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Full list of author information is fictitious domain methods requiring the integration of discontinuous functions. The
avallable at the end of the article novel approach extends the conventional quadtree-decomposition-based adaptive
integration scheme (AIS) by an additional step, in which established
image-compression techniques are exploited to decrease the number of integration
sub-cells. The benefits of the C-AlS are manifold: First, the compression of the sub-cells
inevitably leads to significant savings in terms of computational time required by the
numerical integration. Second, the compression procedure, which is executed directly
after the quadtree-decomposition algorithm, can be easily included in existing codes.
Third, if applied to polynomial integrands, the C-AlS yields exactly the same accuracy as
the conventional AIS. Finally, the fourth advantage is seen in the fact that the C-AIS can
readily be combined with other approaches seeking a reduction of the number of
integration points such as the Boolean-FCM. The efficiency of the C-AIS approach is
presented in the context of the FCM based on Cartesian meshes applied to problems of
linear elastostatics and modal analysis, while it is also suitable for the quadrature in
other fictitious domain approaches, e.g., CutFEM and cgFEM.

Introduction

In engineering and physics one often deals with continuous field problems governed by
partial differential equations (PDEs). These problems are often boundary value problems
(BVP), where the primary variables have to satisfy a set of PDEs, while on the boundary of
the domain of interest specific values of the field variables, formulated in form of boundary
conditions (BCs), are prescribed [1]. Since these problems cannot be solved analytically
in most of the cases, they have to be solved numerically.

Although the traditional FEM [2,3] has proven its power throughout the years for solv-
ing BVPs, various extensions were developed in order to obtain an even higher accuracy,
a lower computational time and/or a wider field of application. Such an extension is the

fictitious domain approach (FDA) [4-7], also known as unfitted finite element method [8]
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a Typical FEM mesh b Unfitted FEM mesh ¢ Unfitted distorted mesh d Unfitted Cartesian mesh
Fig. 1 Examples of typical discretizations in the framework of the FEM (a) and fictitious domain methods
(b—d) based on unfitted meshes

or immersed boundary method [9], where the BVP is solved on an unfitted computational
mesh independent from the original domain while maintaining the same robustness and
accuracy as the FEM [10]. Such a formulation can be highly beneficial compared to the
conventional FEM when it comes to automatic mesh generation, moving boundaries and
simulation of complex media involving holes, inclusions and cracks. There are several
possibilities of constructing an unfitted mesh, see Fig. 1 for details. One idea is to reuse
an already existing FEM mesh and inserts extra features, such as voids as depicted in
Fig. 1b and exemplarily discussed in [11]. Other approaches include embedding the origi-
nal domain into a larger domain, which can be discretized by distorted or regular elements
depending on the shape of the embedding domain, as shown in Fig. 1c, d, respectively.
There is a vast variety of different methods that are based on the fundamental idea of the
FDA, differing in their assumption regarding the topology of the unfitted mesh, the type
of shape functions and their typical areas of application. However, it is worth to empha-
size, that almost all of the different methods can adapt most of the features of the other
ones. Well known methods based on the FDA are for example the extended finite element
method (XFEM) [12-15] and generalized finite element method (GFEM) [15-18]; both
of which are based on the partition of unity method (PUM) [19,20] enabling a sophisti-
cated tool for modelling problems with singularities, kinks, jumps or other non-smooth
features. An in-depth mathematical foundation of the FDA and of the implementation
of boundary conditions over the unfitted meshes can be found in the literature of the
cut finite element method (CutFEM) [21-24], where often triangular elements are used.
While the above approaches do not require the computational mesh to be rectilinear, the
fixed grid finite element method (FGFEM) [25—-27] assumes the mesh to be strictly Carte-
sian and uses a less accurate, yet very fast, integration scheme based on pre-computation,
making the FGFEM especially suitable for topology optimization [28,29]. Similar to the
FGFEM, the Cartesian grid finite element method (cg-FEM) [30] is also restricted to rec-
tilinear elements, however, it is combined with a hierarchic data-structure for adaptive
h-refinement steered either by the curvature of the boundary or by appropriate error
estimators. Finally, we mention the finite cell method (FCM) [31-35], which is a com-
bination of high-order shape functions known from p-FEM resulting in an exponential
convergence [33] and unfitted (often Cartesian) meshes enabling a fast discretization of
the computational domain [10,31]. Please note that while the FCM can also be straightfor-
wardly used in combination with distorted elements our focus in this article is on Cartesian
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Fig.2 A two-dimensional example of a discontinuous integral in the FCM, where the polynomial integrand
P&, n) = 07Ny + 0.4N; + 0.6N3 + TNs + 0.8Ns5 + 0.8Ng + 0.2N7 + 0.7Ng + 0.4Ng is defined by a linear
combination of the 3rd-order Lagrangian shape functions based on an equidistant nodal distribution

meshes. A detailed discussion of the FCM, which is the basis of our implementation, will
be provided in “The finite cell method for linear elastostatics” section.

However, regardless of the governing equations of the problem under consideration and
of the chosen FDA, all of the above methods give rise to a non boundary-conforming mesh
by definition, resulting in elements cut by the boundary. Consequently, compared to the
FEM, the difficulty in these methods is shifted, on the one hand, to the implementation of
the boundary conditions [4—6,21,22,36—38], and on the other hand, to the computation of
the cell-matrices. In this contribution, our focus is on the latter issue. A detailed discussion
of different approaches thatare currently used for the integration of the element matrices is
provided in “Review of numerical integration methods: discontinuous integrands” section.

Review of numerical integration methods: discontinuous integrands

In order to illustrate the problem regarding the computation of the element matrices
in the FDA-based methods, we consider a continuous polynomial function P(§) over a
quadrilateral element Q© e[-1,1] x [-1,1] (Fig. 2a), which is divided by the boundary
0Q intersecting the element into the arbitrary-shaped disjoint physical ;s and fictitious
Qfict sub-domains. Generally in the FDA, one is interested in the integral of P(£)! only over
Qphys, however, the integration itself should be performed over the entire domain Qe
For eliminating the contribution of the integral over Qg, the indicator function «(&)
is introduced, which is essentially a step function, having the value 1 in Qphys and the
value 0 in Qg¢ (Fig. 2b). Then, the desired integral value I can be computed according to
Eq. (1) [39], where the integrand on the right hand side is discontinuous (Fig. 2c) due to

o.

1= [ Peaa= [a@pe e )
Qphys Qe

The numerical computation of discontinuous integrals is an interesting topic with

numerous applications which is still actively researched to all methods based on unfitted

meshes. In the following, we briefly discuss the main approaches that are currently used

!Note that the integrand is not necessarily a polynomial function. This is only true if the employed shape functions are
polynomials and if the geometry mapping is affine. This is, e.g., the case for the FCM in conjunction with Cartesian
meshes.
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in FDAs. Further details on these approaches can be found in Refs. [33,40,41]. Note that
the discussed methods may originate in a specific field, nonetheless, they are generally
applicable.

Pre-computation

If the computational mesh consists of identical elements, certain parts of the integrals can
be pre-computed and reused while integrating over the individual cut elements. Both of
the following two approaches assume a Cartesian mesh (see Fig. 1d).

It is a widely used practice in the FGFEM [25,26,29], that the term er P(&) dQ2 on
the right hand side of Eq. (1) is assumed to be the same for each element regardless of
the topology of discontinuity and therefore, it can be easily pre-computed. Then, for the
computation of the discontinuous integral, the pre-computed term can be reused for each
cut element while scaled accordingly by the ratio Aphys /A(e), where Aphys and A® are the
areas of the domains Qppys and Q©), respectively. Clearly, such a basic computation of
the discontinuous integral is related to serious errors, since it does not take the shape
and position of Qppys into account, but only its area. Being aware of this, Maan et al. [26]
used some additional equations based on the topology of the cut elements in order to
determine a sufficient mesh density leading to smaller integration errors.

Another integration scheme based on the pre-computation approach was proposed by
Yang et al. [42—44], where one is interested in solving an integral given in Eq. (2). At
this point only a generic discussion of their approach is given, independent of the area of
application.?

I= f BEPE) d 2)
Qle)

Here, Q(© is assumed to be composed of uniformly distributed rectangular regions as
exemplarily depicted in Fig. 3a. In Eq. (2), B is a discontinuous function which is piece-
wise constant over the individual sub-regions, cf. Fig. 3b. Assuming that the distribution
of sub-domains is the same for all integration domains Q(®, the integral of P can be
pre-computed over the individual domains. Then, the integral over a given element (see
Fig. 3¢) is computed by summing the pre-computed integrals scaled by the corresponding
value of the function 8, being constant for each sub-domain.

Local integration mesh

Another idea is to introduce a local integration mesh (LIM) in the cut cells which serves
integration purposes only and does not increase the degrees of freedom (DOF) of the global
system. Then, the integral over the entire cell I®) is obtained by summing the integrals
169 over the nq. integration sub-cells® constituting the LIM, while the sub-cells may or
may not conform to the discontinuity within the cell.

Nsc

1© — Z 769 (3)

sc=1

% In the original contribution [42-44], the proposed integration scheme is discussed in the context of FCM applied
to 3D bio-medical problems. Consequently, the computational domain is described by voxelated data, often obtained
by medical-imaging such as computed tomography. Assuming constant linear elastic and isotropic material properties
for the individual voxels, the stiffness and mass matrices can be pre-computed for the , x 1, x n, voxels within each
element () using the two Lamé constants A and .

3In the remainder, we refer to the integration sub-cells simply as sub-cells.
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Fig.3 Example for the discontinuous integrals in the approach by Yang et al. [42-44]. For the definition of P

see Fig. 2
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a Uniform LIM con- b  Square-shaped sub- ¢ Decomposition into two quadrilateral (Q1, Q2) and two

sisting of 256 sub-cells cells resulting from a triangular (Ty, T2) sub-cells with curved edges (Cheng and
(Parvizian et al. [31]). QTD-based AIS Fries [14] and Kudela et al. [46, 47]).

Fig.4 Different ways of creating a local integration mesh for a two-dimensional cut cell. For sake of
simplicity, the local coordinate system is not shown

Non-boundary-conforming LIM

In terms of a non-conforming LIM, Parvizian et al. [31] proposed a basic implementation
for Eq. (3) by distributing # x n sub-cells of uniform size in the cell, over which a low
order integration, such as the trapezoidal rule can be used (Fig. 4a). A more sophisticated
approach is the adaptive integration scheme (AIS), which generates an LIM by succes-
sively creating smaller and smaller sub-cells in the vicinity of the discontinuity by using
space-partitioning techniques such as the quadtree-decomposition (QTD) [32], yielding
an integration mesh, exclusively consisting of square-shaped sub-cells (Fig. 4b). The B-
FCM approach by Abedian et al. [45] is very similar to the QTD-based AIS when applied to
complex regions, however, due to its improved strategy based on Boolean operations and
area-calculations of Qphys and Q2 it requires significantly fewer IPs while maintaining
the same accuracy (see “Combination with the B-FCM” section).

