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Abstract

Background: Among breast cancers, the triple-negative breast cancer (TNBC) subtype has the worst prognosis with
no approved targeted therapies and only standard chemotherapy as the backbone of systemic therapy.
Unique metabolic changes in cancer progression provide innovative therapeutic opportunities. The receptor
tyrosine kinases (RTKs) epidermal growth factor receptor (EGFR), and MET receptor are highly expressed in
TNBC, making both promising therapeutic targets. RTK signaling profoundly alters cellular metabolism by
increasing glucose consumption and subsequently diverting glucose carbon sources into metabolic pathways
necessary to support the tumorigenesis. Therefore, detailed metabolic profiles of TNBC subtypes and their
response to tyrosine kinase inhibitors may identify therapeutic sensitivities.

Methods: We quantified the metabolic profiles of TNBC cell lines representing multiple TNBC subtypes using
gas chromatography mass spectrometry. In addition, we subjected MDA-MB-231, MDA-MB-468, Hs578T, and
HCC70 cell lines to metabolic flux analysis of basal and maximal glycolytic and mitochondrial oxidative rates.
Metabolic pool size and flux measurements were performed in the presence and absence of the MET inhibitor, INC280/
capmatinib, and the EGFR inhibitor, erlotinib. Further, the sensitivities of these cells to modulators of core metabolic
pathways were determined. In addition, we annotated a rate-limiting metabolic enzymes library and performed a siRNA
screen in combination with MET or EGFR inhibitors to validate synergistic effects.

Results: TNBC cell line models displayed significant metabolic heterogeneity with respect to basal and maximal
metabolic rates and responses to RTK and metabolic pathway inhibitors. Comprehensive systems biology analysis
of metabolic perturbations, combined siRNA and tyrosine kinase inhibitor screens identified a core set of TCA
cycle and fatty acid pathways whose perturbation sensitizes TNBC cells to small molecule targeting of receptor
tyrosine kinases.

Conclusions: Similar to the genomic heterogeneity observed in TNBC, our results reveal metabolic heterogeneity
among TNBC subtypes and demonstrate that understanding metabolic profiles and drug responses may prove
valuable in targeting TNBC subtypes and identifying therapeutic susceptibilities in TNBC patients. Perturbation of
metabolic pathways sensitizes TNBC to inhibition of receptor tyrosine kinases. Such metabolic vulnerabilities offer
promise for effective therapeutic targeting for TNBC patients.
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Background
Triple-negative breast cancer
Triple-negative breast cancer (TNBC) accounts for 15–
20% of invasive breast cancers. TNBC is characterized by
the lack of estrogen receptor (ER) and progesterone recep-
tor (PR) expression and human epidermal growth factor
receptor 2 (HER2) amplification. TNBCs are associated
with advanced stage at diagnosis and poorer outcome
compared to other breast cancer subtypes [1]. Characteris-
tic TNBC clinical features include a peak in recurrence
risk within the first 3 years, a weak relationship between
the tumor size and lymph node metastasis, and a peak of
cancer-related death in the first 5 years [2]. At the molecu-
lar level, TNBC has significant overlap with the basal-like
subtype as approximately 80% of TNBCs are classified as
basal-like [1]. Currently, TNBCs are treated with cytotoxic
combination chemotherapy. Even though TNBC patients
have significantly higher rates of pathologic complete
response compared to non-TNBC, TNBC patients have
decreased 3-year progression-free survival and overall sur-
vival rates [1, 3]. Hence, there is a vital need for a compre-
hensive understanding of the molecular basis of TNBC
progression and emerging treatment approaches.
TNBC is a highly heterogeneous disease at the molecu-

lar level, and this heterogeneity likely underlies the vari-
able treatment responses in patients. Recent studies
involving comprehensive gene expression analysis revealed
extensive molecular heterogeneity within TNBC cases and
identified four to six distinct molecular TNBC subtypes
[4, 5]. These subtypes have unique expression signatures
and ontologies and are defined as basal-like, mesenchymal
and luminal androgen receptor subtypes. To identify novel
treatment strategies for TNBC patients, it is essential that
we understand the unique and common molecular fea-
tures of these TNBC subtypes.
Current treatment options for TNBC patients are

restricted to chemotherapy; however, receptor tyrosine
kinases (RTK) are promising druggable targets due to
their high expression in TNBC. The epidermal growth
factor receptor (EGFR) and MET receptor are highly
expressed in multiple TNBC subtypes with EGFR over-
expression in 54% of basal breast cancers (predomin-
antly TNBC). Additionally, EGFR is a biomarker for
identification of basal breast cancers [6–10]. Similarly,
MET is associated with poor clinical outcome in breast
cancer [11–15], and high MET expression correlates
with TNBC [16, 17]. Previously, we demonstrated that
the MET inhibitor cabozantinib inhibited TNBC growth,
invasion, and metastasis [18]. Recently, we determined
that combined MET and EGFR inhibition was highly
effective at abrogating tumor growth in patient-derived
TNBC tumorgrafts and significantly decreased the vari-
ability in treatment response compared to monotherapy
with MET or EGFR inhibitors [19]. These results highlight

that MET and/or EGFR inhibition may be a highly effect-
ive treatment strategy for TNBC patients. Metabolic alter-
ations are now widely understood to support the cancer
phenotype, and RTKs such at MET and EGFR have been
implicated in driving some of these the metabolic alter-
ations [20–25].

