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Does wild-type Cu/Zn-superoxide
dismutase have pathogenic roles in
amyotrophic lateral sclerosis?
Yoshiaki Furukawa1* and Eiichi Tokuda1,2

Abstract

Amyotrophic lateral sclerosis (ALS) is characterized by adult-onset progressive degeneration of upper and lower motor
neurons. Increasing numbers of genes are found to be associated with ALS; among those, the first identified gene,
SOD1 coding a Cu/Zn-superoxide dismutase protein (SOD1), has been regarded as the gold standard in the research
on a pathomechanism of ALS. Abnormal accumulation of misfolded SOD1 in affected spinal motor neurons has been
established as a pathological hallmark of ALS caused by mutations in SOD1 (SOD1-ALS). Nonetheless, involvement of
wild-type SOD1 remains quite controversial in the pathology of ALS with no SOD1 mutations (non-SOD1 ALS), which
occupies more than 90% of total ALS cases. In vitro studies have revealed post-translationally controlled misfolding and
aggregation of wild-type as well as of mutant SOD1 proteins; therefore, SOD1 proteins could be a therapeutic target
not only in SOD1-ALS but also in more prevailing cases, non-SOD1 ALS. In order to search for evidence on misfolding
and aggregation of wild-type SOD1 in vivo, we reviewed pathological studies using mouse models and patients and
then summarized arguments for and against possible involvement of wild-type SOD1 in non-SOD1 ALS as well as in
SOD1-ALS.
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Background
Amyotrophic lateral sclerosis (ALS) is an adult-onset neu-
rodegenerative disease classically characterized by loss of
motor neurons in the central nervous system including
motor cortex, brainstem, and spinal cord [1]. The loss of
motor neurons leads to inability to control voluntary mus-
cles and ultimately results in respiratory failure. Only two
drugs, Riluzole and Edaravone, are currently available, but
their therapeutic effects are limited to the extent that the
survival can be extended at most a few months [2]. To-
gether with full elucidation of the pathomechanism,

therefore, development of efficient cures for this devastat-
ing disease has long been demanded.
In 1993, mutations in the gene encoding Cu/Zn-super-

oxide dismutase (SOD1) were first reported as a cause of
ALS [3], and since then, more than 30 genes responsible
for ALS have been identified [1]. A genetic cause/predis-
position still remains unclear in most of ALS cases
(~ 80%), and SOD1 mutations describe only approxi-
mately 3% of total ALS cases (called SOD1-ALS) [4].
Nonetheless, pathological examinations on SOD1-ALS
cases provide us with important clues to understand
disease mechanisms; namely, SOD1 proteins abnor-
mally accumulate and form inclusions selectively in
affected motor neurons [5]. Based upon such patho-
logical observations, furthermore, a mechanism has
been proposed where SOD1 proteins assume an ab-
normal conformation (or misfold) by an amino acid
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substitution corresponding to a pathogenic mutation, ac-
cumulate as oligomers/aggregates, and then exert toxicity
to kill motor neurons [6]. Several researchers have
attempted to extend the pathological roles of SOD1 mis-
folding in SOD1-ALS to more prevailing ALS cases, in
which no mutations in the SOD1 gene are confirmed
(non-SOD1 ALS). In other words, wild-type SOD1 could
cause ALS when it somehow misfolds. Nonetheless, ex-
perimental results on the involvement of wild-type SOD1
in non-SOD1 ALS are not consistent among different re-
search groups, making this issue highly controversial. In
order to discuss SOD1 proteins as a potential target for
the development of therapeutics to ALS, we comprehen-
sively reviewed reports on possible roles of wild-type
SOD1 in the pathology of ALS.

