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Clinical impact of variability on CT
radiomics and suggestions for suitable
feature selection: a focus on lung cancer
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Abstract

Background: Radiomics suffers from feature reproducibility. We studied the variability of radiomics features and the
relationship of radiomics features with tumor size and shape to determine guidelines for optimal radiomics study.

Methods: We dealt with 260 lung nodules (180 for training, 80 for testing) limited to 2 cm or less. We quantified
how voxel geometry (isotropic/anisotropic) and the number of histogram bins, factors commonly adjusted in multi-
center studies, affect reproducibility. First, features showing high reproducibility between the original and isotropic
transformed voxel settings were identified. Second, features showing high reproducibility in various binning
settings were identified. Two hundred fifty-two features were computed and features with high intra-correlation
coefficient were selected. Features that explained nodule status (benign/malignant) were retained using the least
absolute shrinkage selector operator. Common features among different settings were identified, and the final
features showing high reproducibility correlated with nodule status were identified. The identified features were
used for the random forest classifier to validate the effectiveness of the features. The properties of the uncalculated
feature were inspected to suggest a tentative guideline for radiomics studies.

Results: Nine features showing high reproducibility for both the original and isotropic voxel settings were selected
and used to classify nodule status (AUC 0.659–0.697). Five features showing high reproducibility among different
binning settings were selected and used in classification (AUC 0.729–0.748). Some texture features are likely to be
successfully computed if a nodule was larger than 1000 mm3.

Conclusions: Features showing high reproducibility among different settings correlated with nodule status were
identified.

Keywords: Radiomics, Computed tomography, Feature reproducibility, Guideline for multi-center analysis, Precision
medicine

Background
Precision medicine is an important factor in modern oncol-
ogy, and medical imaging plays an important role [1, 2]. Ra-
diologists have extracted clinically meaningful information
related to screening, diagnosis, and treatment planning for
various cancer types. Traditionally, a few imaging features

specific to disease have been computed [3, 4]. For example,
tumor size is the most widely used feature to asses treat-
ment response [5, 6].
Recently, radiomics has been widely accepted in preci-

sion medicine [7]. Radiomics is an emerging research
field to extract mineable high-dimensional data from
clinical images [8–10]. Radiomics can be applied to vari-
ous disease types with minor modifications because the
feature set is likely to include effective features that
cover a broad range of disease types. The results of
radiomics might complement the information of tissue
sampling and circulating biomarkers [11, 12].
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The radiomics has shortcomings. One major short-
coming is the low reproducibility of radiomics features,
which makes it difficult to compare and interpret radio-
mics studies. Typically, features were defined mathemat-
ically using factors affected by imaging parameters such
as voxel resolution and reconstruction methods [13, 14].
Studies have proposed standardized image settings, to im-
prove feature stability [1]. However, such standardization
approaches are not always feasible for multi-center retro-
spective studies that might involve heterogeneous image
settings. This study focused on voxel geometry (i.e., iso-
tropic vs. anisotropic) and the number of histogram bins
among the many factors affecting feature stability. A given
region of interest (ROI) is made of many voxels, and voxel
geometry affects features. Many features depend on the
histogram of intensity from the ROI, and thus how histo-
grams are binned affects features [15].
There are many categories within radiomics features,

such as histogram-based features and texture-based fea-
tures. The features may be unstable depending on the
factors described above. Furthermore, some features
might fail to be computed. For example, a very small
nodule cannot be used to compute texture features.
Inspecting the physical properties of failed computations
might lead to valuable insights into performing radio-
mics studies.
Here, we aimed to find features showing high reprodu-

cibility with respect to voxel geometry and the number
of bins for lung nodules smaller than 2 cm tested on two
different cohorts (n1 = 180 and n2 = 80) by lung CT.
Smaller nodules were chosen because larger nodules are
likely to have less variability [16]. As a secondary aim,
we tried to provide guidelines for computing features by
inspecting the physical properties of failed radiomics
computations.

