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Abstract

Methane emissions from ruminant livestock contribute significantly to the large environmental footprint of agriculture.
The rumen is the principal source of methane, and certain features of the microbiome are associated with low/high
methane phenotypes. Despite their primary role in methanogenesis, the abundance of archaea has only a
weak correlation with methane emissions from individual animals. The composition of the archaeal community appears
to have a stronger effect, with animals harbouring the Methanobrevibacter gottschalkii clade tending to be associated with
greater methane emissions. Ciliate protozoa produce abundant H2, the main substrate for methanogenesis in the rumen,
and their removal (defaunation) results in an average 11% lower methane emissions in vivo, but the results
are not consistent. Different protozoal genera seem to result in greater methane emissions, though community types
(A, AB, B and O) did not differ. Within the bacteria, three different ‘ruminotypes’ have been identified, two of which
predispose animals to have lower methane emissions. The two low-methane ruminotypes are generally characterized
by less abundant H2-producing bacteria. A lower abundance of Proteobacteria and differences in certain Bacteroidetes
and anaerobic fungi seem to be associated with high methane emissions. Rumen anaerobic fungi produce abundant
H2 and formate, and their abundance generally corresponds to the level of methane emissions. Thus, microbiome analysis
is consistent with known pathways for H2 production and methanogenesis, but not yet in a predictive manner. The
production and utilisation of formate by the ruminal microbiota is poorly understood and may be a source of variability
between animals.
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Background
Methane is a greenhouse gas (GHG) with a global
warming potential 28-fold that of carbon dioxide [1].
Agriculture makes a significant contribution to total
GHG production, with estimates varying according to
country and calculation method [2]. Nonetheless, a
global contribution of between 7 and 18% of total an-
thropogenic GHG emissions is generally accepted [2].
Ruminant production accounts for about 81% of GHG
from the livestock sector (calculated from Hristov et al.
[2]), 90% of which results from rumen microbial meth-
anogenesis [3]. Ruminal CH4 production also represents
a loss of energy (from 2 to 12% of gross energy intake
[4]), which could in principle otherwise be available for
animal growth or milk production. Lowering CH4

emissions therefore would benefit the environment and
possibly the efficiency of livestock production. More
than 87% of the CH4 produced by sheep has been
estimated to be derived from the rumen [5], where a
population of methanogenic archaea converts the H2

and CO2 produced by a complex community of ciliate
protozoa, bacteria and anaerobic fungi to CH4 [6, 7]. A
massive worldwide research effort has investigated
various mitigation strategies. Changes in management
practices can be simple and very effective [2], while feed
additives that might inhibit H2 production, provide an
alternative metabolic H sink or inhibit the archaea
themselves offer opportunities beyond those straightfor-
ward management changes [6–11]. Other opportunities
include chemogenomics and immunization [12–14].
One strategy that is foremost in several investigations is
genetic selection of the livestock. If we can demonstrate
that persistently different CH4 emissions in different
animals [14–16] can be explained by their individual
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ruminal microbiomes, and that the characteristic is
heritable, it should be possible to select future genera-
tions of ruminants that have intrinsically lower CH4

emissions. All the strategies potentially involve changing
the ruminal microbiome. The aim of this short review is
to assess our current understanding of the role of differ-
ent members of the microbiome in determining the
extent of methanogenesis in the rumen.