Misfolded forms of SOD1 as a pathological hallmark of
SOD1-ALS
SOD1 is a metalloenzyme that catalyzes the dispro-
portionation of superoxide anion into hydrogen per-
oxide and molecular oxygen [7]. The enzymatic
activity in most of the patients with the SOD1 muta-
tions was almost half as much as those in healthy
controls [8], which had initially been considered to
trigger pathological changes in ALS. Indeed, homozy-
gous and even heterozygous knockout of the Sod1
gene in mice exhibited a wide range of phenotypes
relevant to ALS such as slowly progressive motor
deficits [8]. Recently, furthermore, human patients
with a homozygous truncating variant c.335dupG
(p.C112Wfs*11) in the SOD1 gene that leads to total
absence of the enzymatic activity were reported, and
the resulting phenotype was marked by progressive
loss of motor abilities [9, 10]. Heterozygous carriers
of the c.335dupG variant had an approximately halved
SOD1 activity when compared to normal controls but
appear not to develop symptoms of ALS [10]. Also,
the Sod1-knockout mice did not develop ALS-like
pathologies [8]; instead, overexpression of mutant
SOD1 in mice reproduces ALS-like pathological
changes with a significant increase in the SOD1 en-
zymatic activity [11]. While any reduction in the
SOD1 enzymatic activity might modify the ALS
pathomechanism, mutant SOD1 is considered to
cause the disease not through a loss of the enzymatic
activity but by a gain of new properties exerting tox-
icity to motor neurons.
As a pathological hallmark of SOD1-ALS, SOD1 pro-

teins are known to abnormally accumulate in motor
neurons (e.g. [5]), leading to prevailing idea that patho-
genic mutant SOD1 gains toxicity through its misfold-
ing into non-native conformations. While the abnormal
accumulation of SOD1 in motor neurons does not ne-
cessarily mean the misfolding of SOD1, biophysical

examinations in vitro using recombinant SOD1 pro-
teins have strongly supported conformational changes
of SOD1 by amino acid substitutions due to the patho-
genic mutations. SOD1 is functionally and conforma-
tionally matured through post-translational processes
including copper and zinc binding and disulfide forma-
tion [12]. The bound copper ion acts as a catalytic cen-
ter, whereas the bound zinc ion and the intramolecular
disulfide bond play roles in stabilizing the native struc-
ture [13–15]. Pathogenic mutations decrease the affin-
ity of SOD1 toward the metal ions and/or the stability
of the disulfide bond [16, 17], thereby disturbing the
native conformation of SOD1. In other words, the post-
translational maturation appears to be hampered in the
mutant SOD1 proteins, resulting in an increased pro-
pensity of SOD1 to misfold into oligomers and aggre-
gates. Indeed, in transgenic mice expressing human
SOD1 with ALS-causing mutations (G37R and G93A),
oral administration of a copper complex CuII (atsm) fa-
cilitates the copper binding of mutant SOD1 in their
spinal cords and improves the neurological phenotype
and survival [18–20]. Also, further expression of CCS,
which is a copper chaperone assisting the maturation of
SOD1 in vivo [21, 22], remarkably extends the survival
of the transgenic mice administered with CuII (atsm)
[23]. In the absence of the CuII (atsm) administration,
overexpression of CCS in the transgenic mice (G37R
and G93A) is known to dramatically reduce the mean
survival (from 242 days to 36 days), to which mitochon-
drial dysfunction appears to contribute due to the per-
