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Abstract

Background: The poor ocular bioavailability of the conventional eye drops is due to lack of corneal permeability,
nasolacrimal drainage and metabolic degradation. To overcome this issue, drug encapsulated in mucoadhesive
polymer based ocular microspheres have the advantages of improved drug stability, easy administration in liquid
form, diffuse rapidly and better ocular tissue internalization.

Methods: The ganciclovir chitosan microspheres (GCM) were prepared by modified water-in-oil emulsification
method. The formulation was optimized and characterized by investigating in vitro release study, release kinetics,
XRD and microspheres stability. Ocular irritancy, in vivo ocular pharmacokinetic parameters and histopathology
study was evaluated in Wistar rats. The use of pharmacokinetic/pharmacodynamic indices and simulation process
was carried out to further ensure clinical applicability of the formulation.

Results: The in vitro release study showed initial burst (nearly 50 %) in first few minutes and followed Fickian (R2 = 0.9234,
n-value = 0.2329) type of diffusion release mechanism. The XRD and stability studies showed favorable results. The Wistar
rat eyes treated with GCM showed significant increase in ganciclovir AUC (~4.99-fold) and Cmax (2.69-fold) in aqueous
humor compared to ganciclovir solution and delay in Tmax. The Cmax/MIC90, AUC0–24/MIC90, AUC above MIC90 and T
above MIC90 were significantly higher in GCM group. The aqueous humor concentration-time profile of ganciclovir in
GCM and ganciclovir solution was simulated with every 28.1 and 12.8 h, respectively. The simulated concentration-time
profile shows that in duration of 75 h, the ganciclovir solution require six ocular instillations compared to three ocular
instillations of the GCM formulation. The photomicrograph of GCM and ganciclovir solution treated rat retina showed
normal organization and cytoarchitecture.

Conclusions: Correlating with in vitro data, the formulation showed sustained drug release along with improved
intraocular bioavailability of ganciclovir in Wistar rats.
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Background
Herpes simplex keratitis and cytomegalovirus retinitis have
been the most common viral infections observed worldwide
[1]. Recurrent and relapse of ocular viral infections can lead
to corneal perforation resulting in blindness. The poor bio-
availability of the conventional eye drops is due to lack of
corneal permeability, nasolacrimal drainage and metabolic
degradation. Hence, an optimum treatment must be con-
sidered for effective management of ocular viral diseases.
Ganciclovir, a broad spectrum antiviral drug was considered
to be highly active against cytomegalovirus and herpes
simplex virus. Ganciclovir, an acyloguanosine derivative
after in vivo administration gets modified into ganciclovir
triphosphate. It competitively inhibits the virus deoxyribo-
nucleic acid (DNA) polymerase by impairing the viral DNA
synthesis [2].
Ganciclovir requires frequent oral administration, has it

shows very poor bioavailability (6–9 %) [3]. Administra-
tion of drug via oral, intravenous or extravascular injection
leads to low drug concentration at the site of infected eye
[4]. This finding was supported by a study conducted by
Young et al. [5], reports that the contralateral retinitis was
higher in patients treated with intravenous maintenance
therapy of ganciclovir (15–68 %) compared to intravitre-
ous ganciclovir (11 %). Moreover, due to its short half-life,
frequent intravitreal injections leads to risk of retinal de-
tachments, hemorrhages, or endophthalmitis. Ganciclovir
encapsulated with PLGA microspheres for ocular delivery
has been investigated [6]. Reported clinical studies [2, 7, 8]
found that the ganciclovir efficacy can be accomplished by
formulating the drug as an ophthalmic topical preparation.
Hence, a sustained intraocular drug concentration can be
achieved by using a desired polymer in the form of micro-
spheres for ocular instillation, which also seems to reduce
the ocular toxicities. Ganciclovir combined with chitosan
showed two fold increased oral bioavailability [9].
The inherent biological activity of chitosan [poly (β-