Material and methods
Patients
Institutional review board (IRB) approvals from Samsung
Medical Center (SMC) and Sungkyunkwan University
were obtained for this retrospective study with waivers of
informed consent. Two independent cohorts were
employed: For the training cohort (local data), we used
180 CT images (benign: 51 and malignant: 129) from 114
patients. The nodules were less than 2 cm. Some patients
(n = 66) had nodules defined in two time points and others
had nodules defined in single time point. All the malig-
nant nodules were confirmed as adenocarcinoma histolog-
ically in the training cohort. The benign nodules were not
confirmed invasively. Using CT imaging observations, we
classified nodules as benign if they showed no change for
2 years or more for the solid lesion. For sub-solid nodules,
the interval was 3 years or more. For the test cohort (pub-
lic data), 80 CT images from the lung nodule analysis

(LUNA) database (benign: 30 and malignant: 50) were
randomly chosen [17, 18]. The training cohort was used
to identify reproducible features and the testing cohort
was used to see if the finding generalizes to an independ-
ent data.

CT imaging
CT images of the training set were obtained with the fol-
lowing parameters: detector collimation was 1.25 or
0.625 mm, the tube peak potential energies ranged from
80 to 140 kVp, tube current ranged from 150 to 200
mA, and reconstruction interval ranged from 1 to 2.5
mm. All CT images were displayed at standard medias-
tinal (window width, 400 HU; window level, 20 HU) and
lung (window width, 1500 HU; window level, − 700 HU)
window settings. In-plane resolution varied from 0.49 to
0.88 with a mean and standard deviation (SD) of 0.7 and
0.07, respectively. The mean slice thickness of images
was 2.33 (range: 1-5 mm) and the SD was 0.98.
CT images of the test set were obtained from various

institutions. Full details of imaging parameters are avail-
able [18]. The tube peak potential energies ranged from
120 kV to 140 kV, tube current ranged from 40 to 627
mA, the mean effective tube current was 222.1 mAs,
and the reconstruction interval ranged from 0.45 to 5.0
mm. In-plane resolution varied from 0.49 to 0.9 with a
mean and SD of 0.66 and 0.08, respectively. The mean
value of slice thickness was 1.86 (range: 0.625–2.5 mm)
and the SD was 0.52. All CT images of both cohorts
were reconstructed using the standard algorithm.

Nodule segmentation and pre-processing
On axial CT images, nodules were segmented using in-
house semi-automated software by single expert [19].
Target regions were defined as nodules less than 2 cm.
For the first experiment, features computed using de-

fault voxel and isotropic voxel settings were compared.
The default setting refers to native voxels (can be non-
square) and the isotropic voxel setting refers to resam-
pling imaging data into square voxels. Such a resampled
square voxel setting is necessary for the following reasons.
Different voxel sizes must be compared in multi-center
studies, a process that usually involves reformatting im-
aging data into a larger voxel setting. It is undesirable to
up-sample large voxels to small voxels because the process
potentially involves interpolation with bias. It is preferable
to down-sample small voxels to large voxels, and thus
simple averaging occurs during the process. Radiomics
studies evaluate texture features that require directional
voxel neighborhood information. Square voxel settings are
ideal because in-plane and out-of-plane directions have
the same spatial sampling. The imaging data were
resampled to 2x2x2 mm3 isotropic voxel settings using
the ANTs software [20]. We were comparing data
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obtained from different settings and it was safe to resam-
ple to a poor resolution for a fair comparison. The training
cohort had an average slice thickness of 2.33mm, while
the test cohort had an average slice thickness of 1.86mm.
Thus, we chose 2mm as the slice thickness and made the
voxel geometry isotropic to compute texture features in a
standard manner.

Experiment 1 (original vs. isotropic voxels)
A total of 252 features were considered for each voxel
setting using a combination of open source code (i.e.,
PyRadiomics) and in-house code implemented in
MATLAB (MathWorks, Inc.) [21]. Some of the features
could not be computed and we only analyzed 128 fea-
tures out of the 252 features. Further details regarding
the computation failures are given in later sections.
The features were divided into four categories. Histo-

gram-based features were calculated from four types of
ROIs: whole ROI (number of features = 19), positive
voxel of the whole ROI (n = 14), outer 1/3 of the whole
ROI volume (outer ROI, n = 9), inner 2/3 of the whole
ROI volume (inner ROI, n = 9), and the difference
between outer and inner ROI (ROI delta, n = 9) [22, 23].
A given ROI was partitioned into inner and outer ROIs
purely based on the volume using binary morphological
operations.
A total of ten 3D shape features were calculated, and

