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Abstract 

Owing to the unique structural characteristics as well as outstanding physio–chemical and electrical properties, gra‑
phene enables significant enhancement with the performance of electrospun nanofibers, leading to the generation 
of promising applications in electrospun-mediated sensor technologies. Electrospinning is a simple, cost-effective, 
and versatile technique relying on electrostatic repulsion between the surface charges to continuously synthesize 
various scalable assemblies from a wide array of raw materials with diameters down to few nanometers. Recently, 
electrospun nanocomposites have emerged as promising substrates with a great potential for constructing nanoscale 
biosensors due to their exceptional functional characteristics such as complex pore structures, high surface area, high 
catalytic and electron transfer, controllable surface conformation and modification, superior electric conductivity and 
unique mat structure. This review comprehends graphene-based nanomaterials (GNMs) (graphene, graphene oxide 
(GO), reduced GO and graphene quantum dots) impregnated electrospun polymer composites for the electro-device 
developments, which bridges the laboratory set-up to the industry. Different techniques in the base polymers (pre-
processing methods) and surface modification methods (post-processing methods) to impregnate GNMs within elec‑
trospun polymer nanofibers are critically discussed. The performance and the usage as the electrochemical biosen‑
sors for the detection of wide range analytes are further elaborated. This overview catches a great interest and inspires 
various new opportunities across a wide range of disciplines and designs of miniaturized point-of-care devices.
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1  Introduction
Recently, the demands for highly sensitive, selective, and 
low detection limit biosensors to detect the low abun-
dance of analyte molecules have increased substantially 
not only in biomedical applications but also in food 
industries, agriculture and environmental monitoring 

[1]. The development of ultrasensitive devices and new 
detection approaches for the efficient point-of-care test-
ing with low-cost and high accuracy is an urgent need 
in the healthcare industry. Biosensors have received tre-
mendous attention as an alternative to the conventional 
analytical methods due to the unparalleled specificity, 
sensitivity, rapidity of analysis and the ability to pro-
vide a long-term monitoring and a wide range of detec-
tion capabilities, including glucose, blood oxygen level, 
antibodies, mycotoxins, heavy metals in drinking water, 
pesticides, nucleic acid and body motions pesticides [2]. 
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A variety of approaches have been exploited, including 
electrochemical biosensors [3–5], fluorescent biosen-
sors [6], colorimetric biosensors [7, 8], potentiometric 
biosensors [9, 10], optical biosensors [11], and Raman 
spectroscopy-based platforms [12, 13]. Compared with 
other detection methods, electrochemistry biosens-
ing platforms provide a more facile, cost-effective and a 
highly sensitive detection method which enables the fast 
response-recovery times, monitoring different analytes, 
and a very low detection limit [14–16]. Recent efforts 
have focused on improving the sensing features of elec-
trochemical biosensors by increasing the specific surface 
area of the transducers (interacting materials with the 
target analyte), where the larger the surface area of the 
sensing materials, the higher their ability to interact with 
the medium (analytes) [2].

In recent years, nanocomposite transducers comprising 
nano-sized materials and polymer matrices have capti-
vated immense attention in the field of advanced mate-
rials science due to their remarkably improved thermal, 
chemical and dimensional stabilities, applicability, elec-
trical conductivity, mechanical and functional properties 
that can be achieved at relatively lower filler loading [17]. 
The improved properties are mainly attributed to a very 
high aspect ratio (in the range of 100–1000) of nano sized 
fillers, yielding light-weight composites with alterable 
multifunctional properties which makes them potential 
candidates for several advanced applications including 
diagnostics and repair human tissues [18, 19], aid in cel-
lular growth and proliferation [18], detection of patho-
gens and heavy metals and offer unparalleled platforms 
for electrochemical biosensing. In particular, nanocom-
posites made of graphene based nanomaterials (GNMs) 
with polymers and or nanoparticles such as metals, car-
bon nanotubes (CNTs), quantum dots, etc., could pro-
vide abundant opportunities for fabricating novel sensors 
and biosensors with enhanced performance [17, 20, 21].

GNMs including graphene, graphene oxide (GO), 
reduced graphene oxide (rGO) and graphene quan-
tum dots (GQD) have attracted extensive interest in 
research/industrial applications because of their poten-
tial and unique properties. GNMs are suitable for fabri-
cating a wide range of novel biosensors with improved 
functionalities and analytical capacities thus providing 
fascinating opportunities for point-of-care detection, 
lab-on-chip devices, wearable and flexible electronics, 
foodborne detection, and environmental monitoring [2, 
22, 23]. The attractiveness of GNMs transducers relies 
not only on their ability to act as efficient and stabiliz-
ing platforms for the biorecognition elements, but also 
on their large surface area, small size, physio-chemical 
properties, high reactivity, high catalytic efficiency, 
strong adsorption ability, controlled morphology and 

structure, biocompatibility, and electrocatalytic prop-
erties [18, 24]. The favourable structural and compo-
sitional synergy of GNMs allows them to be excellent 
electrode materials for fabricating various sensing plat-
forms [1]. Specifically, the integration of GNMs and 
electrochemical biosensors has created various ingen-
ious biosensing strategies for applications in the areas 
of food safety and clinical diagnosis [25].

Despite the great potential of GNMs and polymer 
nanocomposites, conventional nanocomposite meth-
ods including solvent processing, in  situ polymeriza-
tion and the allied processing encounter several issues 
such as the agglomeration and aggregation of gra-
phene in the polymer matrix solution, the reduction 
of the electrical and mechanical properties of GNMs 
as a results of the insulating polymer matrix and poor 
dispersion of GNMs nanofillers. The aggregation of 
graphene is caused by its strong intermolecular π–π 
interaction, and van der Waals forces resulting in a 
poor dispersion in the polymer matrix [26, 27]. To cir-
cumvent these obstacles, electrospinning provides a 
facile and effective way of incorporating GNMs [28, 29] 
e.g. GO sheets with very high aspect ratios into the pol-
ymer solution overcome the problem of agglomeration 
since the polymer matrix is converted to nanosized fib-
ers instead of continuous sheets, thus facilitating better 
dispersion of the exfoliated GO [30]. More importantly, 
properties such as porosity, elasticity, hydrophobicity, 
mechanical strength, percolation limit and conductiv-
ity can also be tuned by controlling the nanofiller size 
as well as the electrospinning parameters and solution 
parameters [31]. Apart from this, GNMs can be deco-
rated on the surface of electrospun nanofibers (ESNFs) 
using post-processing methods enabling the possibil-
ity to fabricate multifunctional GNMs nanostructures 
with novel and/or improved biosensing performance. 
GNMs-polymer nanocomposites prepared by electro-
spinning possess both the advantages of polymers such 
as lightweight, flexibility and moldability, and special 
functionality of GNMs such as high strength, thermal 
stability and electrochemical properties [32]. Further-
more, the functionality and the dispersity of GNMs can 
be further improved by incorporating secondary phases 
such as precious metals, metal oxides, gold nanoparti-
cles, CNTs, and hydroxyapatite either during electro-
spinning or in the post-processing methods, e.g. wet 
chemical treatment [33]. Owning to their remarkable 
properties, synergy effect, unique structures and the 
excellent electron and mass transportation, the ESNF-
GNMs composites are potential candidates to improve 
current technology and open the door to fabricate 
and commercialize extremely miniaturized new gen-
eration biosensors and smart wearable electronics for 
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point-of-care detection in biomedicine and healthcare 
fields [1, 34, 35].

