, root 

colonization and infection index of AMF, and increased 
the growth and yield of cucumber plant. Thilagar et  al. 
[65] screened and selected the best AMF Funneliformis 
mosseae and PGPR Bacillus sonorensis for inoculating 
chilly and later found that dual inoculation is the best for 
inoculating chilly through pot culture studies. Further 
microplot experiment conducted with varying levels of 
chemical fertilizers in order to reduce the recommended 
level of fertilizers for chilly cultivation brought out that 
50% of the recommended NPK fertilizers can be reduced 
with no adverse effect on growth, nutrition and yield of 
chilly with dual inoculation. Large scale field trial con-
ducted at farmer’s field validated the microplot results. 
Desai et  al. [22] inoculated Bacillus sonorensis and Fun-
neliformis mosseae to the planting medium in pro trays to 
raise tomato and capsicum seedlings in a polyhouse. The 
results revealed that the inoculation with consortium is 
beneficial for raising healthy, vigorously growing tomato 
and capsicum seedlings in pro trays under polyhouse 
condition.

Interaction of AMF with Bacillus spp. in protecting plants 
against pathogens
Priming of plant immune system in response to biologi-
cal agents is a common practice, which enables plants 
with augmented capability to defend pathogen attack. 
Symbiotic AMF and PGPR are known to induce systemic 
resistance to soil-borne pathogens. The presence of these 
microorganisms in the soil/rhizosphere or intentional 
introduction of these microorganisms to the soil helps 
to improve plant’s general health and its ability to carry 
out its physiological functions to the best of its potential 
[14]. One of the major factors regulating root microbi-
ome structure is the interactions between mycorrhizal 
fungi, soil bacteria and the plant, which play a crucial 
role in shaping the microbiome community. Host plant 
genotype strongly influences the extent to which AMF 
and PGPR colonize the host roots through the produc-
tion of root exudates that attract specific microorganisms 
to the rhizosphere. Certain chemicals like strigolactones 
and benzoxazinoids produced by plants induce posi-
tive chemotaxis and help to recruit specific AMF [4] 
and PGPR respectively near the root zone [54]. Several 
researchers have studied the possibility of combined 
inoculation and reported that plants show preferences for 
this kind of association. Bacillus species being an impor-
tant soil genus has been investigated in such association 
studies with AMF (Table 2).

Jaizme-Vega et  al. [37] studied the combined inocu-
lation of two AMF species Glomus mosseae or G. 
manihotis and a Bacillus spp. consortium in reducing 
nematode infestation and damage in papaya. Plants 
were harvested 160  days after nematode inoculation. 
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Dual inoculation with AMF + Bacillus spp. significantly 
reduced the Meloidogyne infestation and resulted 
in enhanced plant growth. Biological control of wilt 
caused by Verticillium dahliae in strawberry based on 
single and dual inoculation with a commercial AMF 
inoculant containing  Glomus  spp. and a commercial 
PGPR inoculant containing a Bacillus sp., was evaluated 
by Tahmatsidou et al. [64] in the field. Dual inoculation 
did not give greater protection than single inoculation 
bringing out that the commercial inoculants used by 
them were not of good quality. Yusran et al. [74] tested 
the efficacy of two commercial bacterial strains Pseu-
domonas sp. and Bacillus amyloliquefaciens in improv-
ing mycorrhization, nutrient status and plant growth 
of tomato affected by Fusarium oxysporum f. sp. radi-
cis-lycopersici. Combined inoculation with the bacte-
rial strains and AMF increased the observed effects on 
dry matter and shoot nutrient concentrations. A glass 
house experiment was conducted by Serfoji et  al. [62] 
to check the effectiveness of Glomus aggregatum and 
Bacillus coagulans along with vermicompost for the 
management of Meloidogyne incognita on tomato cul-
tivar Pusa Ruby. The AMF alone and the consortium 
resulted in maximum growth, biomass and nutrients 
in tomato with decreased root- knot nematode popu-
lation and root- knot index. Application of vermicom-
post along with G. aggregatum and B. coagulans further 
increased plant growth and mycorrhizal colonization 

but decreased root- knot nematode reproduction rate, 
number of galls and egg mass.