Boundary-conforming LIM

A more accurate resolution of the discontinuity is possible using boundary-conforming
sub-cells. Such an approach is the adaptive anisotropic integration scheme proposed by
Legrain and Moés [46], generating a mesh of distorted sub-cells with increased density
and decreased size in the vicinity of the discontinuity. A significantly smaller number of
sub-cells is required when using a Delaunay triangulation to create an integration mesh
that consists of triangular sub-cells with straight edges, as it was done by Nadal et al. [30].
They also note that for higher order elements also a higher order boundary representa-
tion is required for an optimal convergence rate of the simulation. Therefore, the need for
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sub-cells with curved edges enabling a higher approximation accuracy of the boundary
emerges. In the works by Cheng and Fries [14] and Fries and Omerovi¢ [47], the dis-
continuity 92 is assumed to be given in an implicit form by the iso-contour ¢(x) = 0
of the scalar-valued level-set function and for the mapping of the sub-cells Lagrangian
elements with enriched nodes are used [48], enabling a more accurate representation of
the boundary. While the approach discussed in Ref. [14] is restricted to two-dimensional
problems (Fig. 4c), an extension of the basic formulation to three-dimensions is proposed
in Ref. [47]. Kudela et al. [49,50] follow the two-dimensional approach of Ref. [14], how-
ever, they assume a parametric formulation of a two-dimensional boundary and use the
blending function method [3,51] (Fig. 4c). Finally, the smart octree approach by Kudela et
al. [52] is an extension of this idea to three-dimensions, which is even capable of handling
sharp geometric features on the interface, such as nodes and edges. In case of a paramet-
ric boundary, it is enough to find the intersection parameters by which the curve enters
and leaves a cell. Finding implicitly defined boundaries renders a more challenging task,
involving the solution of a non-linear equation system (EQS), which can be achieved by
the Newton-Raphson method for example [47].

Divergence theorem

Another approach s to utilize the divergence theorem (DT) [53,54] in order to transform an
integral over a two- or three-dimensional domain into closed surface or contour integrals,
respectively, and thus reducing the dimensionality of the integration by one. The main
problem one is faced with during this approach in the FEM, is that the antiderivative
of the original integrand has to be computed. While Dasgupta [55] solves this integral
symbolically, Sudhakar et al. [56] apply the DT on polynomial functions pre-integrated
over arbitrary polyhedra without using costly symbolic computations. Then, the integral
over the triangular and quadrilateral facets is computed using Gaussian quadrature rules.
Finally, Duczek et al. [57] apply the DT in the framework of the FCM and assume a pre-
defined polynomial integrand, that can be (pre-)computed symbolically. Note that this is
a perfectly legitimate assumption in the context of the FCM, where the mesh consists of
a regular arrangement of rectilinear cells with a constant Jacobian.

Moment fitting

A third approach is to use the moment fitting (MF) method, that derives an individual
quadrature rule for an arbitrarily shaped domain, in our case Qppys, by solving moment
fitting EQS. Generally the positions of the quadrature nodes are not known a priori and
therefore one has to solve a non-linear EQS, in order to obtain both the nodal positions x;
and their corresponding weights w;. In cases where there are more nodes than moments,
the solution can be obtained according to the least-squares Newton’s method, as it was done
by Mousavi et al. [58]. In addition, Xiao et al. [59] combine the least-squares Newton’s
method with a node elimination scheme, which results in a decreased number of IPs.
However, these approaches become computationally expensive, if applied to integrals
over numerous arbitrary domains, which is exactly the case when cells are intersected
by arbitrary shaped domain boundaries [60,61]. To circumvent this problem, a set of
quadrature nodes with pre-defined positions can be used, resulting in a linear EQS, where
only the weights are unknown. While Miiller et al. [60] distribute the fixed IPs in the
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embedding domain Qe D phys, Mousavi and Sukumar [62], Sudhakar et al. [63] and
Joulaian et al. [61] use IPs located strictly within the domain of interest Qpys. A major
difference between the last three methods is their assumption of the geometry description.
In Ref. [62], Qphys is assumed to be a convex polytope, while Ref. [63] computes the pre-
defined nodal positions in both convex and concave polytopes. The MF method was
applied by Hubrich et al. [64] and by Joulaian et al. [61] for three-dimensional problems
with curved surfaces approximated by a low-order triangular mesh and tested in the
context of FCM. It was shown, that the number of required IPs in the MF is significantly
lower, than in the AIS, while maintaining the same accuracy. However, on the contrary,
the derivation of individual quadrature rules for every cut cell comes with a significant
computational overhead, which makes the MF best suitable for non-linear problems,
where the already derived quadrature rules can be reused multiple times [61].

Equivalent polynomials

In the context of the equivalent polynomial (EP) approach, one seeks to solve a discon-
tinuous integral in Eq. (1) over the embedding domain €2, by replacing the discontinuous
term o with an equivalent polynomial &, which is continuous over €2.. Thus, it allows a
standard Gaussian quadrature-based integration over the domain of interest without the
need of a domain partitioning procedure [39,65].

/ w(&P(E) d = / E®PE) d )
Qe

Qe

There are various studies available in the literature [39,40,65,66], that use the EP
approach. The key difference between the existing solutions lies in the formulation of
the equivalent polynomial £, the required topology of the discontinuity and the com-
putation of the integrals of the basis function over the physical domain. The works by
Ventura [66] and by Ventura and Benvenuti [65], formulated in the context of the XFEM,
assume elements intersected by a single straight line in two- or by a single plane in three-
dimensional settings. On the one hand, Ref. [66] divides the integration region 2. into
two sub-regions defined by the positive and negative domains according to the Heaviside
function H making the integrand discontinuous, and integrates over the sub-domains
analytically using the DT. On the other hand, Ventura and Benvenuti [65] circumvent the
need for subdivision of 2. by replacing H with its a priori known continuous regularized
counterpart H,. Abedian et al. [40] applied the notions of Ref. [66] in the framework of the
FCM and furthermore suggested a spacetree-decomposition-based improvement, where
lower order equivalent polynomials can be used for each sub-cell. However, according to
Ref. [39], in this case not only that an extra spacetree-decomposition is involved, but an
EQS for each sub-cell has to be computed as well and therefore this approach does not pay
off compared to the traditional QTD-based AIS. Finally, Abedian and Diister [39] describe
both P and £ on the basis of Legendre polynomials, whose orthogonality property enables
an easy computation of the coefficients of the equivalent Legendre polynomial, without
the cost of solving a system of equations.

Motivation
Clearly, there is a wide range of methods capable of computing discontinuous integrals,
which all have their own fields of application. Nonetheless, their success is strongly
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restricted to specific scenarios regarding the shape of the physical domain and the geome-
try description of the boundary. Obviously, the DT-based methods yield the exact solution
with marginal effort, if the integrand is known and if the boundary is defined as a polygonal
chain in two-dimension or as a triangulated surface in three-dimension. Similarly, if the
discontinuity happens to be given in a parametric form, an LIM with boundary conforming
sub-cells can be easily created using the blending function method, however, for implicit
boundaries, creating boundary conforming sub-cells renders a much more challenging
task. This is also the case for the MF and EP methods, where one way or the other, an
integral over an arbitrarily shaped physical domain has to be computed, while the MF even
requires a solution of an additional EQS as well, for deriving the unique quadrature rules.
For most cases, if the boundary is not given in the required form, additional iterations
have to be performed to capture the boundary in a way, that can be handled by the given
method. Not only that all these features increase the preparation-time of the integration
techniques, but they also make them less robust.

In contrast to the previously mentioned methods, the LIM-based AIS relies on a simple
and straightforward algorithm (“Traditional adaptive integration scheme (AIS)” section),
which neither requires any iterations nor a solution of an EQS and yet is still capable of
approximating the discontinuity independent of the geometry description of the bound-
ary. Clearly, the main advantage of this approach is that it can be robustly used for a
whole variety of problems. Although the AIS leaves more detailed information about the
boundary unexploited and creates a rather coarse approximation of it, its fundamental
idea aligns really well to the basic concept of the FCM, being an easy and effortless meshing
combined with exponential convergence rates. Unfortunately, for an accurate solution,
the AIS often results in a large number of IPs and thus lengthy computational times.
Therefore, in this contribution we propose the compressed adaptive integration scheme
(C-AIS) (“Compressed adaptive integration scheme (C-AIS)” section), in order to enable
a method, that has all the benefits of the AIS, however, with reduced computational costs
during the numerical integration.

The finite cell method for linear elastostatics

A detailed introduction to the fundamentals of the FCM was already elaborated in many
contributions, such as Refs. [31-35]. Therefore, we only briefly sketch the fundamentals
of the FCM. For the sake of simplicity, we restrict ourselves to two-dimensional linear
elastostatics, although the formulation of problems with governing equations of different
problems, such as dynamics [67,68], fluid mechanics [69] or fracture mechanics [70,71],
just to name a few, is also possible.

Note that the novel integration scheme being proposed in “Compressed adaptive inte-
gration scheme (C-AIS)” section is not restricted to a specific FDA but can be utilized in
any method with unfitted meshes in a straightforward manner. However, throughout this
paper we present our approach in the framework of the FCM, where the C-AIS can reach
its maximum potential due to the higher order shape functions and the Cartesian meshes
which are commonly used. Such a mesh generation goes hand-in-hand with the voxel-
models obtained for computed tomography (CT) scans, thus, homogenization of highly
complex structures [72-74] and applications to biomechanics [32,36,42-44,70,75] are
major topics in the context of the FCM. Note that these are not the only fields where the
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Fig.5 Concept of the FCM including a typical discretization based on a Cartesian mesh. A comparable FE
discretization is depicted on the right

capabilities of the FCM have been proven and exploited: multi-physics problems, such as
thermo- [37] and electro-mechanics [76], topology optimization [77], geometrically non-
linear problems. Refs. [78—82] as well as physically nonlinear problems [83—85] have also
been simulated successfully. Besides static analyses, the extension and application of the
FCM to dynamic problems [67,68,76,86—88], to fluid mechanics [69] and last but not least,
to phase-field modelling [70,71] has been also in focus of current research activities with
promising results. Note that besides the simple Cartesian mesh and hierarchic Legendre
shape functions [33], also alternative mesh generation techniques, such as polygonal [89]
and tetrahedral meshes [11,70] as well as alternative shape functions, such as hierarchic
B-splines [78,85] and Lagrangian shape functions based on the Gauss—Legendre—Lobatto
(GLL) nodal distribution (leading to the spectral cell method—SCM) [67,76,86] have been
also investigated and successfully implemented in the FCM.