turbation of intracellular copper dynamics [24, 25].
Increased amounts of CCS would supply most of the
intracellular copper ions to overexpressed mutant
SOD1 proteins; therefore, the copper ions are not re-
cruited to the other copper-requiring enzymes such as
cytochrome c oxidase in mitochondria. Indeed, overex-
pression of CCS did not influence the disease pheno-
types of the transgenic mice expressing human SOD1
with L126Z or murine SOD1 with G86R mutation [24],
which are considered to be unable to bind a copper ion.
Also notably, marked acceleration of disease in the
transgenic mice (G93A) with CCS overexpression was
not observed when the mice had an additional mutation
H80G in the SOD1 (G93A) transgene [26]. This is
probably because the zinc-binding in G93A-mutant
SOD1 was compromised by substitution of a zinc-
ligand (His80) to Gly. Given important roles of the zinc
binding in conformational stabilization of SOD1 [14,
27], H80G/G93A-mutant SOD1 was not able to receive
a copper ion from the overexpressed CCS. Misfolding
of SOD1 proteins in vivo as well as in vitro will hence
be circumvented through their post-translational mat-
uration of SOD1, which would eventually reduce the
toxicity of mutant SOD1 proteins.
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Pathological roles of wild-type human SOD1 in transgenic
mouse models of SOD1-ALS
Given that wild-type SOD1 is misfolded in vitro when
losing the bound metal ions and/or the conserved disul-
fide bond [28], SOD1 could exert the disease-causing
toxicity even without the pathogenic amino acid substi-
tutions. Actually, co-expression of wild-type human
SOD1 in transgenic mice expressing ALS-linked mutant
human SOD1 (G37R, G85R, G93A, and L126Z) is
known to accelerate the disease onset, suggesting the
toxicity of wild-type human SOD1 [29–35]. Also, mice
did not develop ALS-like symptoms upon expression of
A4V-mutant human SOD1, but co-expression of wild-
type human SOD1 in the A4V-SOD1 expressing mice
did trigger the progression of ALS-like disease [29]. Tak-
ing advantage of distinct electrophoretic mobilities of
wild-type and mutant SOD1 proteins (G85R and
L126Z), furthermore, wild-type human SOD1 was found
to accumulate as detergent-insoluble aggregates with the
mutant proteins in transgenic mice [29, 31, 33, 34],
while the interactions in the aggregates would not be
simply a co-assembly of mutant and wild-type proteins
[33]. A mechanism of disease-accelerating effects of
wild-type SOD1 remains unclear, but heteromeric inter-
actions between wild-type and mutant SOD1 appear to
aggravate the aggregation and toxicity in cultured cell
models [36] and have correlation with the disease sever-
ity [37]. It should be also noted that, in some studies,
overexpression of wild-type human SOD1 did not affect
the onset or duration of disease in mice expressing
G85R-mutant human SOD1 [5] or G86R-mutant murine
SOD1 [38]. Furthermore, disease-related phenotypes
were not observed in transgenic mice expressing human
SOD1 that has multiple mutations including those at
copper and zinc binding sites (H46R/H48Q/H63G/
H71R/H80R/H120G) and two free Cys residues (C6G/
C111S) with an ALS-linked mutation, H43R, and co-
expression of wild-type human SOD1 did not cause the
disease [35]. Such apparent discrepancies would, none-
theless, indicate that expression levels of SOD1 as well
as interactions between wild-type and mutant SOD1 play
key roles in exerting toxicity of wild-type human SOD1.
Even in the absence of ALS-causing mutant SOD1,