(1→ 4)-2-amino-2-deoxy-D-glucose)] signifies its role
in ocular therapeutics. With various degrees of N-
acetylation of glucosamine residues, it is considered as
a linear binary heteroploysaccharide composed of β-1,4-
linked glucosamine. Chitosan being a promising natural
biodegradable polymer with hydrophilic in nature im-
proves stability, precorneal retention and enhances inter-
action with eye mucosa. Moreover, the sustained release,
mucoadhesive, in situ gelling, transfection and permeation
enhancing properties of chitosan are recognized as few
parameters of the polymer suitable for ocular drug de-
livery. The unique physical properties of chitosan bring
transitions in the paracellular and transcellular pathway
without disturbing cellular integrity. This innate chito-
san property allows the drug to be transported to the
inner eye and helps the drug to get accumulated at cor-
neal epithelia [10, 11].

Chitosan has the ability to augment intraocular drug
penetration by binding with cornea and reversibly loosen-
ing the tight corneal conjunctions. Additionally, non toxic,
low eye irritation and ability to release the drug at a sus-
tainable fashion qualifies it as one of the ideal polymer for
ophthalmic preparation [12, 13]. Chitosan has been used
in many ophthalmic preparations such as indometh-
acin nanoemulsions [14]; indomethacin nanocapsules
[15]; cyclosporine A nanoparticles [16]; ofloxacin mi-
crospheres [17] and acyclovir microspheres [18]. Zirgan™
and Virgan® are commercially available ganciclovir ophthal-
mic gels. Zirgan™ has been approved in European countries
since 1995 and in 2009 it was approved in United States
[1]. Additionally, the ganciclovir implant (Vitrasert)
received USFDA approval for the treatment of cyto-
megalovirus retinitis in immunodeficiency patients.
Intraocular or periocular injections of microparticles or

nanoparticles can lead to vitreous clouding and foreign
body response. Due to low biodistribution coefficient, the
topical administration of ganciclovir has limitations. Fre-
quent administrations of the conventional eye drops are
required due to their short retention time and decreased
ocular drug bioavailability [19]. Thus, the microspheres
are preferred delivery system for ocular drug delivery. The
polymeric microspheres have the advantages of easy ad-
ministration in liquid form, diffuse rapidly and better ocu-
lar tissue internalization. The entrapped drug in the form
of monolithic-type or reservoir type in the microspheres
can act as depot and sustain the release of drug. Hence,
literatures [2, 3] support the use of ganciclovir as micro-
sphere formulation for improved antiviral effectiveness.
The requirement of ganciclovir ocular preparation for

topical application with better therapeutic efficacy and good
safety profile was evident. Thus, this study was an attempt
to investigate formulation of ganciclovir using mucoadhe-
sive polymer intended for sustained and improved intraoc-
ular delivery. The preparation was characterized by in vitro
drug release, release kinetics, X-ray diffraction (XRD) and
stability study. Further, ocular irritancy, in vivo ocular phar-
macokinetic, histopathology along with pharmacokinetic/
pharmacodynamic indices and simulation process was uti-
lized to identify the efficacy and tolerability of the optimized
formulation.

Materials and methods
Materials
Ganciclovir was acquired as a gift sample from Dr. Reddys
Laboratories, Hyderabad, India. Chitosan (93 % deactylation)
was purchased from Yarrow Chem Products, Mumbai,
India. Other reagents used were of analytical grade.

Analytical method
Reverse-phase high performance liquid chromatography
(RP-HPLC) was used for quantitative analysis of ganciclovir
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[20]. The C8 column (15 cm× 4.6 mm; 5 μ) was utilized for
the analysis. The mobile phase consisted of mixture of
0.1 M sodium dihydrogen phosphate monohydrate and
0.04 M triethylamine in the ratio of 50:50 (pH main-
tained at 6.6). The column temperature was retained at
40 °C. The injection volume was 20 μL and the flow
rate was maintained at 1 mL/min. The sample was de-
tected using UV at 254 nm. The acyclovir was consid-
ered as an internal standard. The standard calibration
curve was linear in the concentration range of 50 to
1000 ng/mL.