Linear elastostatics

Consider a physical domain Qppys with its corresponding boundary 9<2. The domain is
subjected to body forces b while on the Neumann boundary 'y C 92 surface tractions
t are applied. Then, without derivation, based on the principle of virtual work [2,31] the
weak formulation of the problem can be expressed by the equality of the bilinear B(x, Su)
and linear F(§u) functionals

B(u, su) = F(Su) —> / (Lsuw)" CLu dQ = f subdQ + / Su'tdr, (5)
Q Q I'n

where u is the displacement field, du the virtual displacement field, C the constitutive
matrix in Voigt notation and L the standard strain-displacement operator. In this case,
the bilinear functional B(u, 5u) corresponds to the virtual internal energy, while the linear
functional F () expresses the virtual work of the external loads. The boundary Q2 =
' U I'p is divided into the disjoint sets (' () I'p = @) of the Dirichlet I'p and Neumann
boundaries I'y, on which boundary conditions (BCs) for the BVP are applied. While the
Neumann BC in regard of the prescribed tractions #(x), Y& € 'y is already included in
Eq. (5), the Dirichlet-RB regarding the prescribed displacements #(x) have to be realized
as an additional equation u(x) = #(x), Vx € I'p, in order to prevent rigid body motions.

Fictitious domain approach

In the FCM, the physical domain ;s is embedded into the larger extending domain
Q. of a simple and regular shape (Fig. 5), and thus the fictitious domain is defined as:
Qfict = Qe \ Lphys- In order to distinguish between physical and fictitious domains, we
use the indicator function «(x) given in Eq. (6). To avoid a possible ill-conditioning of
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the system matrices, instead of setting o = 0 in Qg¢, we assign a small value « << 1. In
practice, one may use @ < 10719 [77]. However, according to Fries et al. [15], a possible ill-
conditioning can be expected only in cases where cells exhibit a large difference between
the areas of Qphys and Q¢ within them.

a; = 1.0, Va € Qphys

(6)

ax) =
g = 0.0 (in practice : ag << 1), Va € Qfet

Since the fictitious domain has no physical meaning, it should have no effect on the
behaviour of physical domain. Therefore, the material in the fictitious domain should be
significantly more compliant than that of the physical domain. Without derivation, the
original problem stated in Eq. (5) can be also formulated in the extended domain using
the indicator function ¢, as long as «(x) = 0 for all ¥ € Qg holds [31]:

Be(w, Su) = Fo(Su) —> /(Lau)T-ac-Lu dQ:/SuT-ab d9+/5uT-idr
Qe Qe I'n

(7)

Discretization of the weak form

The advantage of the aforementioned embedding in €2 is manifold: On the one hand,
the regular shape of 2. enables a straightforward and effortless discretization via Carte-
sian meshes (Fig. 5), which is of great advantage over the FEM, where automatic mesh
generation can be challenging to achieve and in some cases, specifically in 3D problems,
even impossible [2]. On the other hand, due to the quadratic/cubic shape of the result-
ing elements of the FCM (Fig. 5), the geometry mapping Q¢_,, from the reference to
global space has a constant Jacobian matrix J¢_,,. This is greatly beneficial regarding
the computation of the element matrices, since the Ansatz space remains unchanged
by the mapping and an exact numerical integration is possible, when polynomial shape
functions are used. On the contrary, in the FEM, the elements can be distorted in vari-
ous ways, inhibiting an exact numerical integration due to the mapping procedure and
thus affecting the quality of the solution [90]. For sake of completeness, we mention the
polygonal [89] as well as the tetrahedral extensions of the FCM [11,70], where the above
mentioned beneficial features of the traditional FCM regarding the simplicity of the map-
ping and the Jacobian matrix do not apply. Consequently, the polygonal and tetrahedral
FCM are only advantageous for special applications, as for example the consideration
of pores in already existing FE-meshes [91]. Furthermore, if the given problem contains
non-smooth features, introduced by material interfaces, cracks or sharp corners within
the elements, special FC-meshes are required, based on the local-enrichment [92,93] or
multi-level hp-refinement strategy [75,94].

Unlike in the FEM, the generated elements do not conform to the boundary d€2. In order
to distinguish them from the traditional finite elements (FEs), they are commonly referred
to as finite cells (FCs). This notation is also used throughout this paper. Nevertheless,
despite of this difference, the FCM is identical to the FEM in many important aspects: The
FCs are still defined in the reference space with the corresponding local coordinates & =
[&,n]T, where &, n € [-1,1]. Additionally, the displacement field u#(x) of the individual
cells is approximated analogously to the conventional FEM using the same families of
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shape functions. Thus, the global equation system
KU =F, (8)

whose solution is the global displacement vector U, is obtained by the assembly of cell-
specific stiffness matrices K © and load vectors F©, Thus, already established solvers
known from many FE-packages can be used straightforwardly [3,95]. As an example, the
stiffness matrix K© of a specific cell is given below
11
K© = / / BTaCBdet(]gix) dédn, 9)
-1-1
where B is the so-called strain-displacement matrix, containing derivatives of the shape
functions. Furthermore, J¢_, » is the Jacobian matrix of the already mentioned geometry
mapping Qg_, ,, establishing the relation between the local & and global x coordinates of
a given cell, according to Eq. (10). Due to the simple shape of the cell in the global space,
the mapping is a linear function, characterized by the global coordinates x; and y; of the
lower left corner as well as by the height /i, and width /4, of the cell. It is easy to see, that
in case of such a simple mapping, det(J¢_, ) is indeed constant and depends on the width
hy and height &y of the cell only.

x1+ 1/2(1 + &)hy T 1|h O
X = > = —> = d s = —
QE x(‘E) |:)’1 + 1/2(1 + U)hy ]E—>x gra [QE x(E)] 210 hy
(10)
Due to the extension to €2, and the non boundary-conforming nature of the discretiza-

tion, the generated cells can be classified* as follows:

1. Physical cells are located entirely in the physical domain and their stiffness matrices

K g}iys are identical to the ones of the FEs, due to the fact that « = 1 in Eq. (9).
Assuming a polynomial Ansatz space and constant material properties, K © can

phys
be integrated via Gaussian quadrature to machine precision [88]. Furthermore, due

to their uniform shape and size, a pre-computation of K ;C}zys is possible, which then
applies to all physical cells (see dark gray cells in Fig. 6) [25].

2. Fictitious cells, which are located entirely in the fictitious domain, have no physical
meaning and therefore, they can be excluded from the simulation (see light grey cells
in Fig. 6).

3. Cut cells,” as the name implies, are intersected by the boundary 82, and hence they
contain pieces of both the physical and fictitious domains (see yellow cells in Fig. 6).
The difficulty of computing accurate results for Eq. (9) in this case arises due to
the discontinuous nature of @ within the cell (see Fig. 2), as discussed in “Review of

numerical integration methods: discontinuous integrands” section.

In the FCM, significant drawbacks of the FEM, such as the typically demanding dis-
cretization procedure and integration error caused by the distorted elements in the initial
mesh, can be avoided. However, due to the cut cells present in the FCM (and generally in

*Note that other fictitious domain methods may use different notations, such as internal, external and boundary
elements [30] or in (I), out (O) and neither- in- nor- out (NIO) elements [25]. However, essentially they all refer to the

same classification.
5Often also referred to as broken cells.
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Fig.6 Different types of sub-cells (left) and a cut cell with its local coordinate system & = [£, n]” (right)

all fictitious domain methods), the main challenge is shifted to the implementation of the
BCs and to the computation of the cell matrices of cut cells [31,33]. While an exhaustive
introduction was given regarding the computation of cell matrices in “Introduction”, we
only briefly mention the enforcement of the BCs in the FCM and refer the reader to the
pertinent literature.

Inhomogeneous Neumann BCs can be implemented by considering the last term in
Eq. (7), expressing an integral over the part of the boundary 'y C 9€2, located within the
cut cells. A detailed description of the implementation of such BCs for three-dimensional
triangulated surfaces can be found in [32]. On the other hand, homogeneous Neumann
BCs require no special treatment, assuming that the fictitious domain has a material with
zero stiffness.

Methods such as the penalty method, Lagrange multiplier method and Nitsche’s method
can be used to enforce Dirichlet BCs in a weak sense by focusing on finding the stationary
point of the original problem augmented by a constraint potential. Detailed explanations
of these methods can be found in Refs. [4,37,38,96].

Adaptive integration schemes

In “Motivation” section, after discussing the different approaches typically used in the
fictitious domain concept for computing discontinuous integrands, the benefits of the
AIS compared to the other methods were stated. In this section, the AIS is studied in
greater detail (“Traditional adaptive integration scheme (AIS)” section), then, the C-AIS
approach is proposed and investigated with regard to the reduction of the computational
costs compared to the AIS (“Compressed adaptive integration scheme (C-AIS)” section).
Finally, in “Combination with other approaches” section, the performance of the C-AIS
is further enhanced by combining it with other methods discussed in the literature.

Traditional adaptive integration scheme (AIS)

The computation of cell-matrices of the broken cells is challenging, since it involves dis-
continuous integrands, where a strong discontinuity is introduced by the indicator func-
tion o (“Review of numerical integration methods: discontinuous integrands” section). At
this point we recall the general form of such discontinuous integrals given in Eq. (1), while
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Fig. 7 QTD of the individual cell highlighted in Fig. 6 for three different refinement levels k = 1,3, 5

a specific example in form of the cell stiffness matrix is given in Eq. (9). Since the aim of
this work is the improvement of the computational speed of the AIS, let us briefly outline
its procedure. In the traditional AIS [32], the LIM (see “Local integration mesh” section)
is created in two-dimensional cases via a quadtree-decomposition (QTD), which is based
on the recursive sub-division of the cut sub-cells in four equal sized quadrants. This pro-
cedure continues until a refinement level k defined by the user is reached. In the end, the
QTD produces a non-uniform integration mesh, consisting of quadratic sub-cells, with
decreased size and increased density in the vicinity of the discontinuity (Fig. 7) [78,97].
Similar to the classification of cells, the resulting sub-cells as well are classified as physical
(dark grey), fictitious (light grey) and cut/broken (yellow). At this point we emphasize
again, that the created mesh serves integration purposes only and it does not introduce
new DOFs to the global system. The equivalent three-dimensional version of the QTD is
the octree-decomposition (OTD), during which every cut sub-cell divides into eight equal
sized cube-shaped octants.

Now, in terms of the stiffness matrix K, the AIS being based on an LIM (“Local
integration mesh” section), is computed according to Eq. (3) over the ng sub-cells as

follows
Hsc

K© =" K, 11)
sc=1

¢,sc)

where the stiffness matrix K“*) of a particular sub-cell sc in a given cell ¢ is

11

K = [ [ B7(60) a6 B0 det(7()) det(7(,) drds (12)
—-1-1 const. const.