Metabolic characteristics of TNBC
Particular metabolic characteristics of TNBC have been
investigated, and overall TNBC cell models and patient
samples are characterized by elevated glycolysis. Along
these lines, a genome wide screen identified a small
subset of metabolic genes, including core glycolytic and
oxidative phosphorylation (OXPHOS) genes, whose sup-
pression was lethal in a TNBC cell model [26]. Com-
pared to ER+ breast cancer cell lines, MDA-MB-231 and
MDA-MB-468 TNBC cell models are reported to harbor
high glycolytic flux and low OXPHOS activity [27] and
are more primed to switch to a glycolytic program in the
context of limited oxygen than non-transformed cells [28].
In patient samples, high glucose transporter, GLUT1, ex-
pression is observed in TNBC compared to non-TNBC
tumors [29]. GLUT1 may also enhance invasion by local-
izing to the invasive edge of in vivo tumor models [30].
Mechanistically, high MYC expression in TNBC cell
models suppresses expression of the glycolytic inhibitor,
thioredoxin-interacting protein, TXNIP, resulting in in-
creased glycolytic flux [31]. In addition, a siRNA screen
revealed that TNBC cell line models are dependent on
elevated glycolysis through the LDHB (lactate dehydrogen-
ase B) as opposed to their non-TNBC counterparts [32].
Recent evidence indicates that the metabolic charac-

teristics of TNBC correlate with therapeutic response.
The glycolytic potential of TNBC cells may be associated
with chemotherapeutic resistance as exposing TNBC cell
models to increasing concentrations of glucose increases
proliferation and decreases the efficacy of metformin-
induced apoptosis [33, 34]. Additionally, PKM2, a glyco-
lytic enzyme associated with high tumoral glycolytic flux
[35], may confer some resistance to doxorubicin treat-
ment in vitro and in MDA-MB-231 orthotopic breast
cancer models [36]. Other studies demonstrate that
stimulation of mitochondrial activity and concurrent in-
hibition of mitochondrial respiratory complex I [37] or a
combination of glycolytic and mitochondrial inhibitors
[38] effectively kills TNBC cells and TNBC xenografts.
Collectively, the above studies demonstrate a clear role

for altered metabolism supporting the aggressive TNBC
phenotype. Much like the genetic and signaling hetero-
geneity found in cancers in general and TNBC in
particular [39], metabolic heterogeneity also likely exists
in TNBC patients [40, 41] and cell models [33, 42] and
likely drives differential responses to therapeutics. There-
fore, comprehensive and systematic investigations into the
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metabolism of TNBC and TNBC cell models are neces-
sary in order to gain insight into the best therapeutic
strategies. Some previous approaches referenced above
undertook genome-wide siRNA screening approaches
or utilized computational approaches [43]. In the
present study, we provide detailed metabolic analyses
of the commonly used MDA-MB-231, MDA-MB-468,
Hs578T, and HCC70 TNBC cell line models, which
represent the two major basal-like subtype and the
mesenchymal subtypes [4]. We determined the basal
and maximal metabolic rates, as well as the metabolic
rates in response to EGFR and MET inhibitors in these
TNBC lines. We also measure viability in response to
chemical modulation of five metabolic pathways. Finally,
we report the viability effects of suppressing each KEGG
metabolic pathway in combination with EGFR (erlotinib)
or MET (INC280) inhibition in these cell lines. Overall,
these results provide a more thorough view of the meta-
bolic landscape of TNBC and the effect of RTK inhibition
on TNBC metabolism.

Methods
Cell culture
All cells were purchased from ATCC. MDA-MB-231,
MDA-MB-468, Hs578T, and HCC70 cells were cultured
in DMEM (ThermoFisher) supplemented with 10% fetal
bovine serum. hTERT-HME1 cells were cultured in
MEBM (Lonza) supplemented with hEGF, insulin, hydro-
cortisone, and BPE (Lonza).

Metabolomics profiling
For metabolite quantification, cells were seeded in tripli-
cate (n = 3) in 6-well plates with DMEM supplemented
with 10% FBS. After 24 h, the media was removed and re-
placed with fresh media. Upon reaching 70% confluency,
cells were washed twice with phosphate buffered saline
(PBS, 46-013-CM, Corning) and lifted from culture wells
using 0.25% Trypsin/2.21 mM EDTA (25-053-CI, Corn-
ing). Cells were then washed with PBS containing 10%
FBS followed by 0.9% NaCl (Sigma, S9888). Cell pellets
frozen in liquid nitrogen before storage at 193 K.
Frozen cell pellets were thawed on ice for 10 min before

addition of 1 mL cold extraction solvent containing aceto-
nitrile/isopropanol/water (3:3:2) at 253 K. Samples were
then vortexed (15 s × 5) and frozen on dry ice for 20 mins
and the freeze/thaw/vortex cycle repeated twice. Samples
were dried via vacuum centrifugal evaporation and stored
at −80 °C before analysis.
Dried samples were derivatized first by addition of 10 μL

of MOX Reagent (20 mg/mL methoxyamine-hydrochloride
in dry pyridine (TS-45950, Thermo Fisher Scientific)
followed by 90-min incubation in a digital heating shaking
drybath at 303 K and 1100 rpm. Next, 90μL N-Methyl-N-
(trimethylsilyl)trifluoroacetamide (MSTFA, Sigma 394,866)

was added and samples were incubated at 310 K and
1000 rpm for 30mins before centrifugation for 5 min at
14,000 rpm/277 K. The supernatant was transferred to an
auto sampler vial for gas chromatography-mass spectrom-
etry (GC-MS) analysis.
Derivatized samples were analyzed on a Triple Quadru-