The rumen microbial community
The rumen is home to a vast array of ciliate protozoa,
anaerobic fungi, anaerobic bacteria and archaea. The
protozoa can comprise up to half the rumen microbial
biomass [17, 18], the fungi were originally estimated to
be about 8% of the biomass [19] but may reach 20% in
sheep [20], the archaea comprise 0.3–4% [21] and the
bacteria form the remainder, typically the largest compo-
nent of the microbial biomass. Our present understand-
ing of ruminal microbiology was built initially upon a
few epoch-changing advances made many years ago:
Gruby & Delafond’s [22] microscopic observations of
protozoa; Hungate’s [23] appreciation of the anaerobic
nature of the rumen that led to new, truly anaerobic cul-
ture techniques for the bacteria; Orpin’s [24] realization
that some flagellate protozoa were in fact zoospores of
anaerobic fungi, until then a contradiction in terms. The
isolation and study of pure cultures was and remains in-
valuable in understanding the likely role of different
species of bacteria, protozoa or fungi in the overall
fermentation. Drawbacks of cultivation techniques are
that only a very small number of samples can be tested,
and that they suffer from bias, whereby the composition
of the growth medium, generally too rich, determines
which species can grow [25]. Development of molecular
techniques, based mainly on ssu rRNA gene and inter-
genic spacer sequence (for the fungi) analyses, opened
new opportunities in rumen research. Cloning and
sequencing provided community analyses that were not
prone to the biases imposed by cultivation techniques,
although different bias was introduced by other factors,
like storage conditions [26], the differential efficiency of
DNA extraction from different species and amplification
bias [27–29]. Related techniques for microbiome analysis
quickly followed (DGGE, TGGE, T-RFLP, ARISA).
Quantitative PCR and FISH enabled microbial groups or
species to be quantified [30]. Now, metagenomic se-
quencing enables rapid community analysis to be carried
out, without the cultivation bias or variation associated
with primer selection or PCR amplification irregularities
[25, 31]. The problem of DNA extraction remains, how-
ever, and databases are relatively weak where ruminal or-
ganisms are concerned [32]. Nevertheless, if we can use
this approach to determine how the functional activity
of the rumen microbial community influences methane

emissions, the knowledge should enable strategies to
decrease the environmental impact of livestock agricul-
ture. Furthermore, it might be expected to improve
animal production efficiency.

Ruminal community analysis relating to methane
emissions
Archaea
There are two main routes for methanogenesis in the
rumen, both carried out by archaea. The hydrogeno-
trophic pathway converts H2 and CO2 produced by the
protozoa, bacteria and fungi to CH4 [3, 6]. It is usually
assumed that formate, which can be used by all the most
abundant ruminal archaea, is equivalent to H2 + CO2, so
formate is included in the hydrogenotrophic category
[21, 33]. A second category of substrate for methanogen-
esis is methyl groups, such as those present in methyl-
amines and methanol [34, 35]. Methylamines are derived
from glycine betaine (from beet) and choline (from plant
membranes), while methanol is derived from the
hydrolysis of methanolic side-groups in plant polysac-
charides. The most common hydrogenotrophic archaea
are from the genus Methanobrevibacter, which has been
divided into two subgroups, one known as the SGMT
clade (Mbb. smithii, Mbb. gottschalkii, Mbb. millerae
and Mbb. thaueri), the other (RO) clade comprising
principally Mbb. ruminantium and Mbb. olleyae [21, 36].
Other significant hydrogenotrophic genera include
Methanosphaera, Methanimicrococcus and Methanobac-
terium. The less abundant methylotrophs (Methanosarci-
nales, Methanosphaera, Methanomassiliicoccaceae) can
use methylamines and methanol, and there are archaea
(Methanosarcinales) that produce methane via the aceti-
clastic pathway (reviewed in Morgavi et al. [7]). Rumen
methanogenic archaeal diversity is restricted to four
orders [21] and is highly conserved across 32 ruminant
species collected worldwide [32].
Intuitively, archaea should be the microbial group

most closely correlated with methane emissions. How-
ever, some studies have shown no such correlation with
their overall abundance while in others the correlation
has been weak. Morgavi et al. [37], Zhou et al. [38],
Danielsson et al. [39] and Danielsson [40] found no
correspondence between the numbers of methanogens
and methane emissions from dairy cows when measured
using metagenomics and qPCR techniques. Kittelmann
et al. [41] and Shi et al. [42] formed a similar conclusion
in sheep. A weak correlation between archaeal abun-
dance relative to bacteria was found in beef steers [43]
but none was found with dairy cows in the RuminOmics
project [http://www.ruminomics.eu/] when expressed as
the archaea:bacteria ratio (Fig. 1). Shi et al. [42] also
observed that archaeal gene expression rather than gene
abundance was correlated to methane emissions from
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individual sheep. It is easy to see why gene expression
might be a useful proxy for methanogenesis in a static
system like soil [44], but less so in a flowing system like
the rumen, where for physiological reasons biomass
must be directly correlated to gene abundance unless
other processes, such as uncoupled CH4 production
occur [45].
Given the high variability of the relationship with over-