Note that the above integral is computed in the local coordinates r = [r, s]T of the sub-
cells, hence the integrand in Eq. (9) is extended by the term det(J 552 g)’ where J (:2 £ is the
Jacobian of the geometry mapping § = Q,_,¢(r), defining the position of a sub-cell in §
(see Fig. 8) [32]. Again, due to the simple shape of the sub-cells,® similar to Eq. (10), the
mapping is linear and has a constant Jacobian. In Eq. (13), &; and n; refer to the lower left
corner of a given sub-cell, while /¢ and /4, are its height and width measured in the cell

(Fig. 8).
_ _ |5 +1/20 + )k T 1|k o0
§=Q,_¢r)= |:771 L1201 +s)h,,:| — Jog =grad’ [Q,_¢(r)] = > |:0 hni|
(13)

6 Although not all sub-cells are of the same size, they are all quadratic.
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Fig. 8 lllustration of the basic idea of the AlS: The numerical integration of each sub-cells is executed in the
local r-s-coordinate system, where the integrand is evaluated at all IPs and the result is scaled based on the
a-value obtained from Eq. (6)

In the AIS, the integration over the individual sub-cells is computed via Gaussian quadra-
ture, as depicted in Fig. 8, where the values of the integrand at the IPs in the physical and
fictitious domains are scaled by « according to Eq. (6). The resolution of the mesh and
therefore the accuracy of the integration is determined by the refinement level k. Due to
o being constant within the physical and fictitious sub-cells, applying Gaussian quadra-
ture rules to the sub-cells for computing Eq. (12) yields exact results, assuming B CB
is a polynomial function. However, the application of Gaussian quadrature rules to the
cut cells results in significant errors as it is applied to non-polynomial functions, in this
case discontinuous functions. Since the boundary in the cut sub-cells is captured by the
IPs, the integration error can be decreased when using sufficiently small sub-cells and/or a
high-order Gaussian quadrature rule [77]. While using the first approach the total number
of IPs increases exponentially with O(2X), the latter method yields a quadratic increase
(’)(nﬁir), where ng;, refers to the number of IPs in the & - and n-directions for each sub-cell.
Note that despite these challenges it has been mathematically shown that if the integra-
tion error is below the discretization error, i.e., the discretization error dominates the
overall numerical error, the theoretical optimal convergence known from the FEM is also
attained in the FCM [10].

The main advantage of the AIS lies in its simplicity and robustness. While the former
attribute enables a straightforward implementation, the latter one results from its capa-
bility of handling any kind of geometry representation by requiring inside-outside tests’
only. If two points in the same cell belonging to two different domains are found, the
cell must be cut. Its weaknesses lie in its rather poor boundary approximation and in the
exponentially increasing rate of n. for incrementally increasing k. Thus, not only the time
required by the QTD grows exponentially, but also the number of the IPs when integrating
over the sub-cells, leading to extreme computation costs for the AIS [40,52,57].

Compressed adaptive integration scheme (C-AIS)

At the end of “Traditional adaptive integration scheme (AIS)” section, we stated the
drawbacks of the AIS. In order to reduce the computational effort needed for an accurate
numerical integration, different approaches have been developed [38,40,45,83,84], which
aim at the reduction of the IPs during the AIS. In this section we present a new approach,

"The term inside-outside test refers to a procedure that is capable of determining whether a given point is located in
the interior (inside) or exterior (outside) of the physical domain.
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Fig.9 Exemplary cut cell (a) and the resulting sets of integration sub-cells when a QTD (b) or the IBR
algorithm (c) are applied. Note that the local coordinate systems & are not depicted in the sub-figures for the
sake of clarity. For more details concerning the different compression techniques, please consult
“Compression techniques” section

the compressed adaptive integration scheme (C-AIS), which seeks the reduction of the
IPs by applying image-compression techniques on the set of ns sub-cells § = {S;}/*
resulting from the QTD. An example of a cut cell as well as its QTD are depicted in
Fig. 9a, b, respectively. The compression itself is realized as an additional step being
executed after the QTD, resulting in a new set of non-overlapping rectangular sub-cells
R = {Rj}:’il, where nr < ng, as depicted in Fig. 9c. This also implies, that the QTD is still
required. Finally, the integration itself is then carried out over R via Gaussian quadrature,
analogous to the standard AIS, while maintaining the same accuracy. Consequently, the
compression step can be straightforwardly implemented as an intermediate step between
the QTD and the actual numerical integration, without the need for major modifications
in the already existing codes. Note that the C-AIS is only concerned with the number
and shape of the sub-cells, and it is independent of the family of shape functions or nodal
distributions that are employed for the approximation of the solution field.

Shape of the sub-cells

Due to the rectangular shape of the sub-cells in R (see for example Fig. 9c), the deter-
minant of the Jacobian matrix J, ¢ of the geometry mapping Q,_, ¢ is still constant (see
Eq. (13) for he # hy), enabling a simple and exact integration over R via Gaussian quadra-
ture, if a polynomial Ansatz space is used. Note that an exact integration is also possible
for sub-cells with curved edges, if and only if the mapping Q,_, ¢ is polynomial—otherwise
an exact numerical integration is not possible. Nonetheless curved sub-cells require an
increased number of IPs for the numerical integration, while for square- and rectangular-
shaped sub-cells no additional IPs are needed. Furthermore, it is well known, that among
other parameters, the aspect ratio of two-dimensional FEs has an effect on the conver-
gence properties of the solution [3]. While allowing elongated rectangular sub-cells, they
can have extreme aspect ratios (see for example Fig. 9¢c), we would like to emphasize,
that the created sub-cells serve for integration purposes only and regardless of the aspect
ratios, the parent cell, which holds actual DOFs, is not affected in its shape. In conclusion,
when using rectangular sub-cells, an exact integration via Gaussian quadrature is still
possible, without the need for any additional IPs and without affecting the convergence
of the solution.
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Accuracy
The compression should only affect the speed of the AIS but not its accuracy and therefore,
the equality regarding the integral value I over a given cell

=3 f a(x®)PE) dA = Y / a(x(&)P(&) dA4, (14)
=l(s;) I=L(R;)

has to be demanded. The above equation holds, if (i) a lossless compression is used and
if (ii) the compression targets only the physical and fictitious sub-cells, over which the
integrand is constant, while the cut sub-cells are left unchanged. This can be explained by
the following reasoning. The boundary is resolved by the IPs in the cut sub-cells, i.e., the
IPs are partly located in the physical domain, while the rest is distributed in the fictitious
one. Although the Gaussian quadrature is not suitable at all for the discontinuous integrals
over the cut sub-cells, by using small enough sub-cells along the boundary the problematic
area can be restricted to a negligible domain and the error can be kept below a certain
threshold as already described in Sec. 5.1. The smaller the cut sub-cells along the boundary
and the denser the distributed IPs are, the smaller the error becomes. Since for an accurate
integration it is crucial to have enough IPs capturing the discontinuity consequently, it is
not recommended to compress the cut sub-cells.

Image-compression techniques

Compressing the sub-cells in S (see for example Fig. 10a) by merging adjacent sub-cells
into larger blocks is a challenging task due to the non-uniform sizes of the sub-cells.
Instead, the set S will be transformed by the function 7 to an equivalent pixel-image
Z, where the individual pixels covered by the fictitious, physical and cut sub-cells are
assigned by the pixel-values 0, 1 und 2, respectively (see Fig. 10b). This and the following
steps of the proposed approach are sketched in the flowchart in Fig. 11. There, also the used
compression techniques are listed (RLE, IBR and MRP) that are discussed in “Compression
techniques” section. Note that the QTD is not only a space partitioning method, but also
an image-compression technique [98], thus, & can be seen as a compressed version of Z
and applying T means no more, than reconstructing 1 from its compressed state. Clearly,
T can be performed with negligible effort. The image should not contain more information
than necessary and therefore its resolution 2X x 2% is defined by the refinement level k of
the QTD. Thus, the smallest sub-cell in & corresponds to a single pixel in Z. Once 7 is
created, other compression techniques can be applied to the pixel-regions defined by the
values 1 and 0. Then, the results are transformed from the pixel-space back to the local-
space of the cell by the function 71, in order to obtain the position of the sub-cells R in
&. Since both the QTD and the used compression methods represent lossless compression
techniques, the pixel-image can be restored and recompressed without any error, which
is a major requirement for Eq. (14) to hold.

It is important to emphasize, that since we are dealing with image-compression, most
likely all methods would significantly reduce the number of pixels in the image. However,
our goal is not only to compress the image, but to apply a compression that outperforms
the QTD in terms of the number of the resulting sub-cells.
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a QTD (k = 5) of an exemplary cell with a discontinuity b Pixel image corresponding to Fig. 10a.
of complex topology.

Fig. 10 QTD of a cut cell and corresponding pixel-image. The pixel values 0, 1 and 2 denote physical,
fictitious and cut sub-cells, respectively. The image consist of 25 x 2¥ pixels, where k is the refinement level of
the QTD (k = 5)
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Fig. 11 Flowchart of the compression techniques applied to the integration sub-cells in the fictitious
domain approach. Depending on the different image-compression techniques such as run-length encoding
(RLE), image-block representation (IBR) and minimum rectangular partition (MPR), auxiliary procedures
including a transformation (T) from the local- to the pixel-space and a boundary tracing (BT) procedure need
to be introduced. The methods that are used for a transition from the local- to the pixel-space and vice versa
are indicated at the boundary marking the pixel-space. Note that the QTD is also essentially an
image-compression technique, thus it can operate both in the pixel- and local-space. Therefore, it is also
located on the boundary

Alternative solutions for deriving the pixel-image
The question naturally arises, whether the need for the costly QTD could be eliminated by
either (i) directly creating the pixel-image from the topology of the given cut cell or—which
would be even better—(ii) by utilizing the other compression techniques for creating the
local mesh directly from the topology of the cut cell, thus additionally eliminating the
steps of the reconstruction as well as of the compression.

The first option is possible when we distribute 2% x 2% equal-sized sub-cells in an
isotropic manner in the cell and evaluate whether they belong to the physical, fictitious
or cut domains. Note that in this case k is no longer the refinement level, only an integer
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defining the side-length of all the sub-cells by = 2/(2X). In this case, there is a one-to-one
correspondence between the sub-cells and the pixels of the image. Matter of fact, such
a local mesh was already proposed by Parvizian et al. [31], however they have directly
used the mesh for the numerical integration by the trapezoidal rule. According to our
tests on implicitly defined geometries, it is much more time-efficient to use the QTD
rather than an isotropic distribution of sub-cells, as it increases the density of sub-cells
only along the boundary but not in the entire cell. Consequently, less time is spent on
determining the status of the sub-cells, i.e., whether they are physical, fictitious or cut.
Therefore, even if the QTD requires an additional step of reconstructing the pixel-image
using T, it is still a computationally more efficient solution. Constructing a bounding box
around the discontinuity shrinks the domain in which the sub-cells (pixels) have to be
checked. However, the resulting reduction in computational effort is heavily dependent
on the topology of the discontinuity. The method based on the use isotropic sub-cells only
becomes efficient when the inside-outside tests have to be ran on a small portion of the
sub-cells, which is for example the case when the boundary 9<2 is defined by straight lines
or by planar surfaces. Note that one may modify the QTD in such a way, that it already
yields 7 instead of S. However, in this case, the transformation T is not eliminated, it is
just integrated in the QTD.