pole GC-MS (TSQ8000, Thermo Fisher Scientific)
equipped with a TG-5MS (30 m × 0.25 mm i.d. × 0.25 μm,
26098-1420, Thermo Fisher Scientific) capillary column
and run under electron ionization at 70 eV. The GC was
programed with an injection temperature of 523 K and
splitless injection volume of 1 μl. The GC oven
temperature program started at 232 K for 1 min, rising
to 523 K at 10 K/min with a final hold at this
temperature for 6 min. The GC flow rate with helium
carrier gas was 1.2 mL/min. The transfer line temperature
was set at 563 K and ion source temperature at 568 K. A
range of 50–600 m/z was scanned with a scan time of
0.25 s.
Metabolites were identified using TraceFinder software

v 3.3 (Thermo Fisher Scientific) based on in-house
libraries of metabolite retention time and fragmentation
patterns. Identified metabolites were quantified using
the total ion count peak area for specific mass ions, and
standard curves generated from reference standards run
in parallel. The mean, standard deviation, and 95% confi-
dence interval were calculated for each cell line and
treatment condition. ANOVA with student’s t test was
used to compare treatment conditions within each cell
line.

Metabolic flux analysis
For all metabolic flux analyses, a Seahorse 96 XFe was
used. Twenty-four hours prior to metabolic flux analyses,
cells were cultured in identical media (10 mM glucose,
2 mM glutamine, 1 mM pyruvate). Cells were plated at a
density of 40,000 cells per well in a Seahorse 96-well assay
plate 16 h prior to analysis. For basal and maximal
metabolic profiles, four independent experiments were
performed, each with three biological replicates and
five technical replicates. For basal metabolic profiles
in the context of RTK inhibitor treatment, three bio-
logical replicates each with five technical replicates
were performed, and cells were treated with 10 μM
erlotinib or INC280/capmatinib (Selleck Chemicals)
for 18 h prior to metabolic rate analysis. After metabolic
rate analyses, extracellular acidification rate (ECAR) and
oxygen consumption rate (OCR) measurements were nor-
malized to CyQUANT (Invitrogen) measurements cell
count measurements in each well. For basal rate measure-
ments, ECAR and OCR measurements were spaced 6 min
apart. For maximal rate measurements, basal rates were
measured twice at an interval of 6–7 min, followed by car-
bonyl cyanide-p-trifluormethoxyphenylhydrazone (FCCP)
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(1 μM final concentration) injection, mixture, and meas-
urement 6–7 min later, followed another measurement 6–
7 min later, followed by 2-deoxyglucose (2-DG, 100 mM
final concentration) or rotenone + antimycin (1 μM each
final concentration) injection, mixture, and measurement
6–7 min later, followed by a final measurement 6–7 min
later. Maximal rate data are representative experiments
displayed as averages of three biological replicates with
error bars representing standard deviation.

Cell viability in response to metabolic modulators
Cells were plated at a density of 2500 cells per well in 96-
well plates in growth media. Cells were treated with vehicle
or the following concentrations of chemicals: 25 mM 2-
DG, 200 μM 6-aminonicotanimide (6-AN), 1 μM rotenone,
10 mM metformin, and 1 mM 5-Aminoimidazole-4-car-
boxamide ribonucleotide (AICAR). After 48 h of treatment,
viability was measured by CellTiter-Glo (Promega). Two
independent experiments, each containing six biological
replicates, were performed. Data are from one representa-
tive experiment and provided as averages with error bars
representing standard deviation.

siRNA screen
Screen design
All small interfering RNAs (siRNAs) were from Qiagen
(Additional file 1: Table S1) and were transfected into cells
with siLentFect (BioRad, 1 μl per ml, for transfection effi-
ciency for each cell line, see Additional file 2: Figure S1A).
Rate-limiting enzymes were collated through KEGG anno-
tation (http://www.genome.jp/kegg/), the Rate-Limiting
Enzyme Regulation Database (http://rle.cbi.pku.edu.cn/
home.cgi, [44]), and literature searches and categorized ac-
cording to KEGG. Genes and metabolic categories and
pathways are provided in Additional file 3: Table S2 ac-
cording these KEGG-based annotations. For the siRNA
screen, cells were transfected with control (non-targeting)
siRNAs or siRNAs targeting the above-described rate-
limiting enzymes, then treated with either DMSO, INC280,
or erlotinib (Additional file 2: Figure S1A). Cells were
plated in 96-well assay plates at 2500 cells per well. Sixteen
hours later, cells were transfected with a pool of two siR-
NAs per gene. Twenty-four hours post-transfection, fresh
media was added containing 10 μM INC280, 10 μM erloti-
nib, or 0.1% DMSO (the final DMSO concentration in
wells containing INC280 or erlotinib). The screen was car-
ried out in duplicate for each siRNA and each condition
(DMSO, INC280, or erlotinib) in each cell line. Seventy-
two hours post-transfection (48-h post-drug treatment),
cell viability was assessed by CellTiter-Glo (Promega).