Electrospinning (electrostatic spinning) involves an 
electrohydrodynamic process, during which a liquid 
droplet is electrified to generate a jet, followed by stretch-
ing and elongation to generate fibers [36]. Electrospin-
ning setup comprises four essential components namely, 
a spinneret with a metallic needle (a hypodermic nee-
dle with blunt tip) and capillary tube, a syringe pump, a 
high-voltage–power supply, and a grounded (conductive) 
metal collecting screen (e.g. aluminum alloy) [37]. The 
procedure of electrospinning can be elucidated based on 
four main stages which are electrification, jet initiation 
and extension, bending instability and further elonga-
tion, and solidification of the jet into fibers [38]. ESNFs 
diameter and morphology play an essential role in con-
structing biosensors and are controlled by the process 
parameters (applied voltage, receiving distance and feed 
rate), solution and solvent conditions (viscosity, con-
centration, conductivity, surface tension, volatility) and 
ambient conditions (humidity, temperature, pressure) 
[28]. Electrospinning has been extensively reviewed with 
respect to its development, principle and fundamentals, 
and the critical parameters influencing the fiber diameter 
and morphology in several recent reviews such as [34, 
39–45].

Due to the lack of comprehensive reviews on electro-
spinning design of GNMs for electrochemical biosen-
sors, this overview aims to adequately exploit the role 
of electrospun GNMs nanocomposites for designing 
electrochemical biosensors and sensors with high sen-
sitivity, selectivity and with low detection limits. Addi-
tionally, impregnating GNMs into ESNFs either during 
electrospinning process using pre-processing methods 
or after electrospinning as surface modification and 
functionalization using post-processing methods are 
presented. Besides, the properties of electrospun GNMs 
nanocomposites (electrochemical, mechanical, thermal 
stability and electrical conductivity) and their role in elec-
trochemical biosensors design are critically addressed. 
This review covers a range of electrochemical biosensors 
and sensors are using electrospun GNMs nanocompos-
ites for the detection of various analytes.

2 � Graphene‑based Nanomaterials (GNMs)
Graphene (the first ever reported 2D paper like light-
weight material) is a sp2 hybridized carbon atoms that 
are tightly arranged into hexagonal structures to form a 
2D monolayer of graphitic structure analogous to a poly-
cyclic aromatic hydrocarbon of quasi infinite size [46]. 
As a basic building block of other carbon dimension-
alities (allotropes), graphene can be wrapped to gener-
ate 0D “buckyballs” (e.g. fullerenes), rolled up to form 1D 

nanotubes, and stacked to produce 3D graphite [47–49]. 
Since its discovery in 2004 [50], graphene has been rec-
ognized as a “wonder material” mainly due to its atomic 
crystal multifunctionality which combines remark-
able properties such as high electron mobilities in room 
temperature (250,000  cm2/V  s) at electron densities of 
2 × 1011  cm2 [51, 52], unparalleled thermal conductivity 
in the order of 5000 W/mK [53], superlative mechanical 
strength (Young’s modulus of ~ 1 TPa) [54], large surface 
area (2630 m2/g) [55], and electronic properties, making 
it attractive for several applications including sensors, 
biosensors, electronic devices, supercapacitors, spin-
tronic, photonics, flexible and next generation electron-
ics, biomedical applications, energy storage and solar 
cells [46, 56–65].

There are excellent recent reviews on the use of gra-
phene for medicine and biology applications [66], gra-
phene metal nanocomposites for electrochemical 
biosensing applications [67], graphene nanocomposites 
for various applications [68], graphene based biosensors 
for food contaminates detection [69], graphene for bio-
sensors [70–74], electrochemical sensors [75–79] and 
sensors [80–82] for biomedical and other downstream 
applications [73, 77, 78, 83–88].

2.1 � GNMs fabrication
GNMs include 2D, 3D graphene sheets, GO, rGO, and 
GQDs can be prepared following two types of fabrication 
methods: (i) top-down and (ii) bottom-up approaches 
(Fig.  1a) [89]. The former approach relies on exfoliating 
stacked layers of graphite by chemical, physical, and ther-
mal treatments to form graphene and it includes micro-
mechanical exfoliation [50], supramolecular assembly 
[90], conducting polymers [91] and water-soluble poly-
mers [92]. The latter includes chemical vapor deposition 
(CVD) and chemical synthesis methods [93, 94]. The 
electrochemistry of graphene and its derivatives depends 
on the number of defects, functional groups, stacked lay-
ers, size of graphene sheets and dopants or impurities 
present [95–100]. CVD is a vacuum deposition process 
used to harvest graphene sheets (single or multilayer) 
with high quality, fine aromatic structures with limited 
defects, compact constitutes, high reactive surface, elec-
trical conductivity and elasticity making it highly attrac-
tive for electrochemical sensing [101] and bioelectrodes 
to detect molecules and bio-organisms [58, 102–105]. 
Single-layer graphene (SLG) possess higher electron con-
ductivity at room temperature [250,000 cm2/(V s)] [106], 
thus promoting its applicability for electronics and opto-
electronic devices. In principle, the CVD procedure is 
the shortest and most useful method that allows growing 
graphene flakes on several substrates (transition metals) 
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such as Ge [107, 108], Ni [109, 110], Cu [111, 112], Rh 
[113, 114], and etc.

Hummer’s method is a top-down approach to fabri-
cate high-quality and scalable oxidized graphene sheets 
with different nanosized, good solution process-ability, 
oxygen content, and sheet layers [115]. GO is an excel-
lent form of graphene [116] having a simultaneous 
hydrophobic sp2− and sp3− bonded carbon and abun-
dant carboxylic acid groups, epoxide and hydrophilic 
hydroxyl, especially on the edge and defects of the 
nanosheet, hence forming a sheet-like amphiphilic col-
loid [117]. GO, due to its abundant residual sp2− and 
hydrophilic groups can form stable suspension in aque-
ous and several polar solvents and form π–π interac-
tions with aromatic molecules [118]. Furthermore, 
the polar chemical groups, carboxyl acid, epoxide, 
and hydroxyl on the basal plane allow GO to undergo 
weak interactions for example strong electrostatic 
interactions or hydrogen bonding and metal ion com-
plexes which also provide abundant chemically reactive 
groups for surface grafting/anchoring of polymers and 
or nanoparticles [2]. The oxidized functional groups 

of GO improve its dispersion in polymer matrices and 
minimize the aggregation and phase separation. GO, 
due to its amphiphilic sheet-like characteristics acts as 
a surfactant reagent to react with other nanomaterials 
[117]. RGO, can be obtained by chemical or physical 
reduction of GO by thermal, chemical, and irradiation 
methods which are cost-effective approaches to fab-
ricate graphene sheets with a good electrical conduc-
tivity. Compared to graphene and GO, rGO has more 
balanced physical and chemical properties regarding 
surface chemical groups, electrical, mechanical, sol-
vent dispersibility, optical, and thermal performances 
[118]. Due to these properties, rGO nanosheets are 
potential candidates for the next-generation electron-
ics, sensors and transistors. GQDs are nanometer-sized 
single layer-fragments (their sizes are less than 20  nm 
in diameter) of graphene and GO, which are typically 
synthesized via a top-down approach through “cutting” 
of graphene or GO nanosheets [119]. GQDs exhibit 
several remarkable physical properties such as the 
edge defects induced luminescence and the quantum 
confinement, making GQDs suitable for interesting 

Fig. 1  a Major fabrication methods of graphene: Top-down and bottom-up fabrication methods. Principal top-down methods include liquid-phase 
exfoliation and micromechanical cleavage of graphite. An additional method involves the exfoliation of initially oxidized graphite, leading to GO, 
which is chemically and/or thermally reduced to graphene. The bottom-up fabrication of graphene is usually performed by epitaxial growth on 
SiC or chemical vapour deposition, typically on Cu using small molecules, such as methane, as precursors. Reproduced with permission from 
[174] Copyright 2017 Nature Publishing Group. b SEM (a, c, e) images and TEM images (b, d, f ) of nanofibers (a, b), nanofibers-rGO-5 (c, d), and 
nanofibers-rGO-10 (e, f ) with different magnifications Reproduced with permission from [173] Copyright 2019 Wiley
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applications including cell imaging, bioelectrodes and 
molecular recognition [120–122].