Unfortunately there is no record or evidence for the second option to be computationally
cheaper or even possible. Although other compression techniques such as the RLE, the IBR
and the MRP (“Compression techniques” section) generally yield a higher compression
than the QTD, they are rather unsuitable for the partitioning of the cell and for iteratively
capturing the boundary.

In conclusion, for the construction of the initial mesh, the QTD seems to be the best
candidate combining the abilities of space-partitioning and data-compression. While the
first property is required for the creation of an initial local mesh independent from the
geometry description of the boundary and from the connectivity of the physical and
fictitious domains in the cell, the second feature enables the reconstruction of the pixel-
image. Note that having an initial LIM, where the sub-cells can take any position and form
within the cell, could not be transformed to a corresponding pixel-image 7 and would
make the process of compressing the sub-cells significantly harder.

Performance

We have to stress again that the main goal is not only to achieve a high compression of
Z, but to outperform the QTD in terms of the number IPs. Therefore, it is reasonable to
evaluate the results with respect to the QTD. In the following, let us use the compression
ratio of the number of the IPs

A = np(R)/np(S) > 0, (15)

where the function njp(-) expresses the number of IPs for a given set of sub-cells, being
deployed for the numerical integration. In that sense, the smaller the ratio A (for A < 1),
the better the compression, while A > 1 indicates an undesired scenario, where the
number IPs is increased compared the QTD (see “Drawback of the RLE compression
technique” section for such a scenario). In the framework of the FCM combined with
the AIS, the complexity of 7 depends (i) on the topological complexity of the physical
boundary 92 within a given cell and (ii) on the refinement level k of the QTD. Clearly,
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if the adjacent pixels are likely to have different values (= highly complex boundary) or
if the image consists of a few pixels only (= low k), A is less significant. Note that in
the context of the FCM, an accurate and efficient solution can only be achieved if the
discretization and integration errors are balanced. This generally requires FCs that are
sufficiently small such that the boundary variation within one cell is not too complex
(the smooth shape functions need to be capable of capturing the solution fields) and
additionally the refinement level k has to be high enough to ensure an accurate numerical
integration. Therefore, the number of integration sub-cells is typically rather high such
that compression algorithms can produce meaningful results, i.e., a significantly decreased
number of integration domains. Similar to A, let us define the time compression ratio

T = t(C-AIS) /t(AIS), (16)

where the function #(-) = frm(-) + £1(-) expresses the total time needed for the chosen
algorithm, including both the time for creating the local mesh 1 1m(-) as well as the time
required for the integration #(-) over the set of resulting sub-cells. Both the C-AIS and
AIS are based on a QTD requiring tqQTp time, however, the C-AIS involves an additional
step of compression requiring tc time, i.e., for the C-AIS f11m = tqrp + tc. Thus, it is
obvious, that f1m(C-ALS) > t1m(AILS). On the other hand, due to the compression a
reduced integration time £;(R) < t1(S) is obtained. It is clear, that as long as the following
inequality holds tc < #(S) — #1(R), a desired overall time compression ratio T < 1 can
be achieved. An undesired scenario is indicated by t > 1, i.e., the computational time
invested in the compression is greater than the time saved when integrating over the
compressed sub-cells.

Compression techniques

Run-length encoding (RLE)

The RLE (Fig. 12a) is one of the oldest and most straightforward approaches among the
traditional image-compression techniques. It is based on scanning the pixel-image and
replacing constant valued pixel bands of unit width by their start- and end-pixels as well as
by the pixel-value being constant throughout the band. Considering image-compression,
one may use different scanning schemes, such as row-wise, columns-wise or zig-zag. In
any case, the algorithm checks every single pixel in Z and thus its time complexity is
proportional to O (1), where the resolution of the image is # x 1 pixels. Obviously, a low
complexity of an image results in an improved compression [98,99]. In the framework of
the FCM, the row- and column-wise scanning directions are of main concern, resulting in
vertical or horizontal elongated rectangular shaped sub-cells R after the transformation
T~ The implemented code performs both a row- and column-wise RLE compression
of 7 and chooses the one with the fewer number of resulting rectangles. Since the RLE
performs pixel-checking operations only, it can easily compress images with multiply
connected regions, i.e., domains that may enclose hole-regions (see for example physical
pixels in Fig. 10b) and/or consist of several regions isolated from each other.

Image block representation (IBR)

The IBR (Fig. 12b) is a very simple yet powerful extension of the RLE. It is based on a
primary RLE, which is then followed by merging adjacent rectangles into larger blocks, if
they have the same start and end positions. In case of a column-wise RLE, a horizontal
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Fig. 12 Sub-cells resulting from the different compression techniques, when applied to the example
depicted in Fig. 9b. Since the cut sub-cells (yellow) are not compressed, they are identical for all compression
techniques

merging procedure is invoked during the IBR, while considering a row-wise RLE, a vertical
merging technique is applied. Whether the results of the horizontal- or the row-wise
RLE are passed on to the IBR, depends on which one of the both approaches yields less
rectangular domains. As the RLE, the IBR is based solely on pixel checking operations
and can be performed with marginal additional effort compared to the RLE, however, it
yields significantly better results [98,100]. Furthermore, similar to the RLE, the IBR can
easily handle multiply connected regions. As outlined in “Comparison” section, while the
condition nr < n is not always fulfilled in certain cases for the RLE, the IBR is not prone
to such artifacts and reliably yields a compression rate of the IPs A below 1.

Minimal rectangular partition (MRP)

The methods presented in the previous two paragraphs significantly reduce the num-
ber of sub-cells and in most cases they perform considerably better than the QTD alone.
Nevertheless, the fewest number of sub-cells results from the MRP, which guarantees a
minimal partitioning into a set of non-overlapping rectangles for two-dimensional recti-
linear polygons. Such a minimal partitioning can be achieved by translating the problem
into the graph-theoretic realm and solving it on an equivalent bipartite graph, hence in
some papers it is also referred to as a graph-based decomposition (GBD) [98,101]. In the
following, we stick to the term MRP, as it better articulates the focus of this method. Find-
ing the minimum partition is typically an optimization problem and as such it comes at a
cost. The MRP algorithm generally has a much higher complexity and slower performance
compared to the simple RLE and IBR algorithms [98]. Since for the MRP a rectilinear input
polygon is needed, the procedure starts with a boundary tracing [102—104] of the physical
and fictitious pixel domains, realizing the transition from the pixel-space to the local-
space, where then the MRP can be performed (Fig. 11). Since the MRP performs the
partition in the geometric space, multiply connected regions require an even more com-
plex algorithm. Since a detailed introduction to the MRP is beyond the scope of this work,
for general information about the method we recommend Refs. [98,101,105], while for
its application to the compression of integration sub-cells in the framework of the FCM
we refer to Pet6 et al. [106]. For further reading about the minimal partitioning/covering
problems, the interested reader is referred to Refs. [107-111]. Regarding graph-theoretic
tools, we recommend Ref. [112].
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Fig. 13 Comparison of the performance and time requirements of the RLE, IBR and MRP algorithms for a

given example

Comparison

A visual comparison of R obtained by the different methods when applied to Fig 10a is
depicted in Fig. 12. A further investigation of the compression techniques regarding their
performance as a function of the refinement level k is shown in Fig. 13. The domain for
which a local integration mesh should be created is depicted in Fig. 13a, where Qg is
defined by the implicit function given in Eq. (17).

\/(x — 152+ (y — 1.5)2 < [0.2 - sin(6¢ + 7/2) + 0,6]*1,

where ¢ =atan2(y — 1.5,x — 1.5) (17)

Figure 13b, depicts the A(k)-curves of the examined methods, which all converge to
stationary values, expressing the best compression reachable by the different methods.
The curves are in a good agreement with Fig. 12 as well, although the RLE shows somewhat
different results for the two different domains, due to the phenomenon discussed later in
“Drawback of the RLE compression technique” section. Despite the fact, that the MRP
yields a minimal partition, it comes with the cost that it requires approximately one
order of magnitude more time for the compression tc than the RLE and IBR, as shown
in Fig. 13c. Nevertheless, tc of the different methods for reasonable refinement levels
(k > 5) is negligible compared to tqrp, which is unconditionally included in the C-AIS
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Fig. 14 Artifact of the performance of the RLE algorithm. For this setting the RLE method performs worse
than the QTD, i.e, the number of integration sub-cells is increased, while the IBR algorithm is not adversely
affected

for all cases. This can be also seen in Fig. 13d, where the dominance of tqTp is clear due
to the convergence of the curves to the value 1. This is to say, the compression increases
the time for the construction of the LIM only by a negligible amount.

The difference of the IBR and MRP methods becomes more present in case of highly
complex domains. However, for reasonable discretizations in the context of the FCM
the topology of discontinuity in the cut cells is less complex and typically it intersects
only 2 edges of the cell. In such cases, the IBR and MRP both yield very similar or even
identical results [98]. Furthermore, the difference in A, if present, vanishes for almost all
cases, if the IBR and MRP compression techniques are combined with other methods
also aiming at a reduction of the IPs. However, it is important to note, that the MRP is
based on a complex algorithm that is significantly more cumbersome to implement and
time-consuming to execute than the one of the IBR. Since the superiority of the IBR over
the RLE is also clearly demonstrated (see “Drawback of the RLE compression technique”
section), we recommend the IBR approach for compressing the sub-cells S resulting from
the QTD.

Drawback of the RLE compression technique

Finally, we discuss a special case, where instead of reducing the number of sub-cells of the
QTD, the RLE actually increases their number. This is a great example for illustrating that
it is not enough to compress the pixel-image, but the resulting rectangular sub-cells R
should definitely have a lower cardinality® than the original set of sub-cells S of the QTD.
Figure 14a depicts the QTD with k = 4 of a cell being cut in the vicinity of its top-right
corner, resulting in a significant difference between the areas of the physical and fictitious
domains within the cell. The corresponding pixel-image is shown in Fig. 14b. Although
the row-wise RLE compression of the image significantly reduces the number of pixels,
with its |R| = 20 sub-cells compared to the QTD having only |S| = 13 sub-cells,” it
results in an unacceptable value of A = 20/13 = 1.538 > 1. Applying the IBR to the same
problem avoids this negative artifact and yields a reliable compression with A < 1. Taking
(i) this robustness of the IBR into account, (ii) its generally better compression (Fig. 13b)
as well as (iii) its low additional time costs (Fig. 13c, d), it is definitely superior to the RLE.