Screen analysis
The siRNA screen was performed in duplicate, and sen-
sitivity index (below) values were derived from replicate

averages. Replicates resulting in a variance larger than
0.04 were not considered for further analysis. To deter-
mine which siRNAs resulted in the greatest loss of viabil-
ity in combination with INC280 or erlotinib compared to
DMSO, a variation on the sensitivity index (SI) equation
developed by Hoffman and Gardner (1983) was used to
estimate the effect of siRNA knockdown on drug sensitiv-
ity [45]. The SI value for each siRNA was calculated using
the following equation:

SI ¼ Rc

Cc
� Cd

Cc

� �
−

Rd

Cc

� �
:

In this equation, Rc is the average viability in drug-
untreated (DMSO) wells transfected with siRNA target-
ing rate-limiting enzymes, Rd is the average viability in
drug-treated wells (INC280 or erlotinib) with siRNA
targeting rate-limiting enzymes, Cc is the average viability
in drug-untreated (DMSO) wells with control (non-target-
ing) siRNA, and Cd is the average viability in drug-treated
(INC280 or erlotinib) wells with control (non-targeting)
siRNA [46]. The SI ranges from −1 to 1, with negative
values indicating an antagonistic effect on drug perform-
ance and positive values indicating a sensitizing effect.
This is accomplished by comparing the predicted effect of
drug and siRNA exposure (Rc/Cc × Cd/Cc) to the observed
effect of combined exposure (Rd/Cc). Although the SI
allows for rapid analysis of siRNA screening data that sur-
passes the power observed in simple fold-change analysis,
it does not allow for the calculation of a p value, as it does
not consider probability distribution [46, 47]. As a result,
the top 10% of sensitizing siRNAs was used in metabolic
pathway analysis. These resulting genes were grouped into
KEGG-annotated Metabolic Categories for each drug
treatment in each cell line and into KEGG-annotated
Metabolic Pathways for each drug treatment.

Results
Metabolomics profiles of TNBC cell lines
To understand the diversity of metabolic activity in
TNBC, we examined multiple TNBC cell lines that are
representative of several TNBC subtypes identified by
Lehmann et al. [4]. These cell lines correspond to the
two major basal-like subtypes and a mesenchymal-like
subtype. This included Hs578t (mesenchymal stem-like;
basal B), MDA-MB-231 (mesenchymal stem-like; basal B),
MDA-MB-468 (basal-like 1; basal A), and HCC-70 (basal-
like 2, basal A) cells (Additional file 2: Figure S1B). To
produce initial metabolic profiles of TNBC, we measured
the basal glycolytic and mitochondrial oxidative metabol-
ism rates in four TNBC cell models (MDA-MB-231,
MDA-MB-468, HS578t, HCC70) and one immortalized,
non-transformed mammary gland epithelial cell model
(hTERT-HME1) (Additional file 2: Figure S1C).
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We profiled pool sizes of 43 central carbon metabolites
of subconfluent TNBC cell lines in exponential growth
phase. In addition, we quantified pool size changes follow-
ing treatment with small molecule inhibitors of the RTKs
MET and EGFR. Both MET and EGFR were prominently
expressed in the assayed cell lines. Hierarchical clustering
of metabolic profiles of TNBC cell lines reveals molecular
heterogeneity between the TNBC mesenchymal-like and
basal-like subtypes (Fig. 1). Pool size measurements
showed common clusters of low TCA cycle and elevated
amino acid metabolites of mesenchymal-like MDA-MB-
231 and Hs578 which were distinct from the basal-like
MDA-MB-468 and HCC70 cell lines (Fig. 1a, Additional
file 4: Table S3). Drug perturbations of amino acid pool
sizes demonstrated similar response of mesenchymal-like
subtype MDA-MB-231 and Hs578 cell lines to both,
INC280 or erlotinib, treatment (Fig. 1b). Clusters of each
subtype and cell line were well separated by metabolic
profiles and drug responses showing that each subtypes
had major similarities but each breast cancer cell line also
had distinct components. The TCA cycle organic acid
α-ketoglutaric acid is significantly reduced upon INC280
treatment with p values below 0.05 for all tested TNBC
cell lines. Similarly, TCA cycle and central carbon metabo-
lites aspartic acid, fumaric acid, and malic acid are signifi-
cantly reduced upon erlotinib treatment with p values

below 0.05 for all cell lines. In addition, the MDA-MB-231
cell lines show significant perturbation of amino acid
metabolism for both inhibitors. Interesting, the MDA-
MB-231 cell line stands out for its strong metabolic per-
turbation affecting TCA cycle metabolites, many amino
and keto acids (Fig. 1b).

TNBC basal metabolic profiles
MDA-MB-231 and MDA-MB-468 cells exhibited similar
glycolytic rates (extracellular acidification rate, ECAR)
compared to HME1 cells, while HS578t and HCC70 cells
displayed approximately 1.5 and two times the glycolytic
rate of HME1 cells, respectively (Fig. 2a, c). MDA-MB-
231 and HS578t cells exhibited slightly elevated oxygen
consumption rates (OCR) compared to HME1 cells,
whereas MDA-MB-468 and HCC70 displayed approxi-
mately four times the oxygen consumption rate of HME1
cells (Fig. 2b, c). Determining each cell lines’ relative
ECAR/OCR ratio provides a relative index of which meta-
bolic program each cell line utilizes more in the basal state
(Fig. 2d). HME1 cells utilize relatively more basal glyco-
lytic than oxidative metabolism, as do Hs578T and MDA-
MB-231 cells. HCC70 cells utilize relatively similar basal
glycolytic and oxygen metabolism, while MDA-MB-468
cells utilize relatively more oxygen metabolism than