all archaeal abundance, it may be that the composition
of the archaeal community rather than just its size may
have greater significance with regard to methane emis-
sions. Zhou et al. [38], Danielsson et al. [39], Shi et al.
[42] and Danielsson [40] all found a positive correlation
between the relative abundance of Methanobrevibacter
SGMT clade and methane emissions. Danielsson [40]
interpreted this correlation in terms of different affinities
for H2 in the two groups, with the SGMT clade posses-
sing methyl coenzyme M reductase isozymes McrI and
McrII [12], which enables the archaea to utilise H2 at
higher concentrations, against the RO clade that possess
only McrI [3, 12]. The dynamics of the of the archaeal
community composition and thus the efficiency of H2

utilization would in turn would be a consequence of
differing H2 production by different bacteria [33, 41] and
presumably also protozoal and fungal communities.
Furthermore, the proportion of Methanosphaera spp. in
total archaea was negatively associated with methane
production in sheep [41], although not in beef cattle
[46]. Thus, differing methane emissions are at least
partly due to varying relative abundances within the
community of methanogenic archaea.

Other observations regarding the archaeal community,
sometimes called the archaeome, include those of Pitta
et al. [47], who found that archaeal abundance increased
in steers suffering frothy bloat, and Pei et al. [48], who
discovered archaea associated with the rumen epithe-
lium. In the former case, the CH4 content of the gas was
not measured, so it is unclear the impact the bloat
would have on methanogenesis. In the latter, the finding
was surprising because the rumen wall is considered to
be an aerobic/anaerobic interface, and the relative abun-
dance of O2 might be considered to suppress the growth
of the extremely O2-sensitive methanogens. In fact, one
might have possibly expected CH4 oxidisers to be
present, in spite of their absence from the deep ruminal
digesta [49].

Ciliate protozoa
Ruminal ciliates are intimately involved in methanogen-
esis, partly via their abundant H2 production [50] and,
taking advantage of this, their associated methanogens,
which are found both as intracytoplasmic commensals
and on the exterior surface of the protozoa [3, 18, 51–53].
Several studies suggested a correlation between the
abundance of protozoa and methane emissions (collated
in [18, 54, 55]), while others do not [37, 43]. Guyader et al.
[56] conducted a meta-analysis containing 28 experiments
and 91 treatments. This meta-analysis showed a linear
positive relationship between log10 protozoal numbers
and methane emissions expressed per unit DMI. An
r = 0.96 showed that there is indeed a reasonably
strong relationship (Fig. 2).

Fig. 1 Archaea:bacteria relative abundance in relation to methane emissions, preliminary data from the 1000-cow RuminOmics project. Dairy cows on
different farms throughout Europe received grass or maize silage:concentrate diets of similar nutrient composition. Feed intake was measured either
directly or calculated from faecal long-chain hydrocarbons. Samples of rumen contents were removed by stomach tube and DNA was extracted by
the Yu & Morrison method [110]. Abundances were calculated from qPCR of 16S rRNA genes using universal primers for archaea and bacteria
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Defaunation (the removal of the ciliates from the
rumen) has therefore been investigated in relation to
methane production. Although in some cases the results
of defaunation on CH4 emissions have not been encour-
aging [57–60], Newbold et al. [18] carried out a meta-
analysis of defaunation studies and concluded that CH4

was decreased on average by 11%. Despite the lower CH4

production, the total archaeal abundance was not signifi-
cantly decreased in the Newbold et al. meta-analysis,
suggesting that the archaeal community in defaunated
animals may have a lower CH4-emitting specific activity
than that of the protozoa-associated community.
As with the archaea, the questions then revert to