Experimental design
The central composite design was used to optimize gan-
ciclovir loaded chitosan microspheres (GCM) by altering
variable factors and their effect on encapsulation effi-
ciency and 12th hour in vitro drug release. The model
contained eight factorial points, six axial points and six
centre points with total 20 experiments. The mean value
was set as 0 and, +1 and −1 was considered as higher
and lower levels for each factor respectively. The se-
lected factors with their levels along with optimized
levels are summarized in Tables 1 and 2.

Preparation of optimized GCM
The optimized GCMs intended for ocular sustained re-
lease were prepared by modified water-in-oil emulsifica-
tion method [21]. Seven hundred and fifty milligrams of
93 % deacetylated chitosan was dissolved in 50 mL of 1 %
w/v acetic acid maintained at pH 2.72. Five hundred milli-
grams of ganciclovir was added to the above solution with
agitation and the mixture was sonicated for 10 min. The
resultant mixture was centrifuged (1000 rpm, 10 min) to
separate any remains of undissolved chitosan. The oil
phase consisted of 20 mL of dichloromethane and 20 mL
of liquid paraffin with 1 mL of 1 % v/v of Span 80. The
aqueous phase was introduced slowly as drop wise in to
the oil phase under continuous homogenization at 3000
rpm. Further, the water in oil emulsion was homogenized
to crosslink the microspheres with 5 % v/v of glutaral-
dehyde. The emulsion was again added to 20 mL of
pre-heated liquid paraffin at 170 °C with stirring to
remove dichloromethane and aqueous solvent. The
formed microspheres were filtered through 0.45 μm
Millipore filters. To remove residual liquid paraffin, the

microspheres was then washed 5–6 times with 100 mL
of diethyl ether and was vacuum dried for 24 h.

In vitro drug release of the optimized GCM
Using Franz diffusion cells, the in vitro release of ganci-
clovir from the microspheres was investigated. The mo-
lecular weight cut-off of the dialysis membrane was
between 12,000–14,000 Da (Himedia Laborateries Pvt.
Ltd, Mumbai, India). The dialysis membrane acted as a
barrier to separate the donor and acceptor compartment.
The simulated tear fluid (STF) was used as the dissol-
ution medium, which was prepared by adding 0.67 % of
NaCl; 0.2 % of NaHCO3; 0.008 % of CaCl2. 2H2O and
the resultant solution pH was adjusted to 7.4. A weighed
amount of microspheres dispersed in 1 mL of the STF was
kept in the donor compartment. The STF (100 mL) was
filled in the acceptor compartment and stirred magnetic-
ally at 100 rpm maintaining the temperature at 37 ± 0.5 °C
[22]. For a period of 12 h, 1 mL of the sample was with-
drawn every hour from the acceptor compartment and
subjected to UV spectroscopy scanned at 254 nm. The
same amount of the fresh STF was replaced into the ac-
ceptor compartment.

Release kinetics of the optimized GCM
Various models such as first order model (1); Higuchi
square root model (2); Baker and Lonsdale (3); Koresmeyer-
Peppas (4) and; Hixon and Crowell cube root model (5)
models were used to study drug release mechanism from
the microspheres. The data was fitted to these models and
was analyzed using sigma plot.
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Qt is the total amount of drug released after time (%);
Q0 the initial amount of drug (%); k1 the first order re-
lease rate constant (h−1); kH the rate constant obtained
according to the Higuchi equation (%h−1/2); Q∞ is the

Table 1 Variable factors with their levels used for optimization of GCM

Variable factors Level Optimized
level−1.41 −1 0 1 1.41

Chitosan concentration (mg) 79.55 250 500 750 920.45 750

Stirring speed (rpm) 318 1000 2000 3000 3682 3000

Span 80 volume (mL) 0.20 0.40 0.70 1.0 1.20 1.00
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percent release at infinite time; D is the diffusion coeffi-
cient in the polymer in cm2/s; r is the radius of the
sphere in cm; n and 2n are the release exponent for
Fickian diffusion and case II transport, respectively; a
and b are constants related to the drug and the struc-
tural and geometric properties of the microparticles; and
kHC is the rate constant obtained according to the Hixon
and Crowell equation (%h−1) [23–25].