Fig. 1 Metabolomics profiling of TNBC cell lines. Hierarchical clustering of metabolic profiles of TNBC cell lines reveals molecular heterogeneity
between subtypes. a Pool size measurements show common clusters of low TCA cycle and elevated amino acid metabolites of mesenchymal-like
subtype cell lines MDA-MB-231 and Hs578 vs basal-like subtypes HCC70 and MDA-MB-456. b Clustering of drug responses of TNBC cell lines (average
ratios of metabolite concentrations in conditions INC280/vehicle and erlotinib/vehicle are plotted for each set of biological triplicates).
Drug perturbations of reduced amino acid pool sizes show similar response of reduced amino acid pool sizes upon receptor tyrosine kinase inhibitor
treatment of mesenchymal-like subtype MDA-MB-231 and Hs578 cell lines. INC280/capmatinib was used to inhibit proto-oncogene MET
receptor tyrosine kinase, and erlotinib was used to inhibit receptor tyrosine kinase and growth factor receptor EGFR in TNBC cell lines
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glycolytic metabolism (Fig. 2d). Together, the analyses of
basal metabolic rates indicate that HME1, MDA-MB231,
and Hs578T are all more poised to rely on glycolytic me-
tabolism, while MDA-MB-468 cells are more poised to
rely on oxidative metabolism in the basal state. Interest-
ingly, in the basal state, HCC70 cells exhibited the greatest
glycolytic and oxidative metabolism rates (Fig. 2a–c), but
also exhibited the most balance between these rates
(Fig. 2d). Understanding basal metabolic rates and the
relative metabolic index may provide insight into which
metabolic program specific cancers or cancer cell
models may be especially sensitive (Fig. 4).

TNBC maximal metabolic profiles
While basal metabolic rates (Fig. 2) are informative, most
cells harbor the ability to alter one metabolic program in
order to compensate when another metabolic program is
perturbed. Therefore, inhibition of one metabolic program
(e.g., glycolysis) allows measurement of the maximal
capability of the other metabolic program (e.g., oxidative
metabolism) (Fig. 3a). To determine the maximal glyco-
lytic and oxygen consumption metabolic capabilities
(Additional file 5: Figure S2A, B) in these TNBC cell
models, we measured respiration arrest-induced max-
imal glycolytic rates and depolarization-induced maximal
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OXPHOS rates (Fig. 3b, c). The MDA-MB-231 cell line
and the non-transformed mammary gland epithelial cell
model, HME1, exhibited the least metabolic flexibility, as
demonstrated by only moderate adjustments in ECAR
and OCR (changes in values post-FCCP addition, Fig. 3b)
and subsequent calculated glycolytic reserve and spare re-
spiratory capacity rates (Fig. 3c). Interestingly, these two
cell lines also displayed very modest basal metabolic rates
(Fig. 2). Hs578T maximal ECAR and OCR were moder-
ately elevated above basal rates, above those of HME1 and
MDA-MB-231 but below MDA-MB-468 and HCC70.
Both MDA-MB-468 and HCC70 maximal ECAR were

nearly double basal rates, with HCC70 displaying the
greatest glycolytic capacity. MDA-MB-468 and HCC70
maximal OCR were moderately elevated above basal
rates, and MDA-MB-468 displayed the greatest capacity
for oxidative metabolism. From these measurements,
glycolytic reserve and spare respiratory capacity can be
calculated (Fig. 3a). While all cell models displayed
some glycolytic reserve, HCC70 and MDA-MB-468
cells exhibited the greatest glycolytic reserves (Fig. 3d).
MDA-MB-468 also exhibited the greatest spare respira-
tory capacity (Fig. 3d). These data indicate that each of
the TNBC cells possesses a measure of metabolic
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from one representative experiment, with error bars representing SD. d Glycolytic reserve (derived from b) and spare respiratory capacity (derived from c)
calculations. Data are expressed as actual rate unit increase and percent increase over basal rates. Rate increases were calculated by subtracting the basal
rate values from the maximal rate values. Percent increases were calculated by dividing the rate increase values by the basal values
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flexibility as defined by their abilities to increase
ECAR or OCR when the one program is perturbed,
with MDA-MB-468 cells exhibiting the greatest meta-
bolic flexibility.

TNBC response to metabolic modulators
To further characterize the metabolic profiles of these cell
models, we assessed the effects on viability following
treatment with metabolic modulators at concentrations
commonly utilized in published literature (Fig. 4). These
experiments evaluated the effects of the 5′ adenosine
monophosphate-activated protein kinase (AMPK) activator
[5-aminoimidazole-4-carboxamide-1β riboside (AICAR)]
[48], the glycolytic inhibitor 2-deoxy-glucose (2DG) [49],
the pentose phosphate inhibitor 6-amino-nicotinamide
(6-AN) [50], the mitochondrial complex I inhibitor
rotenone [51], and the AMPK activator/Complex I in-
hibitor metformin [52, 53] (Fig. 4a). Similar to the meta-
bolic rate investigations above, the TNBC models
exhibited heterogeneous responses to these treatments;
however, from these results, some interesting patterns
were observed (Fig. 4b–f). Each TNBC model exhibited an

approximately 40–60% loss of viability in response to the
glycolytic inhibitor 2-DG. Interestingly, HME1 cells, which
exhibited the greatest bias towards basal utilization of
glycolytic metabolism (Fig. 2e), were most affected by
2-DG treatment, as well as the pentose phosphate in-
hibitor 6-AN (Fig. 4b). Conversely, MDA-MB-468
cells, which exhibited the greatest bias towards basal
utilization of oxidative metabolism (Fig. 2e), were
most affected by the electron transport chain inhibi-
tor, rotenone (Fig. 4d).
Also of note, Hs578T cells exhibited enhanced pro-