whether some individual protozoal genera or species,
and their associated archaea, are more linked with meth-
anogenesis than others. In general, the protozoa harbour
an archaeal population that, like the general archaeal
community, is dominated by Methanobrevibacter spp.
[61–64], although differences were observed in the
abundance of different archaea found in the protozoa
and in the non-associated archaea [18, 61, 65] that might
lead to different methanogenic specific activities in the
two populations. Furthermore, archaeal colonisation
abundance may differ between different protozoal spe-
cies [51] and each may be associated with different
predominant archaeal genera/species. Holotrichs in par-
ticular had an archaeal community that differed from
entodiniomorphid protozoa [53]. Larger ciliates appear
to be more heavily colonized by methanogens than
smaller ciliates [53, 66], and also by bacteria, suggesting
that there is not a selective colonisation by archaea [53].
The lower metabolic activity in terms of H2 production
of the larger protozoal species per unit biomass [50, 54,
58] presumably explains that smaller protozoa, and their
associated archaea, will be relatively more active in
methanogenesis than larger species. Indeed, in vitro

studies indicated that the smaller Entodinium spp. were
more associated with methane production than larger
species like Polyplastron multivesiculatum [50, 58]. In
vivo studies are inconsistent, however. Refaunation
experiments indicated that the abundance of Entodinium
spp. [67, 68] or holotrichs [68] correlated with higher
methane emissions. A large amplicon sequencing study
in sheep nevertheless found no relationship between the
relative abundance of different ciliates and methane
emissions [41]. Furthermore, ciliate communities fall
into a small number of types (A, AB, B and O [69])
depending on interactions, principally inter-species
predation. Despite the large differences in relative
abundance of different protozoa types in the different
community types, methane emissions could not be
correlated with protozoal community structure [70]. The
varying colonisation by archaea depending on the time
after feeding [71] is another confounding factor in trying
to evaluate the role of protozoa in methanogenesis.

Bacteria
Ruminal bacteria form the most diverse group within
the rumen, capable of utilizing fibre, starch, protein and
sugars [72]. Among numerous bacterial phyla found in
different studies, Firmicutes, Bacteroidetes and Proteo-
bacteria are the most abundant [32]. Fibrolytic bacteria,
especially cellulolytic Ruminococcus and several Eubac-
terium spp (Firmicutes), are well studied H2 producers.
On the other hand, the prominent cellulolytic genus,
Fibrobacter, does not produce H2, while Bacteroidetes
are net H2 utilizers [72]. Microbiome analysis has identi-
fied three different ‘ruminotypes’ that seemed to be
associated with variations in methane production by sheep
[41]. The low-CH4 production ruminotype Q was charac-
terised by high relative abundances of the propionate-
producing Quinella ovalis. Low-CH4 ruminotype S had

Fig. 2 Relationship between methane emission and rumen protozoa concentration in a meta-analysis of 28 different experiments. The black dashed
line represents the average within-experiment relationship. Reproduced from [56] with permission
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higher abundances of lactate- and succinate-producing
Fibrobacter spp., Kandleria vitulina, Olsenella spp., Prevo-
tella bryantii, and Sharpea azabuensis. The high-CH4

production ruminotype H had higher relative abundances
of species belonging to Ruminococcus, other Ruminococ-
caceae, Lachnospiraceae, Catabacteriaceae, Coprococcus,
other Clostridiales, Prevotella, other Bacteroidales, and
Alphaproteobacteria. The overall interpretation would be
that methane emissions depend on the abundance of the
H2-producing bacteria present; a corollary to this is the
observation that chemical inhibition of methanogenesis in
goats led to increases in the abundance of H2-consuming
Prevotella and Selenomonas spp. [73]. Proteobacteria were
4-fold less abundant (2.7 vs. 11.2% of bacteria) in high
emitting beef cattle [46] and a similar finding was made in
dairy cows [40]. The dominant family among Proteobac-
teria was Succinivibrionaceae. This finding seems to
parallel the high numbers of Succinivibrionaceae in the
Tammar wallaby [74], which, like the ruminant, is a
herbivorous foregut fermenter. It produces only about
one-fifth of the methane per unit of feed intake of rumi-
nants, which is attributed to the large community of
Succinovibrionaceae. An intriguing additional observation
common to these studies [40, 41] was that within different
Prevotella OTUs, some were correlated with a high CH4