XRD
XRD of ganciclovir powder, chitosan and the optimized
GCM was performed (Philips XPert Pro, Netherlands) at
40 kV voltage with 30 mA of the current, utilizing a
nickel-filtered CuKα radiation. With 0.02° interval, the
sample was scanned over a 2θ range of 10–80° at a rate
of 2°/min.

Stability study of the optimized GCM
The stability study was conducted as per ICH Q1AR
guideline, intended to test the stability for new sub-
stances and product. The optimized preparation was
stored at 25 ± 2 °C and 60 ± 5 % RH for twelve months
and at 5 ± 3 °C for a period of six months. The required
volume of microsphere dispersion was stored in closed
glass bottles and sealed tightly. At regular intervals, the
sample was subjected for determination of encapsulation
efficiency, mean particle size distribution and for any
physical changes. The test was carried at three month
intervals for a period of 12 months for long term storage
condition at room temperature and at 0, 2, 4 and 6
months for accelerated condition at refrigeration storage.

In vivo ocular pharmacokinetic studies of the optimized
GCM
Prior to the study, the ethical clearance for in vivo ex-
perimental protocol was obtained from Institutional
Animal Ethics Committee (IAEC) which is registered
under CPCSEA, India. The Wistar rats (male and fe-
male) free from ocular defects, 11–13 weeks older and
weighing around 180–200 g was utilized for the study.

Ocular irritation
The microspheres ocular tolerability [26] was evaluated
by identifying the ocular irritancy. The 1 % w/v of the
sample was prepared by dispersing the microspheres in
isotonic normal saline (ganciclovir solution) and was im-
mediately used for the study. The GCM sample (25 μL)

was directly instilled into right eye of the rat and for uni-
form dispersion on cornea; the rats were forced to wink
once. The left eye was instilled with normal saline alone
and acted as a control. Post instillation, both the eyes
were observed for frequency of winking in 5 min.

In vivo evaluation
A total of 32 Wistar rats were housed in standard cages
and had free access to food and water. The rats were
allowed for free head and eye movement. To carry out
in vivo study [27], 75 μL (3 × 25 μL drops at 90 s inter-
vals) of the GCM (1 % w/v) was freshly prepared and
was immediately instilled with micropipette into lower
conjunctival sac of the right eye without touching the
eye. The 1 % w/v of the ganciclovir solution served as a
control and as above mentioned quantity and procedure
was instilled to the left eye. At 0.5 h, 1 h, 1.5 h, 2 h, 3 h,
4 h, 5 h, 6 h, 12 h, 24 h post ocular instillation, the ani-
mal was sacrificed by cervical dislocation and the entire
eyes were removed. The aqueous humor from the iso-
lated eyes was separated and was stored in micro centri-
fuge tubes at –20 °C until further analysis. After the
process of extraction and isolation, the sample was sub-
jected to the RP-HPLC analysis.

Extraction and isolation
The in vivo pharmacokinetic estimation of the ganciclovir
in aqueous humor was performed as mentioned above by
RP-HPLC method. The extracted aqueous humor (100 μL)
was added to 100 μL of 50 % trichloroacetic acid,
shaken well and was centrifuged at 2000 g for 10 min
to deproteinize the sample. The supernatant was neu-
tralized with 50 μL of 2 M sodium hydroxide and vor-
texed. Later, the sample was extracted with 5 mL of
chloroform and centrifuged at 3000 g for 5 min. The
extracted sample was mixed with 10 μL of the mobile
phase. Finally 20 μL of the mixture and 20 μL of the
acyclovir as an internal standard were injected into
HPLC system [20].