some shape features (n = 3) were computed from 2D
data obtained from the slice where the nodule was the
largest. Shape features related to nodule margin were
computed using the sigmoid function (n = 6) [24]. The
sigmoid function was used to fit density change along a
sampling line drawn orthogonal to the nodule surface.
Each sampling line going through one voxel on the
tumor surface has a certain length (3, 5, and 7 mm in
this work) inside and outside the nodule. The fractal di-
mension was calculated as a fractal-based feature using
the box-counting method and fractal signature dissimi-
larity (FSD) was calculated using the blanket method
[25, 26]. The lacunarity was also calculated to assess the
texture or distribution of the gap.
Texture features were calculated using a Gray-level

co-occurrence matrix (GLCM), intensity size zone
matrix (ISZM), and neighborhood gray tone difference
matrix (NGTDM) with 3D ROI [27–29]. Two types
of 3D GLCM features were computed: GLCM of the
whole ROI and GLCM using sub-sampled ROI. Each
type was applied to four ROI types: whole, inner,
outer, and delta ROIs. Intensities were binned with
256 bins. Total of 44 GLCM features were eventually
obtained. Two ISZM features were computed. A 32 ×
256 matrix was constructed in which the first dimen-
sion is binned intensity and the second dimension is
the size. The ISZM features can quantify how many

sub-regions there are and how often certain sub-re-
gions occur within the ROI. Two features were calcu-
lated using ISZM. NTGDM-based features (n = 5)
quantify the difference between a gray value and the
average gray value of its neighbors.
Filter-based features (n = 9) were considered. The 3D

Laplacian of Gaussian (LoG) filter was adopted [30].
Sigma values of the LoG filter were computed with σ =
0.5–3.5 in 0.5 voxel increments. Computed features were
normalized to the z-score. Full details of all features are
given in the Additional file 1.
Features with high reproducibility were identified as

those with intra-class correlation (ICC) over 0.7 be-
tween two voxel settings (original vs. isotropic) using
SPSS (IBM Corp.) [31]. The least absolute shrinkage
selector operator (LASSO) was used to select features
to explain nodule status (i.e., malignant vs. benign) for
each voxel setting [32, 33]. The features common to
both settings were retained. Thus, features that were
both reproducible and correlated with nodule status
were identified. The effectiveness of the identified fea-
tures was further assessed by using the features to classify
between malignant and benign nodules in both the
training and testing sets. The overall design of experi-
ment 1 is in Fig. 1.

Experiment 2 (default bin setting vs. changed bin setting)
Many radiomics features are computed from 1D or
2D histograms. In our study, histogram-, GLCM-, and
ISZM-based features depend on histograms. The his-
tograms are dependent on the number of bins
adopted. The default number of bins was compared
with other numbers of bins. There were 4096 bins as
the default setting for histogram-based features ac-
counting for the CT intensity range [31]. The default
bins were 256 for GLCM and 32 for ISZM. For histo-
gram-based features, the default bin (4096 bin) setting
was compared using 256, 512, 1024, and 2048 bins.
For GLCM-based features, default bin setting (256
bin) was compared with those using 32, 64, and 128
bins. For ISZM-based features, default bin setting (32
bin) were compared with those using 16 and 64 bins.
The histogram-, GLCM-, and ISZM-based features
were computed as described in the first experiment.
The ICC between features from different bin set-

tings (default vs. changed bin settings) was calculated
to identify features showing high reproducibility. Fea-
tures with ICC values higher than 0.7 were retained
[31]. The LASSO was then applied to select features
that can explain nodule status (i.e., malignant vs. be-
nign) for each binning setting. Common features from
the compared settings were retained and used for
classification of nodule status. The overall design of
experiment 2 is in Fig. 2.
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Inspection of failed computation for features
Some features failed to be computed in the extraction step.
The following features were excluded because of high error
rate: histogram-based features (positive pixel, inner ROI,
outer ROI, and delta ROI features), GLCM features (inner
ROI, outer ROI, and delta ROI), sub-sampled GLCM fea-
tures, and NGTDM features. These features were not com-
puted because nodules in this study were too small.
The physical properties of failed computation cases

(error group) and successful computation cases (non-error
group) were compared for the two feature categories using
one-tailed t-tests. Since all cases had histogram- and
shape-based features available, those features were used to
compare the two groups. In addition, the histogram/
shape-based features are easily interpretable which makes
them good features to compare the two groups. A total of
26 features (19 histogram-based features and 7 shape-
based features) were compared between the two groups.