phenotype, while others were associated with low emis-
sions. The different OTUs seem to cluster together
(Fig. 3), suggesting functional versatility within the
Prevotella genus. Further investigation of the pheno-
types of these dominant ruminal bacteria is needed,
which may well provide clues for future exploitation,
particularly as some Prevotella are reported to produce
formate [72].
In a dairy cattle study [75] with two CH4-mitigating

feed additives, grapemarc and a combination of lipids
and tannins, it was found that the microbiome differed
from the control diet in a similar way. Faecalibacterium
prausnitzii was over-represented in the low- CH4 diets,
and other microbiome markers that could be predictive
of low-CH4 phenotypes were identified. F. prausnitzii is
a bacterial species that is abundant in the human colon
[76] but is seldom mentioned in the context of the
rumen. It may prove a useful marker, but it is not
obvious how its properties could be mechanistically
connected to the low-CH4 phenotype.

Anaerobic fungi
The anaerobic fungi, like the protozoa, produce abun-
dant amounts of H2, along with CO2, formate and
acetate as metabolic end products [77]. Six fungal genera
have been detected in the rumen but recent molecular
research suggests existence of several new taxa [78], with
functions still to be understood. Methanogens are found
in close association with fungal hyphae [79]. Although

there is reason to suppose that fungal abundance might
be related to methane emissions, reports are few.
Kittelmann et al. [41] noted no difference in fungal com-
munity structure in relation to methane emissions from
sheep. In the RuminOmics project, however, preliminary
results suggest that two fungal species, Caecomyces
communis and Neocallimastix frontalis, are negatively
related to methanogenesis (r = -0.50 and -0.45, P < 0.001;
R.J. Wallace et al., unpublished]. The meta-analysis of
Newbold et al. [18] noted that one of largest effects of
defaunation, which leads to lower CH4 production, was
a decrease in fungal abundance. Whether this decrease
is a major or direct cause of lower CH4 production in
defaunated animals is unclear.

General considerations on variations in methanogenesis
and the microbiome
Contribution of non-hydrogenotrophic methanogenesis
The main substrates for methanogenesis in the rumen
are known to be H2 + CO2, formate and compounds
containing methyl groups like the methylamines and
methanol [21]. In the reviews already mentioned here,
formate and H2 + CO2 are usually considered to be
equivalent as substrates for methanogenesis and formate
is not treated separately. Formate feeds directly into the
methanogenesis pathway at the very beginning via for-
mate dehydrogenase [80]. Hungate et al. [81] estimated
that 18% of methane was formed via formate rather than
H2 + CO2. Yet there are some important aspects of
formate metabolism about which our understanding is
incomplete. The relationship between bacterial abun-
dances from microbiome estimates, above, was discussed
in relation to whether bacteria form H2, as in other ana-
lyses [33, 41, 43, 46], with little indication about formate
producers. There is a large uncertainty about bacterial
formate production, reflected in the summary tables of
Stewart et al. [72]. Although many species produce some
formate, precise amounts are not known and therefore
the importance of this production is difficult to estimate.
Perhaps the Hungate 1000 collection (www.rmgnetwork.org/
hungate1000.html) could be used as a resource to make such
measurements. At present, the Hungate 1000 project has its
emphasis on strengthening genetic databases [3], but much
phenotypic information is being collected alongside the main
thrust of the project. Assessing bacterial formate production
is further complicated by the knowledge that co-culture
experiments demonstrate that the metabolism of some
bacteria and fungi grown in the presence of methanogens
can be pulled in the direction of H2 or formate production
[82–85], so it is very difficult to be sure what the role of
different species might be in the mixed rumen community.
And perhaps most crucially, methanogenesis is not
the sole fate of formate in the rumen. Hungate et al.
[81] noted formate utilisation in the absence of
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Fig. 3 Neighbor Joining tree of Prevotella-like OTUs that had a negative (blue dots) or positive (red dots) relation to methane (expressed in terms of
g methane/kg DMI) in the 1,000-cow RuminOmics project. Multiple alignment was done using MUSCLE [111]. The Neighbor Joining tree was constructed
using p-distance and pairwise-deletion parameters. The tree was resampled 1,000 times and bootstrap values are indicated. The linearized tree was
computed using MEGA v5.1 [112] by using most abundant Bacteroidales OTUs to create an “outgroup”