3 � Electrospun nanofibers containing GNMs
Research pertaining to electrospinning has gained signifi-
cant traction in recent years, as it provides a versatile and 
viable tools for generating various matrices in a continu-
ous process and with uniform pore sizes, where the fiber 
diameters are adjusted from nanometers to sub-microns 
[40, 123, 124]. ESNFs with diameters lower than 1  nm 
(subnanometers) have also been recently reported [125, 
126]. Although, there are several analogous nanofiber 
production methods such as nanolithography, self-
assembly, melt fibrillation, drawing and template syn-
thesis, electrospinning combines simplicity, low cost and 
versatility with superior capabilities to manufacture high 
quality nanofibers with diverse and controlled morpholo-
gies and complex nanofibrous assemblies [127–129]. 
Electrospinning has been successfully applied to pro-
duce nanofibers from a wide range of materials, includ-
ing organic and inorganic polymers, ceramics, metals, 
graphene, carbon nanotubes, small molecules, and their 
combinations as well as bacteria, viruses, biomolecules 
[40, 130, 131]. The incorporation of GNMs into ESNFs 
enables significant enhancement towards biosensing 
capability either by improving the response characteristic 
of the transducer or acting as the immobilisation matrix 
for a bioreceptor [132]. GNMs can be incorporated into 
the ESNFs using two main strategies: (i) pre-processing 
methods (direct blending and in  situ synthesis) and (ii) 
post-processing methods (e.g. physical dip-coating, ultra-
sonication, plasma treatment, wet chemical method and 
radiation treatment [68, 133].

3.1 � Electrospinning design of GNMs NF composites using 
pre‑processing methods

Introducing GNMs into the polymer solution matrices 
for electrospinning is a simple and effective method to 
fabricate electrospun composites for various advanced 
applications such as sensing and biosensing [28]. In 
principle, the pre-processing methods consider the 
size distribution and interface interactions during the 
encapsulation of GNMs within the polymer nanofibers. 
In this case, the GNMs should be more stable to ensure 
the long-term storage stability and excellent reusability 
of the GNMs ESNFs composite biosensors. In GNMs 
ESNFs prepared by the pre-processing methods for elec-
trochemical biosensing applications, the GNMs act as 
the electron transfer platform while the polymers act as 
a selective adsorptive for bio-tests thus both GNMs and 
polymers work as a device for electrochemical biosen-
sor electrode. GNMs ESNFs act as a bridge between the 

test biomolecules and the signal transduction system 
and thus plays a critical role in both sensor and conduc-
tor parts of electrochemical biosensors. High disper-
sion and even distribution of GNMs within the polymer 
matrices enable the fabrication of nanofiber compos-
ites with highly functional nanofiber composites, novel 
hierarchical architectures, high specific surface area 
and tuned porosity, excellent chemical, thermal, electri-
cal and electrochemical properties offering unparalleled 
performance for point-of-care detection and lab-on-chip 
devices [132]. There are two effective strategies to ensure 
uniform distribution of GNMs into polymer nanofibers; 
the direct blending or mixing of GNMs with polymer 
matrix before electrospinning and in  situ synthesis dur-
ing electrospinning.

3.1.1 � Direct blending of GNMs in polymer nanofibers
Blending of GNMs into polymer matrix solution is the 
basic and straightforward way to fabricate GNMs NFs 
composites. In this strategy, the direct doping of GNMs 
into polymer matrix may decrease the surface energy of 
GNMs which in turn tends to cause local cross-linking 
between GNMs and polymers. In the case of electro-
chemical biosensors, the even distribution and disper-
sion of GNMs within the polymer solution matrices is 
an essential attribute for improving the linear detec-
tion range, sensitivity and limit of detection. Therefore, 
other ways to improve the dispersity and homogeneity of 
GNMs within the polymer solution matrices should be 
investigated.

3.1.2 � Dispersing GNMs using external forces
One of the main challenges in fabricating nanofibers 
GNMs is the fact that they have high specific surface 
area and free energy and tend to agglomerate and/or 
aggregate which compromise their final performances 
for biosensor applications [20]. The agglomeration of 
GNMs may be ascribed to their short-range interac-
tions with the polymeric molecules and the overlapping 
of interfacial layers of neighbouring graphene nanofillers 
or polymers. Therefore, if GNMs are not well dispersed 
and distributed into the polymer matrices at a nanoscale 
level, the weak molecular interactions take place and 
the inhomogeneous dispersion may complicate the elec-
trospinnability of solutions, thus reducing the graphene 
loading capacity and influencing the overall material 
properties. To overcome these issues, treating the solu-
tion with an external force to aid dispersity of GNMs 
such as manifold repetition of blending and violent stir-
ring, ultrasonic dispersion methods (ultrasonication bath 
and ultrasonication probe) or by modifying the surface 
of graphene materials with active surface agents (add-
ing additive to promote the dispersity of GNMs). Adding 
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additives allows mitigating the huge gap in surface energy 
between the GNMs and the polymer matrices to obtain 
a better solvability and suitable nano-scaled distribution 
thus improving their spinnability. Several spacers have 
been introduced into GNMs to improve the dispersity 
and to enhance the specific surface area to provide extra 
adsorption sites for bio and sensing molecules such as 
metals and metal oxide nanoparticles [134, 135], organic 
moieties [136, 137], and polymers [134, 135]. Functional-
ization of graphene using chemical, electrochemical and 
sonochemical methods improved its dispersion within 
polymer matrices, for example functionalized graphene 
such as GO enhances its dispersion in various polymer 
matrices due to the interfacial interactions between the 
functionalized graphene and the polymer [138, 139]. Sev-
eral studies have used external forces and/or adding addi-
tives to improve the dispersity and distribution of GNMs 
in polymer matrix as reported in Table 1.

3.1.3 � In‑situ synthesis of GNMs in polymer nanofibers
Similar to blending, the in  situ synthesis is an effective 
strategy to disperse GNMs into the polymer solution 
to form GNMs NF composites using several methods 
such as hydrothermal reaction, sol–gel synthesis, oxida-
tion–reduction reaction and hydrolysis. In this strategy, 
GNMs dispersity in the polymer matrix can be assisted 
using reactions triggered by light, heat, electrochemis-
try and reactive additives to uniformly distribute GNMs 
ions inside the polymer matrix with controlled sizes and 
uniformity while avoiding the agglomeration of GNMs. 
Sahatiya and Badhulika [168] reported a facile one step 
method for in  situ synthesis and alignment of a single 
graphene-doped zinc oxide electrospun nanofiber com-
posite. They optimized the calcination temperature and 
the time-dependent electrospinning to fabricate aligned 
graphene-ZnO composite nanofibers across the gold 
electrode. The reported method is a cost-effective to 
detect UV and it can be extended to a variety of sens-
ing applications. He et  al. [169] reported in  situ syn-
thesis, carbonization and electrospinning to fabricate 
porous graphene-doped copper indium disulfide/carbon 
(p-GN@CuInS2/C) composite nanofibers in which gra-
phene nanosheets anchored with CuInS2 nanocrystals of 
7–12 nm in diameter were overlapped and embedded in 
a carbon matrix, aligning along the fiber axial direction. 
The resultant graphene nanofiber composite exhibited 
smaller charge-transfer resistance, larger surface area, 
and excellent electrocatalytic activity than CuInS2/C and 
p-CuInS2/C samples.