Statistical analysis
The features identified from the two experiments were
used as inputs for random forest (RF) classifier to

distinguish between malignant and benign nodules [34].
The RF classifier used 200 decision trees. The classifier
was trained using data of the training set, and it was
then applied to the test set. The area under the curve
(AUC), sensitivity, specificity, and accuracy of the re-
ceiver operating characteristic (ROC) curve were mea-
sured. All statistical analysis procedures were calculated
using MATLAB.

Results
Experiment 1 (original vs. isotropic)
From the training data, features computed using default
voxel and isotropic voxel settings were compared.
Thirty-eight features (ICC > 0.7) were selected from 252
features. Of these, 23 features (13 for the original voxel
and 10 for isotropic voxel settings) that can explain nod-
ule statues (malignant/benign) were retained using
LASSO. Nine features were common between the two
voxel settings: maximum, minimum (histogram-based),
maximum 3d diameter, spherical disproportion (shape-
based), cluster tendency, dissimilarity, entropy (GLCM),
skewness_1 (LoG filter-based), and lacunarity (fractal-

Fig. 1 Overall design for Experiment 1. a Feature extraction and the 1st selection step. In the 1st selection step, we selected features with ICC ≥
0.7. b In the 2nd selection, we applied LASSO to select features that can explain nodule status. c The features were used to train a RF classifier to
classify nodule status. It was later tested in a test cohort
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based). Skewness_1 refers to the skewness of intensity
within the ROI filtered using the LoG filter with σ =1.
These features are reproducible and correlated with nod-
ule status with respect to two voxel settings. The se-
lected features were referred to as signatures. The
features were used to train a RF classifier in the training
data. The RF classifier was used to classify nodule status
(benign/malignant) in the test set. The performance of
the classification is shown in Table 1. Associated AUC
plots are shown in Fig. 3. We quantified how each iden-
tified radiomics feature contributed to explaining the
nodule status and the relative importance of the features

using a permutation of out-of-bag (OOB) observations
within the RF classifier framework. These additional re-
sults are given in the Additional file 1.

Experiment 2 (default vs. changed bin settings)
From training data, features computed using the default
number of bins were compared with features computed
using other numbers of bins. Histogram-, GLCM-, and
ISZM-based features are affected by bin settings. All
histogram-based features had ICC over 0.7 when com-
paring the default bin (= 4096) and changed settings
(256, 512, 1024, and 2048). All ISZM-based features had
ICC over 0.7 when comparing between the default bin
(= 32) and changed settings (16 or 64). GLCM-based
features showed variability. Two features (difference en-
tropy and homogeneity) showed ICC over 0.7 between
the default bin (= 256) and changed bin (= 32) settings.
Twenty-four features showed high reproducibility (17
histogram-, 2 ISZM-, and 2 GLCM-based features) for
the first ICC comparison. Five features (32 bins) were
retained using LASSO. Three features (difference

Fig. 2 Overall design for Experiment 2. a Feature extraction and the 1st selection step. In the 1st selection step, we selected features with ICC ≥
0.7. In this process, we found that both histogram- and ISZM-based features have ICC ≥ 0.9. Thus, we fixed the histogram- and ISZM-based
features to the default bin settings. b In the 2nd selection, we applied LASSO to select features that can explain nodule status. c The features
were used to train a RF classifier to classify nodule status. It was later tested in a test cohort

Table 1 Classification performance of test set using RF for two
voxel settings (Experiment 1)