Tapio et al. Journal of Animal Science and Biotechnology  (2017) 8:7 Page 6 of 11



methanogenesis, presumably by bacteria. Species like
Wolinella succinogenes use formate as an energy
source [72]. So, although it is usually stated that ru-
minal archaea utilise either H2 + CO2 or formate [3],
it is unclear whether they are indeed equivalent for
different archaea. For example, in co-cultures between
rumen anaerobic fungi and three methanogens, all the
methanogens used H2 but formate was only utilised
simultaneously by M. smithii [86]. The differential expres-
sion of formate dehydrogenase was one of the largest
differences between high- and low-emitting sheep [42].
The formate dehydrogenase of M. ruminantium M1 was
induced by co-culture with the formate-producing Butyri-
vibrio proteoclasticus [12]. Thus there are several reasons
to conclude that thinking about formate as a substrate in
the context of microbiomes differing in their methano-
genic activity might prove fruitful. Furthermore, despite
the emphasis on H2 produced by ciliate protozoa, the
quantity of formate produced seems to be many times
greater than H2 [65].
The methylamines and methanol are methyl donors

for methanogenesis by methylotrophic archaea, as
described above. Their contribution to methanogenesis
will depend to some extent on the concentration of
methylamines in the diet [34, 35]. But how efficient is
the process? Are methylamines converted quantitatively
to CH4, and are methylamine, dimethylamine and
trimethylamine equivalent in that respect? It is possible
that variation in CH4 emissions between individual
animals on some diets may be due to different efficien-
cies whereby methylamines are released from feed mate-
rials and converted to CH4.
One of the more surprising findings in the Mbb.

ruminantium M1 genome was the presence of three genes
encoding alcohol dehydrogenase [12]. It has been demon-
strated that ethanol can be used as a C source, but not as
sole C source [3]. Thus, the availability of ethanol from
bacterial fermentation may influence the dependence of
archaea on methanogenesis for ATP production, and
therefore affect the quantity of CH4 produced.

Influence of diet and mitigation measures
An important principle underlying this review is that
some microbiomes lead to different CH4 emissions when
other factors remain constant. Thus, key members of the
microbiome leading to high or low emissions should be
able to be identified. In the RuminOmics project, all dairy
cows received diets that were as nutritionally similar as
was possible given the different locations. Only by keeping
as many other factors as possible unchanged will it be
possible to dissect the role of different members of the
microbial community in determining low- and high-
emitting individuals. It should be noted here that we have
chosen to express CH4 production in terms of DMI, for the

simple reason that it makes it easier to identify a low-CH4

microbiome rather than a microbiome that forms less CH4

only because the host animal eats less.
The results of microbiome analysis so far were

expected in some respects, in the sense that diets high
in starch content are known to lead to lower methane
emissions, because starch utilising bacteria tend to
produce less H2 than others, for example [33, 72]. In a
similar way, the changed fermentation stoichiometry
linked with methane emissions is a very long established
observation [87, 88]. New questions have been
highlighted regarding different species associated with
high and low CH4 emissions under similar conditions.
Unexpected correlations have been found. But many
questions remain. It is also worth noting that widely
different taxa may have similar metabolic activities [89],
so there are several different microbiota that could lead
to similar metabolic properties.
Mitigation measures have been described comprehen-

sively elsewhere [2, 3, 6–10]. Perhaps the most promising
of these is 3-nitrooxypropanol, a molecule obtained
rationally by its structural similarity to methyl-CoM
[90–92]. As yet we do not know the full implications of
3-nitrooxypropanol, but encouragement can be obtained
that the concern that H2 accumulation might inhibit
overall fermentation does not seem to be such a problem
as was suggested by some in vitro experiments [33, 93]. It
is also worth noting that a 50% reduction in the growth
rate of methanogens would be sufficient to cause their
washout from the rumen [3, 33]. Complete inhibition of
growth is therefore not necessary.