8In mathematics, the word cardinality refers to the number of elements in a given set.
°In the remainder of this work, we use | - | to express the cardinality of a given input set.



Petd et al. Adv. Model. and Simul. in Eng. 5ci.(2020)7:21 Page 23 of 42

Combination with other approaches

Several approaches have been published in the wide body of literature aiming at the reduc-
tion of the IPs during the AIS. It is straightforwardly possible to combine the compression
techniques outlined above with these already existing approaches, in order to achieve an
even better reduction of the IPs.

Combination with the reduction of fictitious integration points approach

In order to decrease the number of IPs in the numerical integration Abedian et al. [83,84]
propose an approach consisting of two key features. The first feature is based on the idea
of decreasing the number of integration points (DIP),'°, which exploits the fact, that the
integrand over the smaller sub-cells can be seen as a lower order function for which a
lower order Gaussian quadrature rule suffices. In other words, the number of IPs per sub-
cell is not only chosen depending on the polynomial degree of the shape functions but
also on the size of the sub-cell compared to the original cell. The second feature of their
approach, which we directly apply to the integration over the compressed sub-cells R, is
based on the reduction of the fictitious integration points (RFIP)!°. Thus, the integration
over a cut cell is executed in two distinct steps:

1. Integrating over the physical and cut sub-cells, while taking only the physical IPs in
the cut sub-cells into account (see Fig. 15a).

2. The contribution of the fictitious domain needs to be considered, in order to avoid
adverse effects resulting from ill-conditioning of the system matrices. To this end, a
set of IPs is distributed according to the conventional Gaussian quadrature rule in the
original cell () and only the points located in the fictitious domain are considered
during the numerical integration (see Fig. 15b).

As a result of this algorithm, fictitious sub-cells can be discarded and hence, only the
physical sub-cells are taken into account during the compression, slightly reducing the
time fc. In the remainder of this work, if the RFIP extension is used, it is indicated by an
asterix [J*. Although not discussed in this contribution, the RFIP can be easily employed
in conjunction with the RLE and MRP techniques as well [106].

Combination with the B-FCM

The B-FCM approach by Abedian et al. [45] extends the original FCM by Boolean oper-
ations for an improved integration efficiency. Although the B-FCM yields exact results
for simple regions for which quadrature formulae exist, the practical use of it lies in its
combination with a spacetree-decomposition, in order to handle cut cells with arbitrary
topology. In this case, the B-FCM yields exactly the same results as the QTD-based FCM,
however, with significantly fewer IPs. In the following, we focus on this latter approach
of the B-FCM. The construction of the local mesh is governed by additional features!! in
such a way, that the overall IP-count is reduced. For achieving this, generally overlapping

191n the original contribution by Abedian et al. [83,84] these two features have not been given explicit names. However,

for the sake of convenience, we have introduced the abbreviations DIP and RFIP to refer to these approaches.
1See the mentioned three features on page 7 (883) in [45]. The features 1 and 2 represent conditions (C1 and C2) that

has to be evaluated for every parent sub-cell, while the third feature is the already introduced RFIP method. Note that
the notations C1, C2 and RFIP do not appear in the original text, it is only our interpretation for referring to those
features.
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a The IPs in the physical domain are scaled accord-a b For computing the contribution of Q(('i(;)t we dis-
ing to Eq. (6), while the ones in the fictitious domain  tribute n x n IPs in Q(° and consider only the ones
are completely ignored. lying in the fictitious domain (filled black circles) ac-

cording to Eq. (6).

Fig. 15 Combination of the RFIP approach with the IBR method (IBR*). This example is based on the
compressed set of sub-cells R depicted in Fig. 12b where a 4 x 4-point Gaussian quadrature rule is assumed

sub-cells are created, whose Boolean meta information by the labels g = 1 and ag = —1
are utilized during numerical integration. For more in depth introduction please see the
original work [45]. Throughout the current contribution we refer to such a way of con-
structing the LIM as B-QTD, while the term B-FCM is used for the entire simulation,
including both the B-QTD and the corresponding numerical integration. The set of sub-
cells resulting from the B-QTD is denoted by B. Due to the fact that the B-FCM yields
the same results as the FCM but with a reduced number of IPs, the B-FCM can be directly
compared in terms of A and t to the C-AlIS, although its not based on any compression
technique.

It turns out, that the B-FCM performs equally well compared to the C-AIS, however, its
performance can be further improved when combined with the compression techniques.
Before outlining the compression in the B-FCM, let us briefly recall the basic ideas of
the B-QTD based on a simple example depicted in Fig. 16, where kmax = 5 is used. On
the levels k < kmax we use the green and red colors to depict the positive and negative
sub-cells, corresponding to the labels ap = 1 and wp = —1, respectively. Let us denote the
sets of these sub-cells by B;:u and B ;. Note that these types of sub-cells are all cut by the
boundary, however, during the numerical integration, they will be treated as intact ones
free of any discontinuity. The cut sub-cells, for which the discontinuity will be taken into
account during the numerical integration, are located at the final level k = kmax of the
B-QTD. Here, the blue color represents an integration with &« = 1 in the physical domain,

while the orange color means an integration with « = —1 in the fictitious domain. In both

+
cut

B_,. respectively. Note that the set of cut sub-cells B, U B_,, of the B-QTD is exactly

cut

the same as the one of the QTD, however, in case of the B-QTD, the domain of interest of
the integration as well as the «-values of the IPs vary from sub-cell to sub-cell. Generally,

cases, the IPs in the other domain are ignored. For these sets we use the labels B_, and
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. Integr. in the entire sub-cell with o = 1

. Integr. in the entire sub-cell with o0 = -1

. Integr. in the phys. domain with oo = 1 D Integr. in the fict. domain o = -1

k=3 k=4 k=5

Fig. 16 lllustration of the integration sub-cells resulting from the B-QTD. On each refinement level a certain
number of sub-cells is created and different labels are assigned indicated by the color-coding: The sets of
green (Bft”) and red sub-cells (Bf_u”) represent integration domains where the discontinuity is not taken into
account. The blue (BC*UI) and orange (Bg,,) sub-cells are located at k = kmax = 5 exclusively, and they denote
integration domains, where the discontinuity is actually taken into account, but only IPs in the physical (blue)
or fictitious (orange) domain are considered

it is clear that

B=5B,U B, U Bl UB,

cut cut> (18)
and that none of these sets have any sub-cells in common. For the color-coding in the
above equation, please see Fig. 16. Finally, note that the B-FCM is constructed in such
way, that for an integration over a given cell that does not lead to an ill-conditioned
stiffness matrix, the contribution of the fictitious domain in the cell still has to be taken
into account. This is realized in the B-FCM by utilizing the RFIP approach, discussed in
“Combination with the reduction of fictitious integration points approach” section.

Compression steps

Now, a compression can be performed on B;:u and By, since they both represent sub-
domains with continuous integrands.12 On the other hand, just like before, we do not
compress the cut sub-cells, in order to preserve the accuracy of the numerical integration.
Compressing the sub-cells on every refinement level is not reasonable or sometimes not
even possible, since they often do not form coherent regions (see for example Figs. 16 and
18). Instead, we execute the followings steps, also depicted Fig. 17:

12Recall, in these sub-cells the discontinuity is not taken into account.
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Fig. 17 Procedure of compressing the sub-cells on the layers k = 0, 1, ..., kmax — 1 resulting from the B-QTD.
The layers are transformed to the corresponding pixel-images Zo, Z1, ..., Zx,,,—1, all having the same
resolution 2kmex=1 5 2kmax=T_After the final pixel image is created, the procedure is identical to the one
depicted in Fig. 11

1. Transformation of the individual layers ko, k1, ..., kmax — 1 by T to the pixel-images
To, 11, oer Ii,, —1- While the sub-cells of B;;” mark pixel regions with the value 1,
the sub-cells of By result in regions with the value —1. It is important, that each
image has the same resolution, which should be defined by the size of the smallest
sub-cell participating in the compression, just as before. Consequently, the images
should have a resolution of 2kmax—1 x 2kmax—1 pixels,

2. All images are superimposed and the overlaying pixels-values (1,0, —1) are added
resulting in the image 7 = Zf:g"_l Z;. Since (i) no two sub-cells of the same kind
can be directly located above each other and (ii) a negative sub-cell can be created
only if there is a positive sub-cell already located directly beneath it, the number of
positive sub-cells minus the number of negative sub-cells over an arbitrary point is
always either 1 or 0. Consequently, the image 7 consists of pixels with the values 1
and 0 only.

3. The discussed algorithms can be applied to Z, while compressing only the pixel
region(s) indicated by the value 1. Since the B-FCM also utilizes the RFIP approach,
an additional integration region is introduced in the form of the entire cell, in which
we integrate over the fictitious domain with @ << 1 in order to avoid the possible
ill-conditioning of the system matrices.

An example for compressing the sub-cells of the B-QTD with kpax = 6 is shown
in Fig. 18, where for the physical domain a superellipse-shaped region is chosen. The
corresponding implicit function defining this domain is given by Eq. (19) [41].

26 26
2 —
[(’H;y)] +[(y9x)} <1 (19)

Due to the compression, for which in the case of the current example the IBR was used,

the originally 60 sub-cells on the levels k < kmax have been significantly reduced to 26
and the overall sub-cell-count has decreased from 273 to 239. As a visualization of the
flowchart in Fig. 17, the images created in case of the current example on the refinement
levels as well as their sum, are depicted in Fig. 19. Note that for the current case there
are no sub-cells created at the levels K = 0 and 1. Therefore, only the layers k = 2 — 5
are participating in the compression, resulting in the images 75, 73, Z4, and Z5, while Z
and Z; are empty images. One can see, that the final image Z (Fig. 19¢) on which the
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a B-QTD (top view) b B-QTD (3D view) ¢ B-QTD+IBR (3D view)

Fig. 18 Compression of the sub-cells resulting from the B-QTD, based on the procedure depicted in Fig. 17.
For the given example the IBR compression technique was used

a I, b I3 ¢ Iy d Is e I=0 T

Fig. 19 Creating the resulting image Z, on which the compression techniques can be applied. The current
figure is based on the example depicted in Fig. 18 and on the procedure illustrated by the flowchart in Fig. 17.
In the current case, all images have a resolution of 2° x 2° of pixels, meaning, that in Zs the single squares
correspond to individual pixels. While the green and red pixels mark pixel values of 1 and —1, respectively, the
gray background represents pixels with the value 0

compression algorithms can be applied, indeed contains pixels with values 1 (green) and
0 (grey) exclusively.