liferation in response to AICAR while other cell lines
exhibited variable decreases in viability compared to
control. While AICAR and metformin are both com-
monly used as AMPK activators, they activate AMPK
via disparate mechanisms. However, metformin and
rotenone both perturb oxidative phosphorylation through
respiratory chain complex I (RCI) inhibition. Our results
reveal more similar viability effects between metfor-
min and rotenone (common RCI inhibitors) than
between metformin and AICAR (common AMPK activa-
tors) (Fig. 4b–f ).
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Comprehensive analysis of rate-limiting enzymes and RTK
inhibition
EGFR and MET receptors are known to drive tumori-
genic progression, and RTKs are known to regulate
metabolic signaling pathways [54]. To investigate the
effects of EGFR and MET inhibition on TNBC metabol-
ism, we measured ECAR and OCR in TNBC cells
treated with the EGFR inhibitor erlotinib and the MET
inhibitor INC280 (capmatinib). As in the above analyses,
the TNBC cell models displayed heterogeneous responses
to the tyrosine kinase inhibitors (TKIs). We observed that
MET and EGFR inhibition had little effect on the glyco-
lytic and oxidative metabolism rates of basal A/B subtype
MDA-MB-468 or HCC70 cell lines (Fig. 5a). In contrast,
in both mesenchymal-like MDA-MB-231 and Hs578T cell
lines, both MET and EGFR inhibition strongly perturbed
both glycolysis and oxidative metabolism (Fig. 5a). Import-
antly, comparing these data to a principal component ana-
lysis of our metabolomics data revealed that metabolic
changes of mesenchymal-like MDA-MB-231 and Hs578T
cell lines upon drug treatment recapitulated the observed
changes of metabolic fluxes (Fig. 5b). Both cell lines show
perturbation of the top two principal components

(reflecting 84.9% of the data) in the same direction and
magnitude. In contrast, major principle components of
metabolic perturbations do not change for basal-like
subtype MDA-MB-468 or HCC70. Despite the metabolic
responses of MDA-MB-231 and Hs578T cell lines to
INC280 vs erlotibib based on amino acid and TCA cycle
metabolism of mesenchymal-like cell lines are in agree-
ment, glycolytic rates show differential perturbation.
Among the assessed TNBC cell lines, mesenchymal-like
subtypes showed strong, consistent perturbations, des-
pite underlying heterogeneity of breast cancer subtypes.
To more comprehensively investigate the metabolic

consequences of EGFR and MET inhibition in TNBC
models, we performed a siRNA screen in each cell line
targeting all 323 rate-limiting enzymes in the human
KEGG metabolic pathways and Rate Limiting Enzyme
Regulation databases. This compliment of enzymes was
divided into 11 major metabolic categories representing
89 metabolic pathways (Additional file 3: Table S2). The
siRNA screen was performed in duplicate in each cell
line in cells treated with vehicle (DMSO), INC280, or
erlotinib. A sensitivity index was applied to viability mea-
surements to determine the effect of siRNA knockdown
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on drug sensitivity, and therefore identifies genes whose
knockdown preferentially reduces viability in TNBC cells
treated with a TKI vs vehicle alone (see Methods,
Additional file 6: Table S4). Eight of the 11 major meta-
bolic categories were represented in the sensitivity index
to varying levels for each TNBC model and each TKI
(Additional file 7: Figure S3, see also Additional file 6:
Table S4, Additional file 8: Table S5). Notably, lipid metab-
olism was prominent (represented > 15% of hits) in each
TNBC model treated with INC280 or erlotinib, while
amino acid metabolism was also prominent in each TNBC
model treated with INC280. Evaluating individual signifi-
cant rate-limiting enzymes in each group revealed poten-
tial sensitivities associated with specific TKI for some
TNBC subtypes (Fig. 5c). MDA-MB-231 and Hs578T cells
treated with erlotinib were sensitive to knockdown of fatty
acid genes, while MDA-MB-468 cells treated with the
same TKI were sensitive to knockdown of specific nucleo-
tide metabolism pathways. INC280 sensitized MDA-MB-
468 cells to knockdown of arachidonic and linoleic acid
metabolism rate limiting enzymes. Interestingly, a broader
analysis of metabolic pathways across cell TNBC subtypes
in response to TKI treatments identified additional sensi-
tivities. The top ten metabolic pathways identified by the
sensitivity index displayed significant overlap between
the TKI treatments (Additional file 7: Figure S3, see
also Additional file 8: Table S5). Additionally, within
this set of common pathways, three pathways which are
engaged to counteract oxidative stress were enriched in
the screen results (Glutathione metabolism, cytochrome
P450 metabolism, and non-P450 drug metabolism path-
ways). These results suggest that even with the molecular
heterogeneity that is present in TNBC, there are common
metabolic programs that can be targeted in TNBC sub-
types. Taken together, these data shows that targeting
pathways such as fatty acid metabolism, pyrimidine
metabolism, or oxidative stress relief pathways in combin-
ation with MET or EGFR inhibition may represent an
effective therapeutic strategy.

Discussion
In this study, we characterized the metabolic heterogen-
eity of TNBC and identified a core set of metabolic path-
ways that are common among the TNBC subtypes, yet
observed diverse metabolic profiles among TNBC cell
lines. Genetic and signaling heterogeneity is observed in
most solid cancers, and studies have indicated that there
is a particularly high level of genomic heterogeneity
among TNBC patients [39]. These observations of hetero-
geneity have been borne out in metabolic analyses of
TNBC as well. Analyses of TNBC patient tissues have
demonstrated heterogeneity of glycolytic and mitochon-
drial protein expression [40, 41, 55]. TNBC cell lines have