Pharmacokinetic and Statistical analysis
The pharmacokinetic parameters were calculated using
one compartment open model. The ganciclovir, area under
the curve (AUC) in aqueous humor was determined from
the beginning of the drop instillation (t0) to the last obser-
vation (tlast) by linear trapezoidal rule with extrapolation to
infinite time. Additionally, ganciclovir half life (t1/2), relative
bioavailability, the maximum peak concentration (Cmax)

Table 2 Response factors with expected and observed values for optimized GCM

Response factors Expected value Observed value Residual value

Encapsulation efficiency (%) 81.4 80.00 −1.4

12th hour in vitro drug release (%) 77.27 78.00 0.73
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and time to achieve maximum peak concentration (Tmax)
was also calculated. The terminal rate constant (Ke) and
apparent absorption rate (Ka) of ganciclovir from aqueous
humor was estimated from the terminal portions of the re-
spective log (aqueous humor concentration) vs. time linear
regression plots [28].
The Kinetica 5.0 PK/PD analysis software was also uti-

lized for the calculation of pharmacokinetic parameters.
The estimated pharmacokinetic/pharmacodynamic (PK/
PD) indices such as Cmax/MIC90, AUC0–24/MIC90, AUC
above MIC90 and T above MIC90 was calculated to deter-
mine the in vivo efficacy of the GCM. The principle of

superimposition using Microsoft excel software was used
to evaluate the simulation of aqueous humor concentra-
tion- time profile at different dosing interval [29]. Based on
the time where the ganciclovir aqueous humor concentra-
tion was maintained twice the MIC90 (1.22 μg/mL), the
subsequent dose was calculated. Student’s t test (p < 0.05)
was considered for statistical significance.

Histopathology
The isolated eyes were stored in 10 % formalin and
were subjected to histopathological examination. The
retina was isolated, dyed with hematoxylin-eosin and

Fig. 2 In vitro release profile of the optimized GCM-curve fitting models (bars represent mean ± SD; n = 3)

Fig. 1 Cumulative amount of drug released ( ) GCM and ( ) ganciclovir solution (bars represent mean ± SD; n = 3)
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was observed under light microscopy with 200× mag-
nification for cytoarchitecture changes.

Results and discussion
Preparation of the optimized GCM
The modified water-in-oil emulsification method was
found to be suitable and simple technique for encap-
sulating ganciclovir using chitosan. The degree of chi-
tosan deacetylation and molecular weight are
considered to be two fundamental parameters that in-
fluence the properties and functionality of chitosan.
These parameters along with crystallinity influence
chitosan degradation and ocular epithelial cell perme-
ability. More than 60 % of deacetylation of chitosan is
considered to be ideal for ocular delivery as decrease
in deacetylation leads to decreased water solubility of
the polymer. Interestingly, trimethylated chitosan with
PEGlation a 3.4-fold increase in its mucoadhesive
property was observed, but no such pronounced ob-
servation was found in respect to its permeation en-
hancing property [11]. However, this study used 93 %
deacetylated chitosan for the purpose of encapsulation
of ganciclovir. On ocular instillation, the liquid form
of chitosan transforms into gel form at physiological
pH of 7.4 and significantly helps in longer residence
time and biodistribution of the drug on corneal sur-
face. The negatively charged cornea and sclera inter-
acts with positive charged amino groups of the
chitosan, hence enhances the ocular bioavailability
[10, 30]. A study by Mathew et al. [31], showed the
increased sustained drug release by using optimum
glutaraldehyde as cross linking agent. Earlier many
studies [32, 33] have successfully prepared chitosan
microspheres from emulsion cross-linking method.