3.1.4 � Dispersion of GNMs using electrospinning
Electrospinning applies electrostatic stretching forces to 
overcome any entanglement and agglomeration of GNMs 

by increasing their interface contact with the polymer 
matrix thereby making possible chemical bonds between 
them. It also provides shear stress transfer mechanics 
from the polymer matrices to the nanometric of GNMs 
thus improving the dispersion of GNMs and prevents 
their aggregation. Additionally, during the electrospin-
ning, the high elongation of the polymer jet improves 
the orientation and alignment of GNMs along the fiber 
axis and embeds them in the fiber core thereby achiev-
ing highly distributed GNMs-ESNF composites. The con-
tent of GNMs influences their dispersion and induces the 
changes to the solution rheological and physical proper-
ties such as electrical conductivity and viscosity and the 
diameter of the nanofibers. For instance, the increase of 
GNMs content induces a higher viscosity which in turn 
results in forming thicker fibers. Meanwhile, the electri-
cal conductivity will rise with the increase of the GNMs 
content which favours the stretching of thinner fibers 
[170]. Due to these opposite behaviors, some studies 
have shown variable fiber diameters as the loading of 
the nanomaterial is increased [170, 171]. Recently, [172] 
reported a dual method comprising of electrospinning 
and electrospraying to overcome the difficulty of blend-
ing and dispersing polyacrylonitrile (PAN) and GO in 
the same solvent. Shan et al. [173] reported the fabrica-
tion of a free-standing nitrogen-doped reduced graphene 
oxide nanofibers using electrospinning technique. The 
developed nanofibers showed high electronic conduc-
tivity and thus has the potential to be used for chemical 
sensing, separation and drug delivery. Figure 1b) depicts 
the scanning electron microscope (SEM) results for the 
developed PAN-GO ESNF mats.

3.2 � Electrospinning design of GNMs NF composites using 
post‑processing methods

Although direct blending of GNMs is the simplest and 
most effective method, one of the critical limitations of 
blending GNMs into the polymer solution is that as-
prepared nanofiber composites may show relatively 
low-conductivity because the conductivity of GNMs 
could be warped within the insulating polymers. Alter-
native approach is to impregnate GNMs onto the surface 
of ESNFs after electrospinning process using the sur-
face modification methods (post-processing methods). 
This approach aims at avoiding the problems associated 
with pre-mixing GNMs into the polymer matrix (e.g. 
agglomeration and low conductivity) and providing a 
robust strategy to improve the physiochemical and bio-
logical properties of ESNFs. In principle, post-process-
ing methods impregnate or coat GNMs on the surface 
of the desired ESNFs using chemical or physical strate-
gies to alter the surface of the nanofibers by giving them 
new features (e.g. surface activation, enhancing surface 
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Table 1  Summary of  recent significant works on  electrospinning design of  GNMs with  polymer matrices using pre-
processing methods

GNMs Polymer Solvent Additives Dispersion method/
external force

ES parameters: 
(distance; voltage; 
federate)

Refs.

GO PVDF DMF: acetone
4:1 wt/wt%

– Hydrophobic modi‑
fication of GO with 
subsequent sonica‑
tion and stirring

(27.7 cm; 24.1 kV; 
1.23 mL/h)

[140]

rGO PANCMA DMF TiO2 Ultrasonication and 
microwave heating

(30 cm; 14 kV; 
0.02 mL/h)

[141]

GO Poly (lactic acid) (PLA)/
poly(butylene car‑
bonate)

DMF solvent PBC Stirring 18 kV [142]

GO PCL DMF: DCM 1:1 – Stirring 14 cm; 18 kV; 10 mL/h [143]

rGO poly (ester amide) 
(PEA)

Ultrasonication bath (12 cm; 20 kV; 
0.1 mL/h)

[144]

GR PLA DCM: TFA
2:1 v/v

– Ultrasonication (15 cm; 10–20 kV, 
2 mL/h)

[33]

GR PU THF: DMAC
3:2 w/v

– Ultrasonication (10 cm; 15 kV; 1 mL/h) [145]

GO PAN DMF – Probe and bath soni‑
cation and stirring

(15 cm; 18 kV; 
0.2 mL/h)

[146]

Gr 66nylon TFA: acetone
1:1 v/v

– Bath and tip sonica‑
tion

(15–20 cm; 15–20 kV; 
0.17 to 0.5 mL/h)

[147]

Gr Polycaprolactone DMF – Stirring (10 cm; 10–14 kV; 
0.4–0.5 mL/h)

[148]

GO PLGA 1,1,1,3,3,3-Hexafluor‑
oisopropanol (HFIP)

– Stirring (10 cm; 40 kV; 
0.07–0.1 mL/min)

[149]

GO/MWCNT PEO DMF Sonication and vigor‑
ous stirring

(15 cm; 18.4 kV; 
0.5 mL/h)

[150]

GR Polyamide 66 Formic acid – Stirring (15 cm; 
20 kV;0.25 mL/h)

[151]

GO PVDF DMF – Sonication and stirring (15 cm; 18 kV; 1 mL/h) [152]

GO-ZnO Gum arabic (GA) and 
PVA

– Stirring and heating (130 mm; 0–50 kV) [130]

GO Polyurethane (PU) DMF Ag Stirring and heating (18 cm; 18 kV;1 mL/h) [153]

GO poly(Acrylonitrile-co-
maleic acid

DMF – Microwave heating 
and ultrasonication

(12; 25 kV; 0.03 mL/h) [154]

Graphene Nano sheets poly (Trimethylene 
terephthalate)

TFA – Stirring (14 cm; [155]

GO CA DMF: acetone
2:3 wt/wt%

– Sonication and heat‑
ing and stirring

(15 cm; 27 kV; 
0.13 mL/h)

[156]

GO PLA DMF – Stirring (6 cm; 20 kV; 1 mL/h) [157]

rGO Polystyrene (PS) (DMF: THF) 1:1 – Magnetic stirrer 22 kV [158]

GQD PAN DMF – DMF Magnetic stirring 240 cm; 15 kV; 
0.63 mL/h

[159]

GO CA Acetone/DMAc (w/w 
2:1)

– Stirring (8–10 cm; 20–25 kV; 
1.5 mL/h)

[160]

Fluorine-doped GO, 
GO, and GOCOOH

PVDF DMAC: acetone (v/v 
4:6)

1 g of selectfluor 
and 0.1 g silver 
nitrate

Stirring (12 cm; 25 kV; 
0.5 mL/h)

[161]

rGO PVP/Chitosan Acetic acid: water
9:1 (w/v)

– Stirring (6 cm; 22 kV; 0.5 mL/h) [162]

rGO PMMA/PANI DMF Stirring and sonication (15 cm;18–20 kV; 
0.3 mL/h)

[163]

GO PLA/PCL CF: DMF (v/v = 4/1) – Magnetic stirring and 
sonication

(20 cm; 20 kV) [164]

GR PVDF Sonication and stirring (17 cm; 20 kV; 1 mL/h) [165]
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conductivity) [175]. This induce large number of active 
sites for further biomolecular immobilization while con-
sidering the surface properties of the nanofibers which 
mainly depends on the chemical composition of the spin-
ning solution and the surface structure of the fibers [176]. 
This approach is essentially simple and easy to imple-
ment and is economically more feasible at an industrial 
scale than direct mixing of polymers with GNMs. It is 
worth noting that the arrangement of GNMs should be 
made to transfer more GNMs to the electrospun polymer 
nanofiber surface to increase the chance of the interac-
tion between GNMs and bio-analyses which is of great 

benefit for biosensors [177]. The methods for incorporat-
ing electrospun nanofibers with GNMs for sensing appli-
cations include physical adsorption and coating, surface 
graft polymerization, layer-by-layer, plasma modifica-
tion, chemical doping, heteroatoms doping, wet chemical 
methods etc. Table  2 summarizes the recent post pro-
cessing methods used to impregnate ESNFs with GNMs.