overexpression of wild-type human SOD1 alone can
exert motor neuron toxicity to mice. In hemizygous
transgenic mice expressing wild-type human SOD1, their
lifespan was not affected, but neurodegenerative changes
appeared in old age including mitochondrial vacuoliza-
tion, axonal degeneration and a moderate loss of spinal
motor neurons [32, 39, 40]. Upon decreasing glutathione
levels, the mice developed overt motor symptoms, and
their lifespan was decreased [41]. Also, spinal cord ho-
mogenates from the hemizygous wild-type human SOD1
transgenic mice were found to contain age-dependent,

progressive formation of high-molecular-weight SOD1
aggregates [40, 42], which would be caused by oxidation
of a unique tryptophan in SOD1 upon endoplasmic
reticulum stress [42]. Furthermore, homozygous wild-
type human SOD1 transgenic mice significantly in-
creased the expression levels of wild-type human SOD1
and thereby developed ALS-like syndrome with forma-
tion of aggregated SOD1 in spinal cord and brain [43].
Even without any amino acid substitutions, therefore,
wild-type human SOD1 could exert motor neuron tox-
icity to model animals under certain experimental
conditions.

Possible involvement of wild-type SOD1 in pathological
inclusions of SOD1-ALS patients
In contrast to the mouse models, pathological involve-
ment of wild-type SOD1 is highly controversial in
SOD1-ALS as well as non-SOD1 ALS patients. While
most of SOD1-ALS patients express both wild-type and
mutant SOD1 proteins, it is difficult to biochemically
and immunohistochemically distinguish between wild-
type and mutant SOD1 in tissues. In that sense, the in-
volvement of wild-type SOD1 was examined in a SOD1-
ALS patient with the G127insTGGG (G127X) mutation;
such a truncated G127X-mutant SOD1 can be discrimi-
nated from the wild-type protein because of the differ-
ence in size and also of a non-native procession of the
five amino acids following Gly127 in the variant [44, 45].
Wild-type SOD1 was detected in a detergent-insoluble
(0.1% Nonidet P-40-insoluble) fraction of the cervical
ventral horn of the G127X patient, while no control pa-
tients were examined [45] . Also, G127X patients had
aggregates in glial cell nuclei of spinal cords, some of
which were stained with an antibody (Chi 131–153 ab)
raised against a peptide sequence absent in G127X-
mutant SOD1 (Asn131 - Gln153) [46]. Those Chi 131–
153 ab-positive aggregates were not stained with a
G127X-mutant specific antibody directed to the non-
native, C-terminal sequence of the five amino acids, sug-
gesting pathological aggregation of wild-type SOD1 that
is not co-localized with G127X-mutant proteins. As dis-
cussed later, however, even in control patients, signifi-
cant amounts of wild-type SOD1 were present in the
0.1% Nonidet P-40-insoluble fraction [47]. Also, the
same research group has published the paper showing
that G127X-mutant but not wild-type SOD1 in the ven-
tral horn of lumbar spinal cord of a G127X patient was
sedimented by density gradient ultracentrifugation [44],
implying no involvement of the wild-type protein in the
mutant SOD1 aggregates. Some of the pathogenic full-
length as well as truncated mutant SOD1 proteins are
known to exhibit distinct electrophoretic mobilities from
that of the wild-type protein [48]; therefore, more bio-
chemical analysis on tissue samples from SOD1-ALS
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patients will reveal any involvement of wild-type SOD1
in the abnormal accumulation of SOD1 proteins in
spinal cord.

Controversies on pathological involvement of wild-type
SOD1 in non-SOD1 ALS
Also in non-SOD1 ALS cases, which are much more pre-
vailing than SOD1-ALS, there are harsh controversies on
pathological roles of wild-type SOD1. While few studies
have examined the metal binding and/or disulfide status
of wild-type SOD1 in ALS, the lack of such post-
translational processes is expected to result in the decrease
of its enzymatic activity. Indeed, SOD1 activity in brain
homogenates of sporadic ALS cases was reported to be
decreased [49], but another study confirmed little differ-
ences in the activity in several parts of the central nervous
system between sporadic ALS cases and non-ALS controls
[50]. It should be noted that only the activity but not the
amount of SOD1 was compared in those previous reports;
therefore, it remains to be concluded whether wild-type
SOD1 becomes misfolded and enzymatically inactive
under pathological conditions of ALS.
SOD1 is ubiquitously and highly (10–100 μM)

expressed as a soluble protein [51–53] (Human Protein
Atlas available from http://www.proteinatlas.org) and
diffusedly detected in most of subcellular compartments
including cytoplasm [54], mitochondria [55], nucleus
[56], and endoplasmic reticulum [57]. Based upon many
studies using mouse models as well as purified proteins
(e.g. [14, 58]), a consensus has been reached on the sig-
nificantly reduced solubility of SOD1 by ALS-causing
mutations, which leads to the formation of detergent-
insoluble SOD1 aggregates. It should, however, be noted
that only a few studies confirmed the solubility changes
of SOD1 proteins in spinal cord tissues of ALS patients
(even in those of SOD1-ALS patients).
Bosco et al. prepared insoluble pellets from spinal cord

homogenates in detergent-free lysis buffer, where compar-
able levels of SOD1 proteins were detected among a
SOD1-ALS case (A4V mutation), four sporadic ALS cases,
and four non-neurological controls [59]. No differences
were observed in the amount of 0.1% Nonidet P-40-
resistant SOD1 among two SOD1-ALS patients with the
homozygous D90A mutations and two controls [47]. In
contrast, when spinal cord homogenates were treated with
0.5% Nonidet P-40, significantly more amounts of SOD1
were detected in the insoluble fraction of a SOD1-ALS
case (A4V mutation) than those of two familial ALS cases
with unknown genetic causes, 12 sporadic ALS cases, and
three controls [60]. Significantly more amounts of SOD1
were also detected in the 1% Nonidet P-40-insoluble pel-
lets from two sporadic ALS cases (a non-SOD1 ALS and a
case with C9orf72 mutation) as well as two SOD1-ALS
cases (A4V and G72C mutations) than those of three