Interaction of AMF with Bacillus spp. in alleviating abiotic 
stress
Plant growth is benefitted by addition of AMF and PGPR 
which not only helps to increase germination rate, root 
growth and shoot and root weight, grain yield, chlo-
rophyll content, but also induce tolerance to drought, 
salt stress and delay senescence. There are publica-
tions reporting that AMF interact with Bacillus spp. to 
increase plant growth under stress (Table 3). The effect of 
dual inoculation with AMF Glomus mosseae or Glomus 
intraradices and PGPR, Bacillus sp. was investigated by 
Vivas et  al. [69] on the development and physiology of 
lettuce. Plants were assessed for growth, mineral nutri-
tion and gas-exchange in response to microbial inocu-
lation after polyethylene glycol (PEG) induced drought 
stress. In plants, inoculated with AMF + Bacillus sp. 
there was increase in fungal development and succinate 
dehydrogenase (SDH) and alkaline phosphatase (ALP) 
activities, and also plant growth. Bacillus sp. inoculation 
improved all the plant and fungal parameters to the same 
level as in non-stressed plants. The results clearly brought 
out the benefit of co-inoculation with AMF + Bacillus sp. 
in alleviating water stress. Marulanda et  al. [46] evalu-
ated the interactions between Bacillus thuringiensis, a 
drought-adapted bacterium, and two isolates of Glomus 

Table 2  Interaction between AMF and Bacillus spp. in protecting plants against plant pathogens

AMF Bacillus spp. Pathogen Plant References

Glomus mosseae or G. 
manihotis

Bacillus sp. Meloidogyne incognita Carica papaya Jaizme-vega et al. [37]

Glomus spp. Bacillus sp Verticillium dahliae Fragaria ananassa Tahmatsidou et al. [64]

AMF B. amyloliquefaciens +other 
PGPR

Fusarium oxysporum f. sp. radicis-
lycopersici

Solanum lycopersicum Yusran et al. [74]

G. aggregatum B. coagulans Meloidogyne incognita Solanum lycopersicum Serfoji et al. [62]

Table 3  Interaction between AMF and Bacillus spp. to alleviate abiotic stress

AMF Bacillus spp. Abiotic stress Plant References

Glomus mosseae and G. intraradices Bacillus sp. Drought Lactuca sativa Vivas et al. [69]

G. intraradices B. thuringiensis Drought Retama sphaerocarpa Marulanda et al. [46]

AMF B.cereus + Candida parapsilosis Heavy metal Trifolium repens Azcón et al. [11]

G. etunicatum B. subtilis Surfactant Xiao et al. [71]

Rhizophagus intraradices B. thuringiensis + B. megate-
rium + Pseudomonas putida

Drought Trifolium repens Ortiz et al. [56]

Consortium of AMF B. thuringiensis Drought Zea mays Armada et al. [7]

Single autochthonous AMF B. thuringiensis Drought Lavandula dentata Armada et al. [8]

Claroideoglomus etunicatum + Rhizophagus 
intraradices + Funneliformis mosseae

B. subtilis Salinity Acacia gerrardii Hashem et al. [33]
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intraradices (an indigenous drought-tolerant and a non 
indigenous drought-sensitive), on Retama sphaerocarpa, 
a drought-adapted legume. Maximum root development, 
nodule numbers, mycorrhizal colonization, plant growth 
and water uptake were observed in plants co-inoculated 
with Bacillus thuringiensis plus the indigenous drought 
tolerant isolate of Glomus intraradices. 