Original voxel setting Isotropic voxel setting

Area under curve 0.6967 0.6587

Accuracy 0.7250 0.7000

Sensitivity 0.9000 0.9000

Specificity 0.4333 0.3667
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entropy, homogeneity, and informational measure of
correlation [IMC]) showed ICC over 0.7 between the
default bin (= 256) and changed bin (=64) settings.
Twenty-five features showed high reproducibility
(17 histogram-, 2 ISZM-, and 3 GLCM-based features)
for the second ICC comparison. Six features (64 bins)
were retained using LASSO. Comparison of the default
bin (= 256) and changed bin (= 128) settings showed that
maximum probability, difference entropy, dissimilarity,
energy, entropy, homogeneity, and IMC had ICC over 0.7.
There were 29 (17 histogram-, 2 ISZM-, and 7 GLCM-
based features) features showing high reproducibility for
the third ICC comparison. Six features (128 bins) were
retained using LASSO. The maximum, minimum, entropy
(histogram-based), difference entropy, and homogeneity
(GLCM) features were common between three settings
(16, 64, and 128 bins). The common features of the three
settings are reproducible and correlated with nodule status
with respect to the different GLCM binning settings.
These common features were referred to as signatures.
The features were used to train a RF classifier in the
training data. The RF classifier was used to classify nodule
status (benign/malignant) in the test set. The performance
of the classification is given in Table 2. Associated AUC
plots are shown in Fig. 4. Table 3 reports features showing
high reproducibility from two experiments and their
possible interpretations. As in experiment 1, the results

for contribution of radiomics features are given in the
Additional file 1.

Suggested guidelines from inspecting failed computation
cases
The properties of cases with failed NGTDM computation
using histogram- and shape-based features were further
examined. One notable difference was from the skewness
of histogram-based features. The skewness of the error
group (mean 0.24) was larger than that of the non-error
group (mean − 0.67). This indicates that the non-error
group tends to have higher mean intensities. The volume
of the non-error group (mean 1228.89mm3) was larger
than that of the error group (mean 470.30mm3). The 95%
confidence interval (CI) of volume features for the non-
error group is 1045.5mm3 to 1412.28mm3. The CIs for
various features that differed between the error and non-
error groups are reported in Table 4. Figure 5 shows vari-
ous features compared between error and non-error
groups. We recommend that nodules should be larger
than a certain size (≥ 1000mm3) and the intensity values
should be brighter than the average intensity of the nodule
for successful computation of NGTDM features.
The properties of cases with failed sub-sampled

GLCM computation were also examined. The volume
related features (volume, surface area, and maximum 3D
diameter) of the non-error group were larger than those
of the error group. However, compactness, sphericity,
and spherical disproportion values, which are independ-
ent of size, did not differ between the two groups. CIs
were applied to calculate the range of features to set rec-
ommended criteria for which sub-sampled GLCM fea-
tures can be computed. According to the calculated
values, sub-sampling GLCM features can be calculated
when the volume is 1100mm3 or more, maximum 3d
diameter value is 19 mm or more, and surface area value
is 870mm2 or more. The comparison plot between

Fig. 3 Performance curve of the RF classifier in the test set. a shows the receiver operating characteristic (ROC) curve of the original voxel setting
and b) shows the ROC curve of the isotropic voxel setting

Table 2 Classification performance of test set using RF for
different GLMC bin settings (Experiment 2)

32 bins 64 bins 128 bins

Area under curve 0.7333 0.7297 0.7480

Accuracy 0.7250 0.7250 0.7375

Sensitivity 0.8800 0.8600 0.9000

Specificity 0.4667 0.5000 0.4667
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groups and confidence interval values are shown in Fig. 6
and Table 5, respectively.

Discussion
Our goal was not to find features that lead to a good
classification of nodule status but to find reproducible
features between different settings (voxel geometry and
binning settings). We observed that the classification
performance using the reproducible features stayed simi-
lar, which could be indirect evidence of reproducibility
of the identified features. We identified nine features
showing high reproducibility that correlate with nodule
status regardless of voxel geometry settings (isotropic vs.
anisotropic). We also identified six features showing high
reproducibility correlated with nodule status regardless
of binning settings.