Comparison

Sticking to the example presented in Fig. 18, we plot the A-values for different refine-
ment levels while comparing the QTD-based IBR*, the B-QTD!? and the B-QTD + IBR!?
approaches in Fig. 20a. According to the results, it is clear, that all methods yield a sig-
nificant compression by reducing the number of the IPs resulting from the plain QTD
to 15-30%. The B-QTD actually outperforms the QTD + IBR* approach, however, its
efficiency can be further improved, when combined with the IBR.

Although the QTD + IBR* (Fig. 20b) and B-QTD + IBR (Fig. 20c¢) yield visually similar
results, they are not the same: The B-QTD + IBR results in a smaller number of sub-cells
and while in Fig. 20b the physical sub-cells (gray) do not overlap with the cut sub-cells
(yellow), in case of Fig. 20c, the positive sub-cells (dark green) are covered by the negative
cut sub-cells (red). Furthermore, while in case of the QTD + IBR* the domain of interest
is the same for all cut sub-cells during the numerical integration, for the cut sub-cells in

13Note that since the B-QTD already incorporates the RFIP approach, indicating this with the asterix [(J* and writing
B-QTD* and B-QTD + IBR* is therefore redundant.
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—o— A(QTD+IBR")
—e— A(B-QTD)
—+— \(B-QTD+IBR)

1 2 3 4 5 6 7 8 9 10 ) -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

k 3 €
a  A-values for different refinement b QTD+IBR" (k = 6) with a total ¢ B-QTD+IBR (k = 6) with a total
levels while using 7 x 7 IPs per sub-cell. of 52 physical and 212 cut sub-cells  of 26 positive and 212 cut sub-cells

Fig.20 Comparison of the different reduction techniques the for the example of the superellipse shaped
physical domain defined by Eq. (19)

Fig. 20c, the domain of interest and the sign of the integration changes, depending on
which is more effective in a computational sense, resulting in B_,, and B_,,.

Although the B-QTD + IBR approach generally yields fewer IPs, it has two disadvantages
when compared to the QTD: (i) performing a QTD is computationally less expensive than
the B-QTD, since the latter one involves the checking of extra conditions when a parent
sub-cell produces four children and (ii) the QTD has a somewhat simpler algorithm, being
easier to implement and is already widely used in the field of computational mechanics.
Therefore, the best option would be to perform a traditional QTD and transform S by an
extra step to B, i.e., Fig. 20b—c. However, according to our tests, such a direct transition
is not possible.

Numerical examples

In this section, we further investigate the approaches IBR*, B-FCM and B-FCM + IBR, that
proved to be the most efficient ones, while fully including them into the FCM framework
for the computation of problems in linear elasticity. The simulations are performed using
our in-house SCM-code written in MATLAB using Lagrangian shape functions based on
the Gauss—Lobatto—Legendre (GLL) nodal distribution [67,76,86]. In our investigations,
we will vary the cell size, the refinement level k as well as the polynomial degree p =
pe = py. For the integration over the (sub-)cells (p 4+ 1) x (p + 1) IPs are used based on
a Gauss—Legendre quadrature rule. If the extended domain is square-shaped, we use nc
to define the number of cells both in x- and y-directions, and thus the total number of IPs
grows with O(n2p?2%).

Perforated plate

As a first example, we apply the chosen methods to a statically loaded perforated plate
depicted in Fig. 21, already investigated in the context of the FCM as a benchmark problem
by numerous authors [31,33,39-41,45,77]. The material with a Young’s modulus E =
206.9 GPa and Poisson’s ratio v = 0.29 is assumed to be linear-elastic and isotropic.

Furthermore, the plate is assumed to be in a plane stress state.
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Fig.22 Errorin the energy norm for different settings using the B-FCM + IBR integration approach. Using the
other compression techniques as well as using no compression results in the same depicted curves

Quality of the results
First, we evaluate the quality and reliability of the results obtained when using the three
methods investigated in this section. In Fig. 22, the errors in the energy norm

B(thref, Urer) — Blu, u
||e||E(Qe):\/‘( 0 thret) = Bt )| 0600, (20)

B(uref: uref)

for various input parameters are presented, which should be minimized by the FCM solu-
tion on the energy space E(S2.) over the domain 2. [3,33]. In Eq. (20), u is the displacement
field obtained by the FCM solution and u,.f is the reference solution, obtained by p-FEM
using blending functions [113] for an exact geometry mapping, resulting in a strain energy
of 1/2 - B(tyet, trer) = 0.7021812127 [31]. Besides investigating the global quality of the
results based on ||e||g(q,), we also evaluate the solution based on point-wise values of the
stress-fields oy and oyy along the diagonal AB in Fig. 21, where oy is the von Mises
stress and oyy the stress in the y-direction.
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Fig. 23 Stresses along the diagonal cut-line AB depicted in Fig. 21 for the B-FCM + IBR approach and for the
reference solution. The dashed lines indicate the start and end of the hole along the cut-line. Using the other
compression techniques as well as using no compression results in the same depicted curves

The following observations regarding the results are made: First, the depicted global
(Fig. 22) and local (Fig. 23) results are the same for all three methods. This indicates
that the methods being used indeed only differ in their computational complexities and
costs. Thus, we come to the conclusion, that no compromise has to be made between the
accuracy and computational effort, when choosing one of the introduced compression
techniques. Second, as a verification, the obtained results have been compared to the
literature (see convergence-curves for kK = 3 and k = 7 in Refs. [33,41] and stress-curves
depicted in Refs. [31,45]) and to a scientific code developed at the Technical University
of Munich (FCMLab [114]). In both cases, identical results have been obtained.

Time consumption
Although the investigated methods yield identical solutions, their time requirements need
further investigation. The time spent on the integration ¢; is in direct correlation with A,
since it is influenced by the number of deployed IPs, i.e., for a given number of sub-
cells and IPs, the reduction of #; depends on the performance of the chosen compression
algorithm. In Fig. 24, the A-values regarding the investigated methods are depicted for
different settings in the case of the current example. Similar to what has been depicted in
Fig. 204, it is evident, that the different compression techniques are capable of reaching
different stationary A-values, outlining the highest performance reachable by the com-
pression techniques. The results depicted in Fig. 24 have been computed for p = 10 and
therefore (p + 1) x (p + 1) = 121 IPs are deployed per sub-cell. Please note that using
a lower value of p does not affect the overall trend of the shown curves significantly. If,
however, a low polynomial degree (p = 1, 2) is employed in conjunction with the RFIP
approach, minor deviations might occur due to the fact that only a small number of IPs is
distributed within the cut sub-cell.

Note that performing a compression increases the time spent on setting up the local
integration mesh t11y, leading to a decrease of the positive effect of the reduction in
compression time ¢c. Therefore, for investigating the overall effect of the compression
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Fig. 24 Compression ratio of the IPs A of the investigated methods when applied to the perforated plate
depicted in Fig. 21. For all curves p = 10 was used, resulting in (p 4+ 1) x (p 4+ 1) = 121 IPs per sub-cell

on the integration, we measure the time spent on the cut cells and compute 7 according
to “Performance” section. The corresponding results are depicted in Fig. 25, where in
general, following two domains regarding the compression can be observed:

1. T > 1: For lower polynomial degrees undesired results are obtained, where the
application of the different techniques increases the computation time. This is due
to the fact, that when only a few IPs are distributed, their reduction is less significant
and therefore, the corresponding reduction in #; does not outweigh the increase of
tLim caused by the compression procedure.

2. 1 < l:Increasing p results in higher number of distributed IPs per sub-cell, where the
effect of the compression becomes more evident, resulting in a significant reduction
in the integration time ¢y, i.e., the time saved during the integration outweighs the
time invested in the compression ¢c. The compression ratio t improves exponentially
with p, until the curves reach a stationary value which is specific to the chosen
compression algorithm. Note that the refinement level k has a similar effect on 7
as p, since it also directly influences A, as it was demonstrated in Fig. 24. Therefore,
regardless of p, lower levels of k result in higher stationary values of t.

The transition point 7 = 1, below which actual time-savings occur, is located for all three
methods between p = 3 and p = 4 (Fig. 25). Therefore, for problems where polynomial
degrees p > 4 are used, a successful reduction in the computational time can be safely
expected. Although low refinement levels k may weaken the effect of the reduction, for
obtaining optimal convergence in ||e||g(g,), it is reasonable to avoid poor refinement levels
in the first place. Note that even if different discretizations are used, both the transition
point and the general trend of the 7 curves remains unchanged, as demonstrated in Fig. 26
for the case of the B-FCM + IBR. For the perforated plate, the most significant reduction
was achieved by the B-FCM combined with the IBR (r = 0.169), requiring only 69% the
computational time needed for the B-FCM (t = 0.245).
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Fig. 25 t-Values of the investigated methods. The depicted curves are obtained by a discretization of
nc = 10 of the problem depicted in Fig. 21
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Fig. 26 Time compression ratios t for the B-FCM + IBR method for various combinations of p, k and n¢

Violin-shaped region

As a second example, we investigate the reduction of the computational effort for the
computation of the mode shapes of the violin-shaped domain depicted in Fig 27a. Since
the given problem is a dynamic one, the global EQS presented in Eq. (8) is modified to

MU+ KU =F, (21)

where M is the global mass matrix and {7 is the second derivative of the displacement vec-
tor with respect to the time, corresponding to the nodal accelerations. The mass matrices
of the individual cells M(©) are computed as

1 1

MO = //a,oNTNdet(],(;ix) dedn, (22)
-1-1
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Fig. 28 Normalized computational time needed for the numerical integration of the cut cells (violin-shaped
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Fig.29 Time compression ratios t for the entire processing step. The times tphys and teyt refer to the times
spent on the computation of the physical and cut cells, while tsoer denotes the time needed for the solution
of the eigenvalue problem. Furthermore, the time tmsc includes miscellaneous tasks, such as the initialization

of the code and assembling of the global matrices, etc
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Fig.30 Disc brake with a diameter of 200 mm and computational mesh used for the FC simulation

where p is the density of the physical material. For obtaining the solution, the general
eigenvalue problem of Eq. (21) has to be solved, while free boundary conditions are
assumed. For comparison, we use the results published by Gravenkamp and Duczek [115].
According to their simulation, we assume a linear isotropic material with the following
properties: E = 12.048 GPa, v = 0.4 and p = 470 kg/m? as well as the plane stress state.
Furthermore, the embedding domain is discretized with 192 x 256 = 49, 152 cells, and
the polynomial degree of the shape function is set to p = 4. For capturing the boundary, a
refinement level of k = 5is used. Using our FC-simulation, with and without compression,
identical results (see Fig. 27b, c) were obtained as the ones given in Ref. [115].