Among the simplest, fastest and easiest methods to 
endow electrospun nanofibers with GNMs active sites for 
target interactions is through the physical dip-coating. 
This method relies on the interaction between the sen-
sitive probe molecules and the nanofibers which often 

Table 1  (continued)

GNMs Polymer Solvent Additives Dispersion method/
external force

ES parameters: 
(distance; voltage; 
federate)

Refs.

GR PCL Acetic acid Gelatin Sonication and stirring (15 cm, 10–20 kV; 
0.2–1.8 mL/h)

[166]

Gr and GO PVDF Ultrasonication probe 
(100 W, 40 kHz, 15 
mints)

(100 mm; 16 kV; 
2 mL/h)

[167]

Table 2  Summary of  recent significant works on  electrospinning design of  GNMs with  polymer matrices using post-
processing methods

GNMs ES NFs Postprocessing method Mechanism Potential applications Refs.

Ag-AQGO PEO/PVA Wet chemical route method The ESNFs were immersed into the as-
prepared Ag-AQRGO solution to self-
assemble the negatively Ag-AQRGO 
onto the positively charged NFs in an 
aqueous solution. The Ag-AQRGO was 
further washed away with deionized 
water. After drying in air, the AgNP-
3D-AQRGO sensor was obtained

Gas sensors [32]

PEDOT-CNT/rGO PVDF-TrFE Spray coating PEDOT-CNT/rGO is decorated on ES 
PVDF-TrFE NFs following these steps:

1. Functionalization of PVDF-TrFE ES 
NF: using dip coating of ethanol, 
potassium hydroxide and potassium 
permanganate and finally hydrogen 
peroxide.

2. Spraying of the positively charged 
MCNTs suspension and negatively 
biased rGO solution on the functional‑
ized PVDF-TrFE ESNF

3. Coating of PEDOT on the substrate 
to further enhance the electrical 
conductivity and sensitivity.

Piezo-electric pressure sensor and wear‑
able smart textiles

[33]

rGO PVP/InCl3 Ultrasonic dispersion The hybrid nanofibers (NFI-rGO) were 
obtained via ultrasonic dispersion of 
2 mg NFI in a rGO aqueous suspen‑
sion (0.1 mg mL−1) for 5 min

Gass sensing in different environments. 
with 44 ppb detection limit and a 
response time of 17 s

[34]

rGO PVA Cross linking and chemical 
radiation modification 
method

The PVA nanofibers were crosslinked (to 
make them stable and water resistant) 
with UV-light of 253.7 nm (UV-340 
lamp) at 30 W with different duration 
(15, 30, 45 and 75 min) and then they 
were kept in both water and PBS solu‑
tions to optimize crosslinking duration

Filtration, sensors/biosensors, thin films 
and packaging

[35]
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involves van der Waals forces, hydrophobic forces, elec-
trostatic forces, and hydrogen bonding [178]. However, 
the efficiency and strength of biomolecular immobili-
zation in this case is relatively weaker [179]. To over-
come this limitation, plasma treatment method enables 
increasing the efficiency of physical absorption onto 
the hydrophobic nanofibers by creating a more hydro-
philic surface thus enhancing biomolecules attachment 
because of the large availability of carboxyl and hydro-
philic surface groups. Layer-by-layer method offer a ver-
satile method to modify the surface of ESNFs by utilizing 
electrostatic attraction to manipulate the physiochemi-
cal, mechanical and biological properties assemble poly-
electrolyte multilayers allowing nanoscale control over 
composition and structure. Chemical doping with atoms 
is an effective strategy to obtain intrinsic modification of 
carbon nanomaterials to improve their electrochemical 
properties [180].

Recently, [181] prepared pristine SnO2 nanotubes 
(NTs) by one-step electrospinning and GO was doped 
into the as-prepared SnO2 NTs nanofibers by calcination 
treatment as shown in Fig. 2(1). First the prepared elec-
trospun SnO2 nanotube fibers were annealed at 600  °C 
for 2 h to remove polymers and the organic residuals and 
to oxide the inorganic precursors into SnO2 nanostruc-
tures. Next, 0.03  g of pristine SnO2 NTs bundles were 
dipped into 1  ml of GO (mixed in DI water) solution 
and dried in the air for several hours. Finally, GO-loaded 

SnO2 were obtained after thermal annealing at 200  °C. 
SEM images are presented in Fig. 2(2) and the obtained 
results revealed that the modification of SnO2 nanotubes 
by GO shows the improved sensing properties (e.g. faster 
response) attributed to the large interfacial interaction 
between the GO and the SnO2 NTs.

Tambakoozadeh et  al. [182] utilized in  situ polymeri-
zation to prepare polyaniline (PANI)/graphene–coated 
polyamide nanofiber composite for the electrochemi-
cal applications. The composite of PANI/GO nanofib-
ers were treated with monohydrate to reduce GO to 
graphene, and this was followed by the re-oxidation 
of PANI. The electrical conductivity of the composite 
PANI/graphene-coated nanofiber was enhanced mainly 
due to the presence of graphene as well as the increase 
of aniline concentration in the polymerization process. In 
terms of the mechanical properties, the presence of GO 
enhanced the tenacity of the coated nanofibers which 
is ascribed to the homogenous dispersion of graphene 
nanosheets and thus the effective load transfer from the 
matrix to graphene because of their strong interfacial 
adhension. As for the electrochemical properties, the 
cyclic voltammetry (CV) curves of the coated nanofibers 
at a scan of 10 V/s and with a potential window from 0 to 
0.9 V (Additional file 1: Figure S1).

Zheng et  al. [183] assembled RGO onto the polyure-
thane (PU) electrospun nanofiber composite assisted 
by ultrasonication to obtain a polymer core-RGO shell 

Fig. 2  (1): Pristine and GO-SnO2 NTs preparation and gas sensor mechanism and (2) SEM images of (a) as-prepared Sn + poly (vinyl pyrrolidone) 
(PVP) nanofibers (b, c) pristine SnO2, and (d, e) GO incorporate SnO2 NTs, (f) Histogram of GO-SnO2 NT diameters Reproduced with permission from 
[181] Copyright 2019 Elsevier
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structure. First PU was dissolved in dimethylformamide 
(DMF) solvent and stirred for 12  h at 60  °C to produce 
a homogenous solution. The solution was then placed 
in a syringe and the electrospinning was processed at a 
flow rate of 1 ml/h, a voltage of 15 kV and the receiving 
distance was 15 cm. RGO solution was prepared by dis-
persing RGO in ethanol, water or acetone solvents and 
ultrasonicated for 0.5 h. The resultant ES PU nanofibers 
were dipped in the dispersed RGO solution under ultra-
sonication for different duration from 10 s to 20 min dur-
ing which RGO nanosheets were gradually assembled on 
the nanofiber surface to form the core–shell structure. 
Finally, the RGO decorated composite mat was obtained 
after washing with ethanol and drying at 60 °C for 12 h. 
Samani et al. [148] observed an increase in the conduc-
tivity and mechanical properties when adding graphene 
in the polymer matrix for electrospinning. Gozutok et al. 
[184] dispersed rGO in the poly (vinyl alcohol) (PVA) 
solutions without using any co-solvent and then electro-
spinning was used to fabricate nanofiber mats. By adding 
rGO, the properties of the PVA/rGO NF composite such 
as the porosity, inter fiber, pore size, and average fiber 
diameter were relatively improved. It was also observed 
that, the increase in rGO content improved the mechani-
cal properties, thermal stability and electrical conductiv-
ity while the crystal structure of PVA did not change.