In vitro release study of the optimized GCM
In vitro drug release of the optimized GCM and ganci-
clovir solution using STF was investigated separately

(Fig. 1). The in vitro data showed biphasic pattern of
ganciclovir release from GCM. The initial drug loading
followed by marked prolongation of drug residence time
was achieved by an initial immediate burst effect (nearly
50 %) in few minutes and then slower release over few
hours (up to 90 %). The appropriate physicochemical
properties of the microspheres help in achieving adequate
drug bioavailability and biocompatibility with ocular
mucosa. The initial burst release was beneficial in attain-
ing required therapeutic concentration of the drug in neg-
ligible time. The rapid and instantaneous initial release
was due to the modified water-in-oil emulsification prep-
aration method that resulted in deposition of drug on sur-
face of the microspheres. The drug adhered to the surface
of the microspheres are primarily released into aqueous
media by desorption and diffusion causing the initial burst
[29, 34]. The decrease in particle size enhances this effect
as the formation of large surface area. Similar finding has
been observed for different drugs encapsulated in chitosan
microspheres [35]. The sustained action in the later stage
was due to diffusion of ganciclovir from the polymeric
matrix and biodegradation of chitosan. Genta et al., [18]
has demonstrated the mucoadhesive and sustain release
activity of the chitosan.

Curve fitting analysis of the optimized GCM
The Fig. 2 shows curve fitting of the optimized formu-
lation in vitro drug release kinetics. Among the models,
Koresmeyer–Peppas model was best fitted by signifi-
cant regression coefficient (R2 = 0.9234). Using Fick’s
law, Koresmeyer-Peppas model helps in investigating
drug release mechanism from the polymeric system in
the first 10h of the in vitro study. The n-value (0.2329,
p < 0.0001) of the optimized formulation was less than
0.45, indicating Fickian type of diffusion mechanism of
drug release. The Koresmeyer-Peppas model explains
when the drug release mechanism is a combination of
drug diffusion - Fickian transport-, and in Case II

Table 4 Stability test observations of the optimized GCM at refrigeration conditions

Storage Encapsulation efficiency (%) Mean particle size (μm) Physical change

Months Months Months

5 ± 3 °C 0 2 4 6 0 2 4 6 0 2 4 6

80.79 80.62 79.89 79.00 20.28 20.19 20.24 20.30 – – – –

–: No physical change

Table 3 Stability test observations of the optimized GCM at room temperature

Storage Encapsulation efficiency (%) Mean Particle size (μm) Physical change

Months Months Months

25 ± 2 °C 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12

80.79 79.92 79.15 78.57 77.39 20.28 20.15 20.20 20.35 20.40 – – – – –

–: No physical change
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transport - non-Fickian-, controlled by the relaxation of
polymer chain. Chitosan polymeric matrix usually repre-
sents diffusion and erosion type of drug release [36]. The
sustained action of the ocular delivery also depends on the
surface characteristics of the microspheres. The positive
zeta potential can facilitate an effective adhesion to the
cornea surface and also could improve some limitations
related to ocular administration, such as prevent tear
washout (due to tear dynamics). Subsequently, the positive
charge interact with the cell membrane leading in a struc-
tural reorganization of tight junction-associated proteins

helps in permeation of the drug through corneal surface
and improves intraocular drug bioavailability [11, 37].

Stability study of the optimized GCM
The stability test observations of the optimized GCM at
room temperature and refrigeration conditions are depicted
in Tables 3 and 4. On storage, no major deviations were ob-
served in the macroscopic characteristics. A slight increase
in mean particle size was noted at 25 °C. The XRD spectral
characteristics are shown in Fig. 3. On storage, the extent
of microsphere sedimentation was not prominent, on

Fig. 4 Aqueous humour concentration of ganciclovir after instillation of 1 % w/v of ( ) GCM and ( ) ganciclovir solution (bars represent
mean ± SD; n = 3)