There are 35 papers related to reproducibility of radio-
mics between 2010 and 2017 according to a review article
[35]. Existing studies on average used 62 samples in the
training cohort, while ours used 114 samples in the training
cohort, which would lead to better statistical robustness.
Many studies lacked independent test cohorts, while we
validated the reproducible features in an independent test
cohort [36, 37]. The existing studies reported divergent sets
of reproducible features. This is rather expected because
the training cohort varied significantly among studies.
The training cohort included only small (< 2 cm)

nodules. The randomly chosen test cohort from the
LUNA database was confirmed to be small. The max-
imum 3D diameter of the test cohort was on average
2.1 cm, while that of the training cohort was 1.6 cm.
There is a scarcity in studies dealing with

Table 3 Features showing high reproducibility from two experiments

Category Parameter Description / Interpretation

Experiment 1 Histogram-based features Maximum Measures maximum intensity value of histogram

Minimum Measures minimum intensity value of histogram

Shape-based features Maximum 3d diameter Measures maximum 3D ROI diameter as the largest pairwise
Euclidean distance between surface voxels of the ROI

Spherical disproportion Ratio of the surface area of the ROI to the surface area of a
sphere with the same volume as the ROI

Texture-based features (GLCM) Custer tendency Measures homogeneity of GLCM

Dissimilarity Measures differences of entries in GLCM

Entropy Measures irregularity of GLCM

Filter-based feature Log Skewness (σ = 1) Measurement of skewness of ROI image processed by log filter

Fractal-based feature Lacunarity Measure of the texture or distribution of gaps within an image

Experiment 2 Histogram-based features Maximum Same as experiment 1

Minimum Same as experiment 1

Entropy Measures irregularity of histogram

Texture-based features Difference entropy Measures entropy of processed GLCM matrix Px-y

Homogeneity Measures closeness of GLCM

Fig. 4 Performance curve of the RF classifier in the test set. a shows the receiver operating characteristic (ROC) curve of the 32 bins setting, b)
shows the ROC curve of the 64 bins setting, and c) shows the ROC curve of the 128 bins setting
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reproducibility in lung radiomics, especially for small
nodules. Our study tried to fill that gap in research.
There are limited CT imaging studies focusing on

small lung nodules. One radiomics study reported 84%
accuracy in distinguishing between benign and malig-
nant cases in small nodules [38]. Another radiomics
study reported AUC of 0.80 using a RF classifier [39].
The first two studies considered different sets of radio-
mics features including Laws and margin sharpness fea-
tures and thus the features identified from them could

not be compared directly with the identified features of
our study. Mehta et al. used the volume of the nodules
to distinguish between benign and malignant nodules
and reported similar AUC compared to ours [40]. All
these studies lacked validation using independent co-
horts and thus the performance values could be inflated.
In addition, our study did not try to find radiomics fea-
tures that led to good classification performance but
sought reproducible features between different settings
(voxel geometry and binning settings). Thus, our study

Fig. 5 Various features compared between the error and non-error groups related to computation of NGTDM features. Blue plots were the
difference between shape-based features, and green plots were differences between histogram-based features

Table 4 Confidence interval of various features for non-error group related to the failure of NGTDM

Shape feature Volume Maximum 3d diameter Surface area Surface volume ratio

1045.5 ~ 1412.28 18.15 ~ 20.46 780.5 ~ 964.07 0.86 ~ 0.98

Histogram feature Mean Skewness Range Median

− 182.03 ~ −141.26 −0.8 ~ −0.55 756.35 ~ 805.08 − 158.52 ~ − 107.86
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could have lower classification performance and lead to
a different set of radiomics features compared to existing
studies on small lung nodules.
We identified nine features showing high reproducibil-

ity that correlate with nodule status regardless of voxel
geometry settings (isotropic vs. anisotropic): maximum,
minimum (histogram-based), maximum 3d diameter,
spherical disproportion (shape-based), cluster tendency,
dissimilarity, entropy (GLCM), skewness_1 (LoG filter-
based), and lacunarity (fractal-based). Most (= 26) of the
histogram and shape-based features had ICC over 0.7,
and selected features were those related to nodule status.
Existing studies also identified maximum, minimum
(histogram-based), maximum 3d diameter, and spherical
disproportion (shape-based) as important features re-
lated to nodule status. GLCM features involve direc-
tional assessment of neighborhood voxels, which differs
largely among voxel geometry settings. In the isotropic
setting, directions have 45-degree increments, while in
the anisotropic setting, directions have different