4 � Properties of electrospun GNMs nanocomposites
ESNFs differentiate themselves by their remarkable func-
tional features such as an extremely high surface-area-
to volume ratio, ultra-fine diameter, high aspect ratio 
of length to diameter and molecular orientation along 
fiber axis, a complex and large porous structure with 
excellent pore-interconnectivity and tunability, a great 
mechanical performance, diverse fibrous morphologies, 
physio–chemical and electrical properties and adjustable 
structure and diameter [31, 43]. Due to their specialized 
features, ultrathin diameters and controlled porosity, 
electrospun nanofiber have demonstrated high potential 
for a wide spectrum of applications that includes enhanc-
ing the performance of analytical devices, biomedical 
applications, sensor and biosensor technologies [40].

Impregnating GNMs into ESNFs either during the 
electrospinning through pre-processing or after elec-
trospinning using post-processing methods impart the 
nanofibers with remarkable properties and morphologi-
cal structures, useful for electrochemical sensing and 
biosensing. In terms of electrochemical properties, the 
3D interconnected hierarchical structures of GNMs 
enable facilitating the diffusion of different types of bio-
molecules as well as maintain their biocatalytic bio-
activity functions thereby improving the sensitive and 
functionality of biosensors. Owning to their intrinsically 

high strength derived from the very strong carbon bonds 
as well as their interactions with the polymer solution 
matrix and their degree of dispersion, the addition of 
GNMs can overwhelmingly improve the tensile strength 
and Young’s modulus of the ESNFs. GNMs are remark-
able additives to improve the mechanical and electrical 
properties of electrospun nanofibers [185]. Dispersion 
GNMs into polymer matrices have been reported to 
improve the electrical, mechanical, thermal properties 
and other properties of polyslfones [186, 187], polyimide 
[188, 189], polycarbonates [190, 191], polyamides [192, 
193], polyethylene terephthalate [192, 193] and polybu-
tylene terephthalate [194, 195]. Gorji et al. [196] reported 
that the incorporation of GO into electrospun of PU and 
pH- sensitive dyes contributed to a faster response (7 s) 
and improved the sensor’s sensitivity to detect pH in 
chemical vapor solution. Table 3 summarizes the recent 
studies on impregnating GNMs into ESNFs and the sub-
sequent improved properties. Choi et  al. [153] reported 
a stretchable and transparent nanofiber-networked elec-
trode (STNNE) based on intrinsically stretchable electro-
spun nanofibers of polyurethane (PU)/reduced graphene 
oxide (rGO)/silver nanoparticles (AgNPs) (Fig. 3). It was 
found that, the highly dispersed AgNPs into the PU/rGo 
nanofibers improved the electrical conductivity, mechan-
ical stretchability. Furthermore, the presence of rGO 
and the formation of fused intersections between the 
nanofibers which occurred during the electrospinning 
process have concert improvements on the electrical sta-
bility of the fabricated STNNE. The fabricated STNNE 
was successfully demonstrated as a stretchable capacitive 
touch sensor on an elastomeric substrate.

Ruan et  al. [158] reported an increase in the thermal 
conductivity of polystyrene (PS) as a result of the co-elec-
trospinning of PS with thermally reduced graphene oxide 
(TRG). More specifically, the addition of 15 wt% TRG 
could increase the thermally conductive coefficient (λ) 
value of pure PS from 0.226 to 0.689 W/mK, glass tran-
sition coefficient ( a ) value from 0.2157 to 0.6545 mm2/s, 
glass transition temperature ( Tg ) value from 90.3 to 
95.0 °C and heat-resistance index ( THRI ) value from 184.2 
to 194.3  °C. Gozutok et  al. [184] observed that, adding 
rGO to PVA improved the thermal stability as shown in 
Fig. 4c. Abdali and Ajji [163] reported that, the thermal 
stability of PANI improved in the presence of graphene as 
shown in Fig. 4d, e.

Gebrekrstos et  al. [161] reported that the addition 
of fluoro-doped graphene derivatives (GO, GOF and 
GOOCH) during electrospinning of polyvinylidene flu-
oride (PVDF) offered remarkable properties including 
enhanced electroactive β phase, high energy density and 
improved piezoelectric coefficient. This drastic enhance-
ment can be ascribed to the increase in the amount of β 
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in PVDF/GO fibers and the charge separation induced 
by the fluorine which acts as a polarization center. Addi-
tional file 1: Figure S2a, b show the piezoelectric response 
using PFM. Additional file  1: Figure S2c, d show that, 
adding GO and GOF provided significantly enhanced 
dielectric constant of PVDF composites due to the fluo-
rine groups that could trap and accumulate large elec-
trons at the interface. Additional file 1: Figure S2e depicts 
the P-E loops for PVDF and GO, GOF and GOOCH.

5 � Electrochemical biosensors based electrospun 
GNMs nanocomposites

Biosensors are analytical devices capable of transfer-
ring the response of bio-tests into current signals which 
comprises two parts, biological detection part and the 
transduction part. The former is the main part of biosen-
sors which compose of biosensing element (e.g. aptamer, 
enzyme) that provides selective identification of the bio-
tests and converts this detection into processable (cur-
rent) signals by redox reaction. The latter serves as a 

platform to transforms the resulting signal from the bio-
molecule (bioreceptor)-analytes interactions as a current 
signal to a receiving system for further measurement and 
quantification. Recently, incorporating GNMs into ESNF 
to create electrochemical sensors is gaining a wide con-
sideration from researchers mainly because ES GNMs 
provide a remarkably improved sensitivity and low detec-
tion limit caused by their electrochemical probable space, 
low charge conformation, well-demarcated redox crests, 
electrocatalytic properties and electron transfer kinetics 
[197]. Additionally, GNMs possess other excellent char-
acteristics such as high surface area, low-cost, and mass 
electron transfer ability [155]. In terms of GNMs NFs bio-
sensors, ESNFs serves as the upholder to GNMs as well 
as the bioreceptors because they possess no reactive abil-
ity and thus, do not involve in the detection and trans-
duction parts. Meanwhile, the GNMs act as the detection 
and transduction parts due to their high adsorption and 
reactive and abilities for target analytes via chemical 
bonding or physical adsorption. Highly and uniformly 