Fig. 3 XRD of (a) ganciclovir; (b) chitosan; (c) optimized GCM
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manual agitation they were redispersed easily. XRD spectral
characteristic of the ganciclovir pure drug shows many dif-
fraction peaks, indicating the crystallinity of the drug. In
contrast, the diffraction peaks were significantly reduced in
GCM. XRD of chitosan shows few peaks, which indicates
non crystallinity. The GCM formulation showed decreased
crystallinity of ganciclovir, which was similar to that of chi-
tosan indicating the incorporation of ganciclovir in the
polymer. The increase in mean particle size could be due to
increased kinetic energy of system contributing to higher
rate of particle collision [26]. Thus, the optimized formula
proved to be stable on long term and accelerated storage
conditions as well.

In vivo ocular pharmacokinetic studies of the optimized
GCM
The ocular irritation test showed that the GCM sample
(12.0 ± 1.0 vs ganciclovir solution 10.0 ± 1.0) was well tol-
erated. The ocular pharmacokinetic of the optimized
GCM (1 % w/v) was compared with the ganciclovir solu-
tion (1 % w/v) in Wistar rats. The dose volume and
strength of both the samples were same. The 1 % w/v
strength of both the samples would provide optimum
Cmax so as to decrease the nasolacrimal removal of gan-
ciclovir. Subsequently, the relative hydrophilicity of the
ganciclovir limits its corneal penetration. The paracellu-
lar diffusion of ganciclovir between the tight junctions of
the corneal epithelial cells posses a greater challenge [1].
Peyman and Ganiban, [38] showed that the ganciclovir
dose upto 400 μg/0.2 mL was found to be non toxic to
the retina. Hence, to maintain higher concentration of
ganciclovir, 1 % w/v of the GCM was used in this study
for in vivo evaluation. Young et al., [5] study confirms
that the injection of greater than 10 mg of ganciclovir
into vitreous humor may result in retinal damage.
Throughout this study, the ganciclovir concentration in
aqueous humor was below the reported toxic ganciclovir
concentration in eye. The 0.15 % ophthalmic gel has
shown the mean ganciclovir concentration in tears

ranging from 0.92 to 6.86 μg mL−1 without any ocular
discomfort [1].
The aqueous humor concentrations of ganciclovir after

instillation of 1 % w/v of GCM and ganciclovir solution
were shown in Fig. 4. The Table 5 illustrates the aqueous
humor pharmacokinetic parameters. In comparison with
ganciclovir solution, the GCM showed significant increase
in AUC (~4.99-fold). The absorption rate constant (Ka)
data showed that the GCM trans-corneal permeability
was enhanced and was statistically significant than the
ganciclovir solution. Subsequently, the terminal rate con-
stant (Ke) and t1/2 did not alter much. The Cmax of GCM
was 2.69-fold of the ganciclovir group (p < 0.0001) and the
delay in Tmax infers the sustained release of the GCM.
The incorporation of ganciclovir into microspheres signifi-
cantly increased relative bioavailability.
This finding signifies the enhanced binding force of

the positively charged GCM to the eye surface. Usually,
a mucus film as a thin fluid layer covers the surface of
the cornea and conjunctiva. The mucin (high molecular
mass glycoprotein) being a primary constituent of mucus
carries negative charge at physiological pH. Hence, the
positively charged chitosan interact with sialic groups
and sulfonic acid substructures of mucin and act as an
adhesive force to the eye surface. Upon dissolution, the
protonation of amino groups (-NH2) of the glucosamine
to –NH3

+, and the cationic polyelectrolyte readily forms
electrostatic interactions with other anionic groups.
Thus, the formation of hydrogen bond to the eye surface

Table 6 The estimated pharmacokinetic/pharmacodynamic
(PK/PD) indices after ocular instillation of GCM (1 % w/v) and
ganciclovir solution (1 % w/v) in Wistar rat