Armada et  al. [7] investigated the effectiveness of a 
drought-adapted AMF and Bacillus thuringiensis con-
sortium to improve plant growth and physiology in 
maize under drought stress. Several physiological param-
eters including the expression of plant aquaporin genes 
were measured. Inoculation resulted in increased plant 
nutrition, plant drought tolerance including regulation 
of plant aquaporins with several putative physiologi-
cal functions. A similar work carried out by Ortiz et al. 
[56] using autochthonous AMF and Bacillus thuringien-
sis on Trifolium repens also brought out that inoculation 
enhanced drought tolerance in plants compensating for 
the detrimental effect of water limitations. Armada et al. 
[8] evaluated the response of Lavandula dentata under 
drought conditions to inoculation with an autochthonous 
AMF and native Bacillus thuringiensis (endophytic bac-
terium) singly and together. Inoculation with the consor-
tium increased plant growth and nutrition and increased 
drought tolerance and antioxidant activities such as 
superoxide dismutase, catalase and ascorbate peroxidase. 
There was increased mycorrhizal development, indole 
acetic acid and 1-aminocyclopropane-1-carboxylate 
(ACC) deaminase production and phosphate solubili-
zation indicating its capacity to improve plant growth 
under stress conditions. The autochthonous AMF spe-
cies and particularly their combination with B. thuring-
iensis demonstrated the potential for protecting plants 
against drought and helping plants to thrive in semiarid 
ecosystems.

Hashem et  al. [33] conducted a greenhouse experi-
ment to examine synergistic impact of the AMF, Clar-
oideoglomus etunicatum; Rhizophagus intraradices and 
Funneliformis mosseae; and PGPR, Bacillus subtilis to 
induce acquired systemic resistance in Talh tree (Acacia 
gerrardii) against adverse impact of salt stress. Compared 
to the control, the Bacillus subtilis treatment significantly 
enhanced root colonization intensity by AMF, in both 
presence and absence of salt. They also found positive 
synergistic interaction between B. subtilis and AMF in 
terms of increase in total lipids, phenols, and fiber con-
tent. The B. subtilis + AMF inoculated plants showed 
increased content of osmoprotectants such as glycine, 
betaine and proline. The application of these micro-
bial inoculants to the tree turned out to be beneficial in 
reducing the deleterious effect of salt on plant metabo-
lism, probably by modulating the osmoregulatory system 

and antioxidant enzyme system. The effect of differ-
ent AMF (G. fasciculatum, G. mosseae, G. aggregatum) 
and  the PGPR B. pumilus  on growth Ocimum basili-
cum  grown under 40  ppm of sodium fluoride stress 
was investigated by Yadav [72]. Dual inoculation with 
AMF + B. pumilus showed a remarkable increase in plant 
height, leaf fresh weight, leaf dry weight and total fresh 
biomass. Consortium of G. mosseae + B. pumilus resulted 
in 24% increase in leaf fresh weight and also increased 
the fluoride tolerance level of the herb.