Methane and feed efficiency
CH4 production and feed efficiency are linked, in the
sense that a low feed efficiency, expressed as residual feed
intake (RFI), is accompanied by lower CH4 production
[94–96]. The reverse does not apply, however, as has been
found in dairy cows in the RuminOmics project. The
findings that the abundance of certain Prevotella changes
according to feed efficiency in beef cattle [97, 98] and
many other taxa change in abundance [98] further empha-
sises our need to understand the role of Prevotella and its
different biotypes on ruminal fermentation and methano-
genesis. Shabat et al. [99] discovered that Megasphaera
elsdenii was more abundant in low-efficiency cows, as
were genes of the acrylate pathway, used by M. elsdenii in
propionate formation. The explanation for lower efficiency
was that M. elsdenii introduced a type of futile cycle in the
production and subsequent utilisation of lactate, an
energetically inefficient process.

The influence of the host animal
Many researchers believe, and some studies are begin-
ning to show, that the host animal exerts a controlling
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effect on its own gut microbiota [100–102]. The mech-
anism could conceivably be at a molecular level, perhaps
via complex interactions with receptors in the rumen
wall [103, 104] or antibodies in saliva [3, 105, 106]. More
likely, however, is that the physical structure and dynam-
ics of gut digesta are different in different animals.
Goopy et al [15] found that lower methanogenesis in
sheep was heritable and accompanied by the animals’
having smaller rumen volumes and therefore altered
fluxes of nutrients through the tract. This would have the
effect that less feed would be fermented in the rumen,
leading to lower methanogenesis. Variations in saliva
production could lead to a similar result [107]. Both
would likely influence the ruminal microbiome. Therefore,
caution should be exercised in interpreting microbiome
analyses – the changed microbiome may be associated
with, but not cause, a decrease in methanogenesis.
Ross et al. [108] found good correlations between CH4

emissions and the broad characteristics of the micro-
biome. Now, metagenomics has shown that the
abundance of certain groups of microbial genes can be
highly predictive of CH4 emissions [46, 109] and feed
efficiency [99]. For example, 20 microbial genes ex-
plained 81% of variation in CH4 emissions from beef
cattle, while 49 genes explained 86% of variation in RFI
[109]. Furthermore, the animal’s genetic background was
a factor in determining these gene abundances [109].
This is the early phase of what is sure to be a fertile area
in which animal-microbiome-emissions can be delin-
eated by metagenomics profiling, and animal breeding
based on these gene abundances may lead to animals
with lower CH4 emissions.

Conclusions
Recent large scale projects such as the Global Rumen
Census, the Hungate 1000 and RuminOmics, from
which some preliminary results are presented here, have
provided new depth of insight into the composition and
function of the rumen microbial community. By reveal-
ing the some of the relationships between the micro-
biome and the animal phenotype, they have shown how
understanding the role of the rumen microbiota can
help in the efforts to reduce the environmental impact
of livestock agriculture, in particular with the amelior-
ation of greenhouse gas emissions. The archaea have
been the main target for research, being directly
associated with methane production in the rumen. How-
ever, other major microbial groups such as the ciliate
protozoa, the anaerobic fungi, Succinovibrionaceae and
Prevotella, among others, have shown to be associated
with both high and low methane production. The results
illustrate that there are basic phenotypic characteristics,
such as formate metabolism, that are insufficiently
understood. When placed in the context of the many as

yet uncultivated microbial species of the rumen, it
becomes clear that the powerful tool of molecular analysis
must be accompanied by cultural and metabolic/pheno-
typic analysis if we are to truly understand the relation
between the ruminal microbiome and methanogenesis.
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