Alzheimer’s disease cases and four non-neurological con-
trols [61]. Furthermore, a filter-trap assay using a 0.22 μm
cellulose acetate membrane was examined to detect SOD1
aggregates in spinal cord homogenates containing Noni-
det P-40 and sodium dodecyl sulfate; wild-type SOD1
aggregates trapped on the membrane were significantly
augmented in the lumbar spinal cord of sporadic ALS
cases (4 positive/7 total) compared with control subjects
(0 positive/6 total) [42]. It is thus possible that SOD1 pro-
teins form detergent-insoluble aggregates in pathological
conditions of ALS cases even without SOD1 mutations
(Fig. 1, left), but more numbers of studies will be required
for conclusions.
Given that SOD1 is highly expressed in most of intracel-

lular compartments, an immunohistochemical method
using anti-SOD1 antibodies may be suitable for detection
of pathological changes occurring in wild-type SOD1 only
if the protein is densely accumulated as inclusion bodies.
Indeed, a subset of Lewy body-like (hyaline) inclusions in
the anterior horn cells of 10 out of 20 sporadic ALS pa-
tients (albeit with no test on SOD1 mutations) were im-
munoreactive to anti-SOD1 antibodies, while skein-like
inclusions and Bunina bodies were not [62–64]. Also,
SOD1-immunoreactive inclusions were discerned against
background staining in spinal cord motor neurons of a fa-
milial ALS patient without SOD1 mutation [50]. In the
other study, however, no SOD1-immunoreactivity was
confirmed in the hyaline inclusions of all sporadic ALS
cases examined (17 cases, again with no mention about
SOD1 mutations) [65]. While such a sharp discrepancy
among those studies remains to be solved, different SOD1
antibodies were used for immunohistochemical analysis: a
rabbit or sheep polyclonal antibody was raised against a
holo form of human SOD1 in the former two studies [66],
and a rabbit polyclonal antibody was raised against a
SOD1 peptide corresponding to Asp124 to Lys136 in the
latter [67]. These ideas are challenged by a report showing
no SOD1-positive inclusions in non-SOD1 ALS cases with
a rabbit polyclonal anti-SOD1 antibody or a mouse mono-
clonal anti-SOD1 antibody [68]. Nonetheless, misfolding
of SOD1 is well expected to affect epitope availability;
therefore, the choice of the antibodies is still a key factor
to detect any misfolded forms of SOD1 proteins in vivo.
Indeed, increasing numbers of studies have examined
non-SOD1 ALS cases with conformation-specific anti-
bodies that can discriminate misfolded SOD1 from the na-
tively folded protein in vitro (called misfolded-SOD1
antibodies hereafter).

Immunohistochemical examination on non-SOD1 ALS
cases with misfolded-SOD1 antibodies
As summarized in a recent comprehensive paper [69] as
well as in an excellent review [70], a number of
misfolded-SOD1 antibodies have been used for
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examination of sporadic ALS cases, and the results are
sharply divided. In this review, we performed extensive
search on the previous reports describing immunohisto-
chemical and/or immunofluorescence examinations on
human spinal cord tissues with misfolded-SOD1 anti-
bodies, which is summarized in Table 1. As colored cyan
in Table 1, some studies have claimed positive immuno-
staining of spinal cords (motor neurons and glial cells)
selectively in sporadic and familial ALS with misfolded-
SOD1 antibodies [46, 50, 59, 61, 69, 73–75]. As reviewed
later in detail, a misfolded-SOD1 antibody (α-miSOD1)
designed based on an antibody from the healthy elderly
subjects was also found to stain spinal cord of sporadic
as well as familial ALS patients but not of non-
neurological controls [71]. In the other studies (colored

orange in Table 1), however, no difference in the stain-
ing pattern was observed between ALS and non-ALS
controls [72, 74, 76–79]. Some of the misfolded-SOD1
antibodies in Table 1 (in particular, the ones reported
from one research group: SEDI, USOD, AJ10, B8H10,
4A1, and A5E5) were found to immunostain spinal
motorneurons in SOD1-ALS but not in non-SOD1 ALS,
which might simply mean that misfolded conformations
of wild-type SOD1 in non-SOD1 ALS are not the same
with those of mutant SOD1 in SOD1-ALS. Immuno-
staining results using mouse monoclonal C4F6, 3H1,
10E11C11 and a rabbit polyclonal Ra 131–153 antibody
have been reported from more than two research groups
but still did not reach a consensus about the detection
of misfolded SOD1 in non-SOD1 ALS cases (Table 1).