The biocompatibility between AMF  Glomus etunica-
tum and a biosurfactant-producing bacterial strain Bacil-
lus subtilis was investigated by Xiao et al. [71]. The effect 
of B. subtilis on the mycoremediation of soils artificially 
contaminated with different levels of phenanthrene was 
investigated in pot experiments. Mycorrhizal or B. sub-
tilis inoculation improved the tolerance to stress of 
phenanthrene and increased the plant biomass. Biosur-
factant secreted by B. subtilis considerably enhanced 
the solubility of phenanthrene, favouring its enrichment 
in rhizosphere soil and plant roots. The co-inoculation 
of  G.  etunicatum  and B. subtilis significantly decreased 
the residual concentrations of phenanthrene in soil, and 
resulted in higher soil enzyme activities of catalase and 
polyphenol oxidase. Therefore, inoculation of biosur-
factant-producing strain of Bacillus + AMF G. etunica-
tum could be a potential biotechnological approach for 
the remediation of soil polluted with polycyclic aromatic 
hydrocarbons. Azcón et al. [11] investigated the develop-
ment of Trifolium repens growing in a heavy metal con-
taminated soil inoculated with different microorganisms. 
The plant growth was increased by selected native micro-
organisms, Bacillus cereus, Candida parapsilosis or AMF, 
used either as single or dual inoculants. The dual inocula-
tion with AMF + B. cereus increased plant biomass com-
pared to other treatments. The AMF colonization and 
nodulation was negligent in plants growing in this natu-
ral, polluted soil which was compensated by AMF + B. 
cereus inoculation. The metal bioaccumulation abilities 
of the inoculated microorganisms and particularly the 
microbial effect on decreasing metal concentrations in 
shoot biomass seem to be involved in such effects. Inocu-
lation with AMF + B. cereus showed a bioremediation 
potential and helped plants to develop in the contami-
nated soil. Thus, they could be used as a biotechnologi-
cal tool to improve plant development in heavy metal 
contaminated environments. From the studies conducted 
so far on soil AMF + Bacillus spp. it can be concluded 
that the information available is scanty, suggesting more 
investigations are needed in this area.
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Interaction of AMF with endosymbiotic bacteria
AMF host intracellular bacteria that can colonize the 
surface of spores and hyphae which affect spore germi-
nation, hyphal growth, and root colonization [35, 43]. 
Morphological and genetic approaches of genes related 
to metabolism, cell colonization events and nitrogen fixa-
tion suggests a potential role in the nutritional exchanges 
between endobacteria, fungi and plants [51]. AMF also 
benefit from the production of bacterial metabolites such 
as organic acids, volatile compounds (ethylene), and non-
volatile compounds [34]. Some endobacteria are obligate 
biotrophs, not able to grow without AMF [38]. Interac-
tion of AMF, bacteria and plants brings another level of 
complexity to diversity and function of the mycorrhi-
zal symbiosis and can be considered as tripartite asso-
ciations resulting in a consortium that promotes plant 
growth [16]. In addition, the diversity of these associ-
ated bacteria has not been explored. Lumini et  al. [43] 
established that the presence of endosymbiotic bacteria 
strongly improves the presymbiotic growth by compar-
ing lines of Gigaspora margarita harbouring endosymbi-
otic Candidatus Glomeribacter gigasporarum with lines 
that have been cured. Cruz et al. [21] isolated three bac-
terial strains from spores of  Gigaspora margarita. The 
bacteria were identified by morphological methods and 
on the basis of ribosomal gene sequences as Bacillus sp. 
(KTCIGM01),  Bacillus thuringiensis  (KTCIGM02), 
and Paenibacillus rhizospherae  (KTCIGM03). The prob-
able endobacteria suppressed soil-borne plant patho-
gens, promoted hyphal growth, and stimulated nutrient 
biodynamics, as reflected by phosphorus solubiliza-
tion and nitrogenase activity measurements. However, 
the potential roles and infection mechanisms of these 
bacteria, in particular the endobacteria, are still poorly 
understood. Some of the bacteria associated with spores 
and hyphae of AMF are known to enhance colonization 
and function of AMF, which are referred to as mycor-
rhiza helper bacteria (MHB). Bacillus coagulans isolated 
from the hyphae of Rhizophagus fasciculatus was the 
first report on MHB occurrence in AMF [44] followed 
by several other reports [16, 28, 73]. Therefore, it is pos-
sible that MHB and AMF can positively interact to pro-
mote a sustainable nutrient supply to plants [28]. Some 
of these MHB can be endosymbionts. Thus the interac-
tion between plant, AMF with endosymbionts and rhizo-
sphere bacteria is complex and needs more investigation.

Molecular interactions between plants, AMF and soil 
bacteria
Interaction of AMF with plants and other rhizospheric 
microbes is complex and very intricate [20]. An exchange 
of molecular signals among the participants ensures a 
successful interaction. Host plants can release specific 