Fig. 3  a Technological flow chart of the patterned STNNE. b FESEM image of the networked nanofibers. c FESEM image of the intersections of 
the nanofibers. d Optical photographs of the stretchable and transparent networked nanofibers film. Dispersion of PU/rGO/AgNPs in nanofibers. 
e Raman spectra of PU/GO/AgNPs nanofiber and PU/rGO/AgNPs nanofiber samples with a GO:AgNPs loading ratio of 1:1.25. f TEM images of 
nanofibers with diameters of ~ 290, ~ 484, and ~ 933 nm. g Schematics of the functional groups on GO, chemical structure of polyurethane, and 
negative surface charges of AgNPs. GO nanosheets can be hydrogen-bonded to the PU matrix by the functional moieties of the carboxyl and 
hydroxyl groups. h Optical transmittance-sheet resistance of the networked nanofibers for different types of nanofibers: rGO-coated PU, PU/rGO, 
PU/AgNPs, and PU/rGO/AgNPs nanofibers with that of copper nanowires, PEDOT: PSS/Zonyl/DMSO and graphene. i Stress–strain curves of PU/rGO 
and PU/rGO/AgNPs nanofibers. Evaluation of STNNEs under stretching conditions. j Resistance change (ΔR/R0) versus elongation of the PU/rGO and 
PU/rGO/AgNPs nanofiber electrodes on PDMS substrates. k Resistance change (ΔR/R0) versus low strain under tensile and compressive bending of 
STNNEs Reproduced with permission from [153] Copyright 2019 Royal Society of Chemistry
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dispersed and distributed GNMs into ESNFs improves 
the reactivity, speeds up the both adsorption or releases 
mechanisms and provides large number of GNMs active 
sites to act as immobilization matrices for bioreceptors 
(biorecognition elements) in electrochemical biosensors 
which enhances the electron transfer rate between the 
biomolecule and the transducer as well as help to pre-
serve their bioactivity on the sensing electrodes [198]. 
Furthermore, the morphology of ES GNMs NF (porous, 
core–shell and hollow) contains channels and pores that 
allows a fluid (e.g. biochemical or chemical species, sol-
vents, gas, etc.) to pass through with minimally reduced 
mass resistance thereby increasing the analyte diffusion 
toward the surface of the electrode and provide accurate 
and ultrasensitive detections [199, 200]. Table  4 shows 
the summary of ES GNMs and polymer NF composites 
for sensing applications.

Electrospinning is a facile and convenient technique to 
fabricate nanofibers based biosensors from a wide range 
of macroporous and mesoporous materials [132]. Elec-
trospinning endow the polymer nanofibers with predicta-
ble and controlled pore geometries, desired diameter and 
thickness, confirmations and chemical functionalities 

which benefit the fabrication of novel nanostructure 
materials with biosensing capabilities [199]. Moreover, 
the opportunity is to modify and functionalize ES NFs 
on a largescale allows this technique to meet a vast range 
of sensing requirements over other methods mainly due 
to the high surface area, high porosity, control of the 
chemical compositions and the direct electrospinning on 
a conductive electrode [201]. ESNFs can be functional-
ized by incorporating GNMs during electrospinning or 
after electrospinning onto the surface of the as-prepared 
nanofibers to enhance the essential properties for fabri-
cating electrochemical biosensors (electrical conductiv-
ity, electrochemical properties, electron transfer, catalytic 
reactions). Due to their high specific surface area and 
high porosity, ESNFs provides immobilizations sites 
and thus can bind to biorecognition elements through 
EDC/NHS chemistry enabling biorecognition-analytes 
interface and enhance the current response for the test 
biomolecules.

Zhang et  al. [202] reported a facile fabrication of a 
highly sensitive, efficient, stable, and reproducible elec-
trochemical biosensor for H2O2 detection by electro-
spinning PVA with GQDs onto glass carbon electrode 

Fig. 4  Dimensionally stable anodes (DSC) (a) and thermogravimetric analysis (TGA) (b) curves of pure PS matrix and the TRG/PS nanocomposites. 
Reproduced with permission from [158] Copyright 2018 Elsevier. c TGA curves of electrospun PVA mats mixed with GO. Reproduced with 
permission from [184] Copyright 2019 American Scientific Publishers. d TGA curves of rGO, rGO and AM-rGO. e TGA curves electrospun PMMA/PANI/
AM-rGO, PMMA/PANI/rGO and PMMA/PANI nanofibers. As shown in e, the thermal degradation temperature of PMMA/PANI/Am-rGO nanofibers 
increased to ~ 441 °C, a magnitude higher than that of the PMMA/PANI samples at ~ 348 °C. Both d, e are reproduced with permission from [163] 
Copyright 2017 MDPI
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Table 4  Summary of studies on ES GNMs and polymer NF composites for biosensing and sensing applications

GNMs/Polymer Spinning parameters Limit of detection limits Biomolecule Target References

rGO/PVP/Chi (12 cm; 22 kV; 0.5 mL/h) 0.15 pmol L−1 Laccase enzyme EE2 [162]

GQDs/PVP (10 cm; 20 kV; 0.5 mL/l) 12 µM – Glucose [203]

GO/PAN heat treat‑
ment > CNT/RGO

15 cm; 15 kV; 1.6 mL/h – Electrochemical 
detection of 
l-cysteine

[172]

PAN/GO 15 cm; 10 kV; 0.5 mL/h
DMF, sonication and stirring

0.25 for lidocaine and 
0.5 for prilocaine

2.5 for 2,6-xylidine
1.25 for o-toluidine

Extraction of 
lidocaine and 
prilocaine

[204]

Fig. 5  a Schematic presentation of electrospinning for producing PVA/GQD onto GCE for electrochemical biosensing and catalyzing of H2O2, b 
the possible detection mechanism, c Zeta potentials of GQDs, PVA, and PVA/GQD nanofibrous membranes at varied pH, d CVs of GCEs modified 
with PVA and PVA/GQD nanofibrous membranes, sensitivity of the biosensor at different potentials (inset), e CVs of the PVA/GQD nanofibrous 
membranes modified GCE 0.1 M PBS with different addition of H2O2 (Reproduced with permission from [202], Copywrite 2015 Royal Society of 
Chemistry)
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(GCE) (Fig.  5). GQDs were added into 0.5  g PVA fol-
lowed by ultrasonication for 2 h and incubation for 10 h. 
The final concentration of GQDs was 10–50  mM and 
the obtained homogeneous solution was used for elec-
trospinning PVA/GQDs nanofibrous membrane. The 
electrospinning parameters were set to 15  kV applied 
voltage, 12 cm receiving distance, and 0.3–0.5 mL/h flow 
rate. The ES GQDs electrochemical biosensor showed a 
linear detection range of 0.1–200  mM and a detection 
limit of 0.53 μM. It was found that, GQDs can replace the 
traditional semiconductor QDs and preserve the electro-
chemical properties of carbon materials.