PK/PD indices Units GCM Ganciclovir solution

Cmax/MIC90 unitless 41.991 15.560

AUC0−24/MIC90 h 497.694 99.700

AUC0−24 above MIC90 hμgmL−1 573.518 106.239

T above MIC90 h 28.1 12.8

Table 5 Aqueous humor pharmacokinetics parameters after ocular instillation of GCM (1 % w/v) and ganciclovir solution (1 % w/v)
in Wistar rat

Parameters Units GCM Ganciclovir solution P value

Ka h−1 0.7252 1.2981 0.0021

Ke h−1 0.1233 0.1662 0.6270

Tmax h 3.0 2.0 ——

Cmax μgmL−1 51.23 18.98 <0.0001

Relative bioavailabilitya unitless 4.991 1.000 ——

t1/2 h 5.7654 3.5426 0.0636

AUC0-24 hμgmL−1 607.187 121.634 <0.0001

AUC0-∞ hμgmL−1 645.116 137.692 <0.0001
aRelative bioavailability = (AUCGCM × Doseganciclovir solution)/(AUCganciclovir solution × DoseGCM)
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which is considerably influenced by cationic free amine
and hydroxyl groups of chitosan [11, 28, 30, 39].
The estimated pharmacokinetic/pharmacodynamic (PK/

PD) indices after ocular instillation of GCM and ganciclo-
vir solution in Wistar rat are shown in Table 6. The PK/
PD indices play an important role in treatment selection
and dosage regimen of ganciclovir as its antiviral activity is
concentration dependent. The minimum inhibitory con-
centration (MIC) solely fails to explain the in vivo activity
of an antimicrobial agent. In this study, the Cmax/MIC90

and AUC0–24/MIC90 of GCM were maintained higher
than the ganciclovir solution. The Cmax/MIC, AUC/MIC,
AUC above MIC and T above MIC were higher in the

GCM compared to ganciclovir solution and thus indicates
the clinical effectiveness. Moreover, for effective anti-
microbial activity, the Cmax/MIC90 and AUC0–24/MIC90 of
GCM should be higher than 10 and 125, respectively
which were complied with GCM formulation [29]. The
simulated values also suggest the ideal dosing frequency.
Using the best fit model parameters, the aqueous humor

concentration-time profile of GCM and ganciclovir solu-
tion was simulated with every 28.1 and 12.8h, respectively
(Fig. 5). The simulated concentration-time profile shows
that in duration of 75 h, the ganciclovir solution require six
ocular instillations compared to three instillations of the
GCM formulation. Thus, GCM minimizes dosing

Fig. 6 Photomicrographs of histological slides of rat retina (a) GCM and (b) ganciclovir solution

Fig. 5 Simulated ocular concentration time-profile of ganciclovir for 75 h at a dosing interval of 28.1 h for GCM and 12.3 h for ganciclovir solution
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frequency by sustained ganciclovir release for better effi-
cacy. The photomicrograph of GCM and ganciclovir solu-
tion treated rat retina showed normal organization and
cytoarchitecture (Fig. 6). The photomicrograph of GCM
and ganciclovir solution showed inner layer of the retina,
which was covered by nerve fibers followed by a layer of
ganglion cells, an inner plexiform layer, inner nuclear layer,
outer plexiform layer, outer nuclear layer, inner and outer
segments of the rods, cones and sclera.

Conclusions
The development of ganciclovir loaded chitosan micro-
spheres was found to be ideal for ocular delivery. The mi-
crospheres showed Fickian type of drug release, and the
XRD and stability studies showed favorable results. The
GCM showed significant increase in AUC and Cmax com-
pared to ganciclovir solution. The Cmax/MIC90, AUC0–24/
MIC90, AUC above MIC90 and T above MIC90 were higher
in the GCM. Further, the in vivo ocular pharmacokinetic
studies along with the histopathology report demonstrated
the efficacy and tolerability of the formulation. Hence, the
formulation significantly offered sustained drug release
and improved intraocular bioavailability of ganciclovir in
Wistar rats.
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