also exhibited heterogeneity with respect to glutamine
metabolism [42] and response to the metabolic modulator,
metformin [33, 34]. Therefore, the heterogeneity evident
between TNBC cell lines in our detailed metabolic
characterization extends these previous findings. Meta-
bolic pool sizes and drug responses revealed common
patterns between TNBC subtypes but also highlighted
cell line-specific responses (Fig. 1). Importantly, drug
responses of metabolic rates and principle metabolic
components identified a theme of metabolic capacity
and adaptability as major difference of mesenchymal-
like vs basal-like subtypes (Fig. 5) [56]. Basal-like cell
lines are metabolically most active with the highest
OCR and ECAR (Fig. 2c), resulting in low, depleted
metabolic pool sizes (Fig. 1a). Mesenchymal-like cell
lines have significantly lower OXPHOS allowing them
to modulate and adaptively respond to the drug chal-
lenges (Fig. 5a, b). The HCC70 cell is an example of
extremely high OCR and ECAR that allows for minimal
adjustment to drug challenges. The unique metabolic pro-
files (Figs. 1, 2, and 3) response to chemical modulators
(Fig. 4) and sensitivities to combined RTK, and metabolic
pathway inhibition (Fig. 5) provides platforms which can
help place the responses of these TNBC cell line models
in previous and future studies into a broader metabolic
context. For example, previous work demonstrated that
MDA-MB-468 cells are more sensitive to metformin than
MDA-MB-231 cells. Here, we provide a potential basis for
that observation as we found MDA-MB-468 cells to be
more poised to rely on OXPHOS than MDA-MB-231
cells (Fig. 2d). Therefore, this comprehensive metabolic
analysis provides a platform in which to identify thera-
peutic sensitivities within the TNBC metabolic landscape.
In the TNBC cell models that we evaluated, an index

mapping, the relative affinities for basal metabolic rates
(Fig. 2d), appeared more useful for predicting response
to chemical modulators (Fig. 4) than did an analysis of
maximal metabolic rates (Fig. 3). Cells which displayed
relatively higher OXPHOS rates than glycolytic rates
(MDA-MB-468) were the most sensitive to rotenone
treatment. On the other hand, cells which displayed rela-
tively higher glycolytic rates than OXHPOS rates (HME1,
Hs578T) were the most sensitive to 2-DG and 6-AN treat-
ment. Therefore, although a cell may harbor the ability to
greatly increase glycolytic rate when OXPHOS is
disrupted (MDA-MB-468, Fig. 3a, d), its higher basal
OXPHOS rate may reflect an absolute requirement for
high, sustained oxidative metabolism. Therefore, it is pos-
sible that cells which display the ability to upregulate alter-
native metabolic pathways in response to metabolic
insults still remain dependent on the metabolic pathways
which they preferentially utilize in the basal state.
In addition to glycolytic and mitochondrial oxidative

metabolism alterations, TNBC patient samples display
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evidence of altered glutamine metabolism compared to
HER2 positive cancers [57]. TNBC cancer cell line models
enhance glutamine uptake and metabolism, which are as-
sociated with epigenetic changes favoring expression of
pro-tumorigenic genes [58, 59]. Other studies provide
evidence of altered amino acid metabolism in TNBC.
MDA-MB-231 and MDA-MB-468 cells exhibit elevated
serine metabolism protein expression compared to HER2
positive cell lines, an observation that is shared in patient
samples [60, 61]. Metabolomics analyses of patient sam-
ples identified lower amino acid levels in TNBC patients
compared to healthy controls [62]. A folate metabolism
enzyme may also serve as a biomarker for TNBC in dis-
tinct ethnic populations [63]. Finally, altered lipid metab-
olism appears to play a part in TNBC. Patient TNBC and
non-TNBC tissues can be discriminated based on markers
of lipid metabolism [64, 65], and MDA-MB-231 and
MDA-MB-468 cells are effectively induced to undergo
apoptosis upon suppressing expression of the lipogenic
transcription factors, SREBP1/2 [66]. Recent metabolo-
mics analyses identified metabolites associated with the
Warburg effect, and the oxidative stress response, and
specific metabolite signatures associated with different
driver mutations [67]. Metabolomics have also identified
potential global differences in breast cancer-associated
metabolites between patients of different races [61], and
miRNA-associated thiamine homeostasis specific to
TNBC patient samples [68].
RTKs are promising drug targets due to their high

expression in TNBC. The success of trastuzumab in
HER2+ breast cancer underscores the potential of target-
ing tyrosine kinases yet, in spite of this promising start,
monotherapy with tyrosine kinase inhibitors (TKIs) has
had limited success in the clinic. In this study, we evalu-
ated the effects of RTK inhibition on metabolic pathways
in TNBC. This analysis highlighted the unique metabolic
dependencies in our TNBC models, but also revealed
reveal a core set of metabolic pathways that are univer-
sally affected by TKI treatment. Collectively, TNBC cells
were commonly sensitized to inhibition of redox homeo-
stasis, fatty acid metabolism, and nucleotide metabolism
by erlotinib and INC280 treatment. The metabolomics
results provide a mechanistic basis for the lipid metabol-
ism sensitivity identified in the RLE siRNA screen. Flux
analyses of multiple cancers demonstrate that altering
TCA cycle flux significantly impinges upon lipid metab-
olism [69]. Therefore, the sensitivities to lipid metabolism
RLE knockdown could be predicted by the concurrent
changes in amino acid metabolites. Glutathione metabol-
ism, cytochrome P450 metabolism, and non-P450 drug
metabolism pathways, each of which ameliorate oxidative
stress, were enriched in the siRNA screen, highlighting
the importance of redox homeostasis in this context. Clin-
ically, redox pathways have been shown to be upregulated