The t-values obtained for this example are depicted in Fig. 28. Considering the chosen
set up of the numerical model, the computational time that is dominantly spent on the
integration of the cut cells was successfully reduced by approximately 30% compared
to the QTD-based AIS, while maintaining the same accuracy. It is already a significant
reduction, even though the applied compression methods are more efficient for higher
polynomial degrees, as discussed in the previous section (see Fig. 25). This is due to the
already mentioned fact, that for lower polynomial degrees fewer IPs are distributed in
each cell and therefore, the effect of the compression is less pronounced. Note that this
phenomenon does not only affect the C-AIS, but also the B-FCM.

For getting a clearer insight regarding the global effect of the compression, let us now
evaluate 7 for the entire processing step composed of the computation and assembly
of the cell matrices as well as the solution of the eigenvalue problem. Since the free
vibrations of the violin are investigated, no Dirichlet BCs are applied to the system. The
corresponding results are depicted in Fig. 29, where also the effect of the pre-computation
of the stiffness and mass matrices of the physical cells, made possible by using a Cartesian
mesh, is included. It is clear, that the pre-computation of the physical cell matrices and the
reduction of the IPs in the cut cells affect exclusively the times Ephys and tcyt, respectively,
the time requirement of the rest of simulation remains unchanged. Although there are
significantly more physical cells (22,863) than cut ones (1245) during the simulation, Z,pys is
only 8.9% of ¢yt This result can be explained by two facts: (i) the cut cells contain a total of
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Fig.31 Visualization of the 6th (a, b) and 15th mode shapes (¢, d) with the eigenfrequencies 16,796 Hz and
26,651 Hz, respectively. The color indicates the magnitude of the normalized displacement vector (Umax = 1)

123,975 sub-cells in the uncompressed state, each of which having the same computational
cost during the numerical integration as a single physical cell and (ii) fcyt includes both
t1, and 1 vm. As a result, the pre-computation improved the overall run-time only by 4%.
Furthermore, although zc, is significantly larger than #,p,ys, for the chosen combination of p
and k, it represents only 53% of the total processing time. Consequently, the approximately
30% reduction in f.y (see Fig. 28) results without pre-computation roughly in 15% and
with pre-computation in approximately 20% reduction of the processing-time, which is
still a significant number. Especially, if the straightforward implementation of the IBR*
and the lossless compression which results in the same accuracy is taken into account.
Comparing the methods to each other, the QTD + IBR* has performed better than the
B-FCM and did just as well as the B-FCM + IBR.

Disc brake
Finally, we investigate the performance of the compression techniques for the modal

analysis of a disc brake depicted in Fig. 30a. The geometry is freely in the internet [116].
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Fig.32 Time compression ratios for the computation of the cell matrices (values inside the bars) and for the
entire processing step (values outside the bars)

The original model is a three-dimensional thin-walled plate, from which the top surface
is extracted for our two-dimensional simulation. For the simulation, a material with a
Young’'s modulus of E = 200 GPa, a Poisson’s ratio of v = 0.29 and density of p = 7800
kg/m? is used. A reference solution of the problem was obtained by the commercial FE-
software Abaqus using an unstructured mesh consisting of 278,610 quadratic quadrilateral
elements,14 resulting in a total of 1,007,147 DOFs. For the FC simulation, the extended
domain was discretized by 80 x 80 = 6400 cells, from which 344 were purely physical
and 2694 are cut (see Fig. 30b). To ensure highly accurate results and thus to compensate
for the rather coarse mesh, a polynomial degree p = 9 and a refinement level k = 8
was used during the simulation, resulting in a total of 503,574 DOFs. Both the computed
eigenfrequencies and the mode shapes were in a good agreement with the reference
solution. A visual comparison of the 6th and 15th mode shapes are depicted in Fig. 31.

The compression ratio 7 for the different approaches is depicted in Fig. 32, where
is evaluated both for the computation of the cut cell matrices (value written within the
bars) and for the total processing (value in parenthesis outside of the bars). Unlike in
case of the previous example, due to the high value of p in combination with a sufficient
refinement level (k > 5), a significant compression was possible, requiring only 20—-30%
of the original time. While in case of the previous example the QTD + IBR* was only
slightly better than the B-FCM, for the current example, the QTD + IBR* (r = 0.209)
was 30% faster than the B-FCM (r = 0.298). Although the B-FCM + IBR has lead to
the same time saving, its implementation is definitely more cumbersome than the one of
the QTD + IBR*. Furthermore, due to the significantly larger number of cut cells than
physical ones (again, unlike in the case of the previous example), the computation of the
cut cells is entirely dominating the processing time. Consequently, reducing fcy has a
major influence on the processing time, so much so, that 7 for the cut cells and t for the
entire processing step are basically equal.

Conclusion

In this contribution, the compressed adaptive integration scheme (C-AIS) was introduced
and investigated, which extends the traditional AIS by compressing the sub-cells resulting
from the quadtree-decomposition (QTD). The additional compression step results in sig-
nificantly decreased computational costs as the number of integration sub-cells is notably

4In Abaqus these elements are referred to as CPS8 elements indicating that conventional continuum elements under
plane stress conditions with 8 nodes are used. The shape functions of an 8-node quadrilateral finite element are based
on the Serendipity family.
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reduced. Furthermore, if only polynomial shape functions are considered in conjunction
with Cartesian meshes, the accuracy is identical to the conventional AIS.

» o« ” o«

In “Compression techniques”, “Comparison”, “Drawback of the RLE compression tech-
nique” section, different compression techniques were introduced and tested. The image-
block representation (IBR) approach turned out to be the most suitable candidate due
to its efficiency, simplicity and robustness. It was shown in “Combination with other
approaches” section, that the C-AIS can be coupled with the reduction of fictitious inte-
gration points (RFIP) and Boolean finite cell method (B-FCM) approaches as well, leading
to even fewer IPs and consequently, decreased computational times. Then, in “Numeri-
cal examples” section, the C-AIS was successfully embedded in the FCM framework and
applied to two-dimensional problems of elastostatics and modal analysis. By means of
several numerical examples, the IBR*, B-FCM, and B-FCM + IBR approaches have been
investigated in detail. All of these methods yielded accurate results with significantly less
computational effort. Since the accuracy of these methods is basically identical, the focus
was placed on the comparison of their computational time which is influenced by two

factors:

1. Time investment for setting up an appropriate local integration mesh, which depends
on the speed of the partitioning and compression algorithms.

2. Time saved during integration over the resulting sub-cells, which depends on the
total number of integration points in the broken cells, determined by the number of
sub-cells and distributed integration points within them.

In “Time consumption” section, it was shown, that the polynomial order of the shape
functions heavily influences whether the compression algorithm renders a meaningful
reduction of computational time. A low polynomial degree (in our code p < 4) may
increase the computational time. However, for higher order shape functions and reason-
able refinement levels, which are typically used in the FCM, a significant reduction can
be achieved. In less ideal cases (“Violin-shaped region” section), the time spent on the
cut sub-cells can be compressed down to 70% and the time of the entire simulation to
80%, while in ideal cases that are more suitable for the FCM (“Disc brake” section), a
significant reduction was achieved requiring only 20% of the computational time for the
entire simulation.

Since the investigated methods all yield the same accuracy, no compromise between
the quality of the solution and the computational time has to be made. Therefore, one
may choose the simplest and most efficient approach. Although the B-FCM methodology,
which can be further enhanced by the combination with the IBR compression technique,
saves a significant amount of time, it requires major modifications in the already existing
codes regarding the construction of the local integration mesh (LIM) as well as the com-
pression and integration over the Boolean sub-cells. On the other hand, the IBR*, which
in 2 of the 3 numerical examples turned out to be just as efficient as the B-FCM + IBR,
requires a QTD only, which is already widely used and implemented in the context of the
FCM and other fictitious domain approaches. Also the integration over the compressed
sub-cells can be carried out without modification in the pre-existing code. Therefore, we
recommend the C-AIS with the IBR* approach, both for the FCM and for other numerical
methods as well, where a QTD is performed for integration purposes.
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Outlook

In this work, we have investigated the image-compression techniques for two-dimensional
problems. Consequently, future work could include the extension of the introduced com-
pression techniques to three-dimensional problems, where instead of a pixel image we
deal with a sequence of images resulting in a voxelated data set which can be derived from
an initial OTD. This should be fairly straightforward for the RLE and IBR methods, since
they only require an additional scanning and merging directions. The RLE would scan
the run-lengths along the x-, y- or z-direction, increasing its time complexity to O(n3).
Then, the IBR can be carried out in two steps, assuming the primary RLE was carried
out in i-direction: it first merges the line segments in the ij-plane, then further unites the
merged blocks, if possible, by comparing the adjacent jk-planes, each of which being in
a two-dimensional IBR-compressed state. Although the three-dimensional compression
requires more time fc than a two-dimensional one, the number of IPs also grows at a
cubic-rate and therefore, a significant portion of the time #; can be saved when a meaning-
ful compression of the sub-cells is achieved. The extension of the MRP to three-dimension
is arguable: Not only that in this case the intersection graph (if it can be constructed in
the first place) is not bipartite any more and thus Konig’s theorem does not apply, it
is also questionable, whether it is worth the effort, based on the good performance and
easy implementation of the IBR we have seen in two-dimensions. Finally, the B-FCM is
expected to perform similar compared to the C-AlIS in thee-dimensions as well. However,
it is yet to be investigated, how these different approaches perform against each other in

that case.

Future work might also include the investigation of the C-AIS in conjunction with other
fictitious domain approaches, where the integrand in Eq. (1) is not a polynomial function.
This is the case, e.g., in the poly-FCM [89], where due to the rational shape functions
and non-affine geometry mapping of the polygonal elements, the integrand in Eq. (1) is
a rational function. Applying Gaussian quadrature rules to rational functions inevitably
leads to integration errors, which further increase when due to the compression of the
sub-cells a reduced number of integrations points is used for the numerical integration.
Further research might reveal whether the typical convergence rates can be maintained
in the poly-FCM when combined with the C-AIS for reducing the computational time.
Another interesting area of application for the C-AIS is seen in unfitted triangular and
tetrahedral meshes, e.g., CutFEM [24] and TetFCM [11,69,70]. In this case, as long as a
sub-parametric geometry mapping preserving the straight edges and faces of the elements
is used in conjunction with a polynomial approximation of the field variables [70] the
integrand in Eq. (1) remains polynomial. Hence, the C-AIS can be applied without loss of
accuracy compared to the conventional AIS.

The shown advantages of the C-AIS become even more significant, when applied to
non-linear problems or p-refinement strategies. In these cases, following the reasoning
put forward in Ref. [61] for the moment fitting approach, the compression has to be
performed only once for each cut cell, while the compressed sub-cells R can be reused
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in every iteration loop, making the computational overhead ¢ vanish for even lower
polynomial degrees (cf. Fig. 25).
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