Pavinatto et  al. [162] proposed a novel ultrasensitive 
and highly selective electrochemical biosensor based on 
polyvinylpyrrolidone/chitosan/reduced graphene oxide 
ES NFs for 17α-Ethinylestradiol (EE2) detection. The 
spinnable solution was prepared by dispersing 4% w/v 
of PVP in ethanol and 1.2% w/v chitosan in acetic acid/
water (9:1 w/v). Both solutions were mixed and stirred 
overnight at room temperature before adding 0.035% 
w/v of rGO which was dissolved in ethanol. The spinning 
parameters were 22 kV applied voltage, 12 cm receiving 
distance, and 0.5  mL/h feed rate. The nanofiber com-
posite was deposited on FTO electrodes attached to a 
metallic collector with a deposition time of 2.5 h. Upon 
the characterization of the fibers and prior to immobiliz-
ing Laccase enzyme, the fabricated PVP/Chi/rGO ESNFs 
were treated with glutaraldehyde solution and subse-
quent crosslinking solution was applied to the nanofiber 
composite to activate the amine (–NH2) and the hydroxyl 
(–OH) groups from chitosan and graphene sheets, 
respectively. Covalent bonding was utilized to immobilize 
the Laccase enzyme to the nanofiber composite through 
NH2 groups of Laccase enzyme and the activated groups 
from the nanofiber composite. The PVP/Chi/rGO/Lac-
case electrode was used to detect EE2. It was revealed 
that, the integration of Chi and PVP with rGO increased 
the charge transfer leading to the excellent electrochemi-
cal biosensing properties. Figure  6a reveals the forma-
tion of the electrochemical biosensor in terms of coating 
Laccase enzyme into the FTO/PVP/Chi/rGO nanofiber 
composite and the CV, electrochemical impedance 
spectroscopy (EIS) and amperometry measurements 
are shown in Fig.  6b–d respectively. Recently, Nathani 
and Sharma [129] demonstrated the use of electrospun 
mesoporous poly (Styrene-Block-methylmethacrylate) 
nanofibers (ES PS-b-PMMA NF) to enhance the analyti-
cal performance of electrochemical biosensor by exploit-
ing the effect of porosity and surface area on the sensing 
ability of electropsun nanofibers. EDC-NHS chemistry 
was chosen to biofunctionalized the PS-b-PMMA NFs 
and the redox response was utilized to study the presence 
of the carboxyl group. The fabricated electrochemical 

porous biosensor showed an increase of the sensitivity by 
2.7-fold, a detection range of 10 fM–10 nM and a detec-
tion limit of 0.37 fM along with good selectivity. Figure 6e 
shows the voltammetry results of the developed electro-
chemical biosensor.

6 � Future outlook
Electrospinning has become one of the most vital tech-
niques to fabricate the functional nanofiber composites 
with the desired structure and compositions. However, 
several challenges hinder the transition of electrospin-
ning method from the laboratory scale to industrial scale 
production such as spinneret configuration, rheology, 
solution concentration, electric field intensity and dis-
tribution, humidity and temperature, flowrate, receiving 
distance and collector geometry. These parameters could 
also influence the reproducibility of ESNFs over time and 
in different locations. On the other hand, the integration 
of GNMs and polymer nanofibers using electrospinning 
has proved to be an excellent strategy to fabricate effi-
cient sensing materials-taking the dual advantages of the 
wonderful functional properties of GNMs and electro-
spun polymeric nanofibers. However, to attain high-per-
formance electrochemical biosensors, some challenges 
should be circumvented such as to increase GNMs con-
tents without agglomeration or aggregation to and to 
increase the immobilization sites for bio-tests molecules. 
Additionally, to optimize the synergistic effects between 
graphene and other nanomaterials as well as to improve 
the electrocatalytic efficiency for electrochemical sen-
sors are mandatory. There are appropriate modification 
and fabrication of GNMs and polymer nanofibers for 
biosensor design via electrospinning which are pre- and 
post-processing methods. The former involves mixing 
the polymers with GNMs before electrospinning which 
is a universal and efficient method to fabricate ES GNMs 
nanostructures for biosensors with enhanced stabil-
ity, physical and chemical properties, reusability, and 
long-term storage stability. The latter involves coating 
or decorating the GNMs onto the surface of as-prepared 
nanofibers for immediate interface with biomolecules 
which in turn leads to the enhanced performance of 
electrochemical biosensors. The pre-processing meth-
ods show more superiorities for biosensing performance; 
however, they require few harsh conditions like violent 
stirring, in situ growth of GNMs and/or the use of com-
plicated device such as coaxial electrospinning. Addi-
tional challenges of pre-processing methods include the 
dispersion, alignment and the appropriate loading of 
GNMs with the polymer matrices. Furthermore, more 
studies are required to control the synergistic effect of 
GNMs and their interactions with the polymer matrices 
during the electrospinning process to ensure uniformity 
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and dispersity of GNMs. The post-processing methods 
typically have higher efficiency of utilizing GNMs directly 
for biosensing applications due to the possibility to deco-
rate a large surface area of as-prepared nanofibers with 
GNMs thus maximizing the potential interface between 
GNMs and biomolecules to facilitating ultrasensitive 
detection of bio-tested analytes. The major challenge of 
post-processing methods lies on their ability to establish 
accurate interactions between the GNMs and the poly-
mer nanofibers because GNMs cannot easily integrated 
with the as-prepared nanofibers. Therefore, more studies 
are required to optimize the coating or to develop novel 
coating strategy of GNMs onto electrospun nanofibers 
to increase the interfacial bonding between GNMs and 
electrospun nanofibers. Recently, [205] reported a fac-
ile strategy to realize a strong connection between multi 
carbon nanotubes (MWCNTs) and poly (vinylidene fluo-
ride-co-hexafluoropropylene) ESNFs via thermal-induced 
welding. Ren et al. [206] reported an effective strategy to 

improve the structural integrity between CVD graphene 
and polyacrylonitrile (PAN) ESNFs via annealing process 
to fabricate a transparent sensor with enhanced conduc-
tivity, mechanical strength, sensitivity, stability and a low 
detection limit.

This review elucidated the recent achievements on 
electrospun design of functional nanostructures for 
biosensing applications by exploiting the remarkable 
properties of GNMs using pre-processing and post pro-
cessing methods. It can be concluded that, the appro-
priate modification of GNMs with surface functional 
groups (e.g. reduction of GO to rGO and or adding 
additives) improve their dispersion within the polymer 
matrices thereby enhancing the electrical conductivity, 
thermal stability, electrochemical and mechanical prop-
erties of the electrospun nanostructured composites. 
Additionally, the modification of electrospun nanofib-
ers as well as optimizing electrospinning design to 

Fig. 6  a Schematic representation of the fabrication of EE2 electrochemical biosensor. b Cyclic voltammetry measurements using a PBS buffer 
solution (pH 7.4) and scan rate of 100 mV s−1 for PTO, PVP/Chi/rGO ES NFs and PVP/Chi/rGO ES NFs coated with Laccase enzyme. c Nyquist plots 
of EIS for (a) FTO, (b) PVP nanofibers, (c) PVP/Chi nanofibers, (d) PVP/Chi/rGO nanofibers and (e) PVP/Chi/rGO nanofibers coated with Laccase in a 
5 mmol L−1[Fe(CN)6]

3−/4− solution with 0.1 mol L−1 KCl. d Amperometric response upon successive additions of EE2 ethanol solution recorded 
at PVP/Chi/rGO_Laccase coated electrode in a phosphate buffer solution pH 7.0 in concentrations ranging from 0.25 to 20 pmol L−1 at a fixed 
potential of − 0.3 V. The inset shows the calibration curve with the respective linear fit. a–d reproduced from with permission from [162] Copyright 
2018 Elsevier. (E) Schematic of cyclic voltammetry shown the electrochemical behaviour of BSA/BH/PNF/GCE in presence of [Fe(CN)6]3−/4− at 
different scan rates (20–160 mV/s). It can be revealed that, the increase in the peak to peak voltage difference is also an indication of the progressive 
immobilization and the anodic peak shifts towards the higher potential value whereas the cathodic peaks shift towards lower potential value with 
the increase in the scan rate Reproduced with permission from [129] Copyright 2019 Wiley
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fabricate porous, core–shell and hollow nanostructures 
increase the surface area and therefore the immobili-
zation sites for biomolecules increases. This overview 
highlighted the recent progress on graphene fabrication 
materials, the remarkable role of GNMs to construct 
next generation electro-sensing devices and the impor-
tance of electrospinning designs of nanostructured 
composites towards bridging laboratory set-up to the 
industry.
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