in TNBC vs ER+ tumors [70] and heightened glycolytic
metabolism may be regulated in part by oxidative stress in
TNBC cells [71]. Our data provide additional impetus for
co-targeting these metabolic and kinase pathways in
TNBC patients [72]. siRNAs targeting fatty acid metabol-
ism and specifically arachidonic acid metabolism genes
were also common hits in the screen. Expression of fatty
acid metabolism enzymes have previously been associated
with TNBC metastasis [64] and survival rates [65].
Arachidonic acid metabolism itself may also be linked
to cytochrome P450 metabolism in breast cancers
[72]. Interestingly, suppression of tryptophan metabol-
ism enhances INC280 treatment (Additional file 7:
Figure S3). A previous investigation of BT549 TNBC cells
demonstrated a link between tryptophan metabolism-
dependent kynurenine production and breast cancer cell
anoikis resistance, particularly in ER negative cell [73]. Be-
cause the data in Fig. 3d show that MDA-MB-468 cells
have very little relative glycolytic activity while maintaining
high OXPHOS activity, it would be reasonable to expect
less effects from suppression of carbon metabolism RLEs.
The data in Additional file 2: Figure S3 bear this out as
carbon metabolism RLE knockdown has the least effect on
MDA-MB-468 cells. A potential mechanism for this obser-
vation may be the KRAS mutational status of MDA-MB-
468 cells which is not shared by the other TNBC lines
under study. A previous study has demonstrated that
some KRAS-driven cancers cells significantly upregu-
late OXPHOS metabolism [74]. Finally, MET or EGFR in-
hibition collectively sensitized TNBC cells to knockdown
of pyrimidine and purine metabolism enzymes. Interest-
ingly, a significant proportion of the siRNA hits driving
enrichment of these metabolic pathways in our study are
5′-nucleotidases and nucleotide kinases. These results
suggest that regulation of nucleotide phosphorylation
plays an important role in determining sensitivity to RTK
inhibitors in TNBC. Therefore, small molecules disrupting
nucleotide phosphorylation dynamics may prove effective
at enhancing RTK inhibition in TNBC.

Conclusions
The findings in this study provide comprehensive infor-
mation on the metabolic background of TNBC subtypes,
their unique and common metabolic dependencies, and
how they respond to metabolic insults. These results
provide a valuable resource for investigators who utilize
these TNBC cell lines. Additionally, our siRNA analysis
establishes a comprehensive analysis of metabolic rate-
limiting enzymes and identifies erlotinib- and INC280-
sensitized pathways. Overall, this comprehensive meta-
bolic analysis demonstrates the metabolic heterogeneity
within TNBC and identifies therapeutic sensitivities that
may be exploited in treating TNBC patients.
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Additional file 1: Table S1. Genes targeted and siRNA sequences used
in siRNA screen. (XLSX 57 kb)

Additional file 2: Figure S1. RNAi screen, cell lines, and metabolic
rates. (A) Schematic of RNAi screen (left) and transfection efficiency under
screen conditions (right). (B) Characteristics of each cell line used in this
study. (C) Schematic representing biological compartments and
metabolic pathways assessed for metabolic rates. (PDF 957 kb)

Additional file 3: Table S2. Genes and metabolic categories and
pathways used in siRNA screen. Rate-limiting enzymes were collated
through KEGG annotation (http://www.genome.jp/kegg/), the Rate-Limiting
Enzyme Regulation Database (http://rle.cbi.pku.edu.cn/home.cgi, [51]), and
literature searches and categorized according to KEGG. (XLSX 25 kb)

Additional file 4: Table S3. Quantitation of metabolic pool sizes, ratios
for cell lines, and drug responses with statistical values. Total ion count
integrated over peak area for metabolite-specific mass ion validated by
multiple precursor-product ion combinations. Mean, standard deviation,
and ANOVA with student’s t test compares triple-negative breast cancer
(TNBC) cell lines and treatment with INC280 or erlotinib vs control vehicle
(DMSO). (XLSX 52 kb)

Additional file 5: Figure S2. OCR and ECAR measurement explanation.
(A) i. Normally functioning cellular respiration utilizes electrons in the
form of NADH and FADH2 to pass down the electron transport chain
(ETC) gradient. These redox reactions in the ETC pump hydrogen ions
from the mitochondrial matrix into the mitochondrial inner membrane
space (IMS), providing an electrochemical gradient which in turn powers
ATP synthase-dependent ATP production. ii. FCCP is a lipid-soluble
ionophore that allows hydrogen ions to escape the IMS, functionally
uncoupling the ETC from ATP synthase-mediated ATP production. iii. In
order to restore FCCP-mediated depletion of ATP levels, glycolytic flux
increases to maximum capacity. iv. In order to maintain a minimal
hydrogen ion gradient in the IMS, mitochondrial complex IV activity
increases to maximum capacity, thus inducing maximum oxygen
consumption. (B) The order of metabolic rate measurements and
metabolic toxin treatment for maximal rate measurements. i. Basal
glycolytic rate. ii. Respiration arrest-induced maximal glycolytic rate. iii.
Glycolytic arrest. iv. Basal OXPHOS rate. v. Depolarization-induced
maximal OXPHOS rate. vi. OXPHOS arrest. (PDF 997 kb)

Additional file 6: Table S4. Drug response and sensitivity index for siRNA
treatment of triple-negative breast cancer (TNBC) cell lines.. (XLSX 128 kb)

Additional file 7: Figure S3. Sensitization to metabolic pathway
perturbation. (A) Graphical representation of the proportion which each
metabolic category (Table S2) was represented in the top 10% sensitivity
index scores. (B) The combined top ten pathways as defined by high-
scoring sensitivity index genes for each TKI (INC80 or erlotinib). (PDF 801 kb)

Additional file 8: Table S5. Top 10% scoring siRNAs in the siRNA
screen for each condition. (XLSX 27 kb)
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