signal molecules (e.g. Strigolactone) which when per-
ceived by the mycorrhizal fungi results in extensive 
hyphal branching leading to increase probability of root-
fungal contact. Similarly, mycorrhizal fungi secrete cer-
tain signal molecules known as “myc factors” which can 
activate morphological and physiological changes in 
plants through induction of “sym pathway” [26, 30]. It has 
been deduced that seven proteins viz. SYMRK (symbio-
sis receptor kinase), DMI2 (DOES NOT MAKE INFEC-
TIONS2); cation channels (CASTOR and POLLUX); 
nuclear porins (NUP85 and NUP133) are necessary for 
the induction of Ca2+  spiking and CCAMK/DMI3 (cal-
cium/calmodulin-dependent protein kinase) are required 
for transducing the calcium signals. CCAMKDMI3 inter-
acts with CYCLOPS (IPD3) and is required for mycorrhi-
zal colonization [41, 50]. It has been reported that more 
than 10,000 genes are involved in AMF-plant symbiosis. 
As the physiology of plants change due to AMF coloniza-
tion, the composition of the root exudates also changes 
and affects the microbial communities in the rhizos-
phere. Still not much is actually known about the molec-
ular cross-talk between Bacillus and AMF. It has been 
reported that the receptors for the signal molecules pro-
duced by beneficial bacteria and AMF share significant 
homology and even in some cases same receptors can 
perceive both the signals. Exopolysaccharides produced 
by beneficial bacteria have been attributed as an impor-
tant factor for establishing association with AMF [15]. 
Certain exoribonuclease related genes have also been 
described in beneficial endosymbiotic bacteria which are 
required for developing association with Gigaspora mar-
garita [67]. AMF hyphae have been reported to release 
organic compounds which can act as source of energy 
for rhizospheric microbes [52]. Guether et  al. [31] used 
Affymetrix GeneChip to understand the transcriptional 
changes in Lotus japonicas upon colonization with Giga-
spora margarita and 558 genes were found differentially 
expressed. SCARECROW family of transporters, phos-
phate transporters, ammonium transporters, potassium 
transporters were found to be significantly upregulated. 
Expression profiling using RNASeq revealed that inocu-
lation of Rhizoglomus irregulare resulted in modulation 
of 726 genes in Sunflower roots and especially genes 
involved in membrane transport and cell wall shaping 
were significantly upregulated [68]. Although consider-
able progress has been made to understand the molecu-
lar signaling using Next Generation Sequencing (NGS) 
technologies, CRISPR based gene knock in/out, gene 
transfer/replacement technologies can be used as pow-
erful tools to dissect the plant–microbe interactions to 
the next level [63]. CRISPR tools along with other gene 
editing technologies like TALENs (Transcriptor Acti-
vator Like Effectors Nucleases) can be very helpful to 
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manipulate key regulatory genes involved in plant-AMF-
bacteria interactions leading to improved AMF inocu-
lants with better efficiency.

A  circadian rhythm  is a natural, internal process that 
regulates the various biological function which repeats 
roughly every 24  h.  These 24-h rhythms are driven by 
a  circadian clock, and they have been widely observed 
in  plants and also in microbes. Circadian clocks are 
nearly ubiquitous timing mechanisms that can orches-
trate rhythmic behavior and gene expression in a wide 
range of organisms. The arbuscular mycorrhizal (AM) 
symbiosis, formed by plant roots and fungi, is one of the 
oldest and most widespread associations between organ-
isms. By mediating the nutritional flux between the plant 
and the many microbes in the soil, AM symbiosis consti-
tutes the backbone of the plant holobiont. Even though 
the importance of the AM symbiosis has been well rec-
ognized its circadian chronobiology remains almost com-
pletely unknown [42].

Future perspective
The current day emphasis is on sustainable agriculture. It 
implies use of natural resources like beneficial soil micro-
organisms for producing food and enhancing quality of 
the environment. AMF being a part of microorganisms 
occurring in the rhizosphere attempts to integrate them 
with other beneficial soil organisms should be inves-
tigated for holistic plant and soil health management. 
There is a paucity of well controlled studies on the use of 
microbial interactions to improve productivity in crop-
ping systems. Considerable research has been carried out 
on inoculating plants with AMF and Bacillus spp. sepa-
rately and showing their beneficial effect on plant growth. 
Using AMF and Bacillus spp. together as a consortium 
in enhancing plant growth and productivity is scanty 
and needs more investigations. The plant-AMF-Bacillus 
interaction being complex more molecular studies on 
the cross-talk between the three biological systems are 
needed to understand their intricate interaction.

Conclusion
AMF and Bacillus spp. in soil can act synergistically with 
each other and promote plant growth in much bigger 
way, compared to inoculation singly with either of them. 
This is due to complementary impact on soil nutrient 
solubilization and uptake. Combined inoculation also 
helps in alleviating plants against plant pathogens and 
abiotic stresses like drought, salinity, heavy metal toxicity 
etc. Dual inoculation with AMF and Bacillus spp. under 
field conditions brought out that 50% of recommended 
NPK fertilizers can be reduced with no adverse effect 

on growth, nutrition and yield of crop plants. Studies on 
dual inoculation with AMF plus Bacillus spp. under field 
conditions are limited suggesting that more investiga-
tions are needed in this area.
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