increments. Only a few GLCM features were reprodu-
cible (ICC over 0.7), and the identified reproducible fea-
tures correlated with nodule status. This is one novel
finding of our study. Features of the LoG category oper-
ated on many scales denoted by sigma. Some features of
the LoG category were reproducible, and those with
small sigma were suitable for small nodules and could
be selected (e.g., skewness σ = 1). Fractal features quan-
tify shape in a multi-scale fashion and thus can be in-
sensitive to voxel geometry settings.
We identified five features showing high reproducibil-

ity correlated with nodule status regardless of binning
settings: maximum, minimum, entropy (histogram-
based), difference entropy, and homogeneity (GLCM)
features. All histogram-based features had ICC over 0.7,
and the selected features were those related to nodule
status. In addition to the first experiment, entropy was
identified, which is frequently found in other radiomics
studies related to nodule status. GLCM features varied
significantly depending on bin settings, and only 2, 3,

Table 5 Confidence interval of various features for non-error group related to the failure of sub-sampled GLCM

Shape feature Volume Maximum 3d diameter Surface area

1186.17 ~ 1567.5 19.37 ~ 21.34 871.56 ~ 1045.96

Compactness Sphericity Spherical disproportion

0.024 ~ 0.025 0.58 ~ 0.61 1.66 ~ 1.76

Fig. 6 Various features compared between error and non-error groups related to computation of sub-sampled GLCM features. Blue plot on the
right is for the non-error group and light blue plot on the left is for the error group
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and 7 features had ICC over 0.7 when 32, 64, and 128
bins were used, respectively, compared to the default
256 bin setting. Among these features, difference en-
tropy and homogeneity were related to nodules status.
These two features quantify texture from the entire
GLCM, not some parts of it, thus, they are reproducible
with respect to bin settings. ISZM features were repro-
ducible but did not reflect nodule status. One possibility
was that only small nodules (≤ 2 cm) were considered,
limiting the size variability portion of the ISZM.
The properties of failed NGTDM/sub-sampled GLCM

computation cases were examined using histogram- and
shape-based features. We found that nodules need to be
larger than a certain size (e.g., over 1000mm3 for
NGTDM features). The texture features require voxel
neighborhood structure, and thus the ROI needs to be
larger than the threshold. This could be a practical lower
limit on nodule size for lung radiomics. Our results were
computed from image acquisition settings of varying
resolution (in-plane resolution between 0.48 mm to 0.9
mm and out-of-plane resolution from 0.6 mm to 10
mm), and the lower limit could be lower in an imaging
acquisition setting with smaller voxels.
Radiomics in lung cancer is different from in other on-

cology fields. Lung cancer resides in an environment
rich with air, while other cancers primarily consist of soft
tissue and reside in the interstitium [6]. Consequently,
tumor progression in lung cancer is multi-factorial. In
addition to the usual volume reduction, tumor progres-
sion is associated with density change from ground-glass
opacity (GGO) to solid component [3, 41, 42]. Thus,
radiomics in the lung should jointly consider the tumor
core and surrounding air components along with tex-
tural changes in density to properly model lung cancers.
Reproducibility studies in lung radiomics are largely
lacking, and our study provides suggestions for future
lung radiomics studies.
Our study has limitations. We did not fully test the re-

producibility of all 252 features. Our study focused on
small nodules which led to uncalculated features in
some categories. This was further explored comparing
properties of the error and non-error group. Still, future
studies need to explore reproducibility of radiomics fea-
tures for larger nodules. Our results were derived from
two datasets, and further validations are necessary using
data of different image acquisition settings. The features
we identified showed high reproducibility (via ICC)
reflecting nodule status (via LASSO). If a future radiomics
study requires another clinical variable (e.g., therapy
response), the researchers should change the LASSO
portion with appropriate clinical variables as necessary.
Lung nodules are imaged using other modalities such as
MRI and PET in addition to CT. Reproducibility of
radiomics features is an important future research topic.

Conclusion
We identified nine features showing high reproducibility
with respect to voxel geometry and five features showing
high reproducibility with respect to the number of bins
for lung nodules smaller than 2 cm tested on two differ-
ent cohorts. We also provided guidelines for computing
features by inspecting the physical properties of failed
radiomics computations. The features we identified are
low dimensional (< 10) and they can be easily computed
as a quick pre-screening tool to determine whether a full
radiomics study is worthwhile.

Additional file

Additional file 1: Feature extraction. (DOCX 409 kb)
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