Fig. 1 Schematic representation on possible changes of wild-type SOD1 in ALS. (Left) A natively folded SOD1 binds copper and zinc ions and
forms an intramolecular disulfide bond. Pathological conditions might disrupt intracellular metal homeostasis and augment oxidative stress/ER
stress, facilitating the formation of misfolded SOD1 even without any disease-causing mutations. Disulfide-crosslinked oligomers and insoluble
aggregates of wild-type SOD1 have been detected in spinal cords of sporadic ALS. (Right) SOD1 has been known to constitutively secreted to
extracellular fluid such as ISF and CSF, and recently, toxic wild-type SOD1 in abnormally misfolded conformations was detected in CSF of sporadic
ALS. Misfolded SOD1 appears to be cleared by humoral immune response and/or glymphatic/intramural peri-arterial drainage systems, and their
failure might contribute to the disease.
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Much effort has been directed to resolve those discrep-
ancies, which could be caused by differences in experi-
mental procedures including tissue fixation, antigen
retrieval, and working concentrations of primary anti-
bodies [69]. Indeed, antigen retrieval treatments in a cit-
rate buffer with heat (boiling, steaming, microwave) are
considered to denature SOD1 proteins, which could effi-
ciently expose the epitope for misfolded-SOD1 anti-
bodies [72] but appears not to describe the discrepancy
on the immunohistochemical detection of misfolded
SOD1 (Table 1).
In immunohistochemical/immunofluorescence analysis

of tissues, the experimental procedures/conditions are
often not described in detail; in particular, a working
concentration of a primary antibody is usually indicated
as a dilution factor but not a concentration of the anti-
body in many studies. These situations prevent us from
comparing the previously reported staining results in de-
tail; based upon Table 1, however, a trend can be found
that a significant dilution of the misfolded-SOD1 anti-
bodies fails to detect non-SOD1 ALS-specific immuno-
staining. The antibody C4F6 is commercially available
from MediMabs, and the concentration was found to be
< 0.05 mg/mL in our hands. Ayers et al. [72] and Da
Cruz et al. [77] have reported the absence of C4F6-
positive staining in sporadic ALS cases by using the
C4F6 antibody from MediMabs in 500-fold and 200-fold
dilution (Table 1), which would correspond to < 0.1
and < 0.25 μg/mL of the working concentration, respect-
ively. Instead, Bosco et al. successfully detected C4F6-
positive staining with 1.0 μg/mL C4F6 in some of spor-
adic ALS cases but not in non-neurological controls
(Table 1) [59]. Also in the three papers by Grad et al.
[61], Pokrishevsky et al. [75], and Da Cruz et al. [77], we
have supposed that they used the antibodies 3H1 and
10E11C11 originated from the same source for immuno-
histochemical examination on misfolded SOD1 (we fur-
ther assumed the same concentration of the original
antibody solution in their studies). Successful detection
of misfolded SOD1 in ALS tissues with a lower dilution
rate of the antibodies was reported by Grad et al. and
Pokrishevsky et al., but Da Cruz et al. appear to have
used a significantly diluted solution of the antibody and
failed to detect the non-SOD1 ALS-specific, 3H1- and
10E11C11-positive staining. Furthermore, Brännström
group prepared a polyclonal antibody Ra 131–153 for
detection of misfolded SOD1 proteins and observed the
Ra 131–153-positive immunostaining in non-SOD1 ALS
as well as SOD1-ALS cases [46, 50, 69, 73]. The antibody
was then distributed to the other research group and
used for the immunohistochemical examination; how-
ever, the Ra 131–153-positive immunostaining was ob-
served in not only ALS but also non-neurological
control cases [77], which might be due to an antigen

retrieval step using Tris-EDTA-based solution [69]. Col-
lectively, further investigations with more quantitative,
detailed descriptions on the experimental procedures (a
working concentration of antibodies, in particular) will
be definitely required for evaluating immunohistochemi-
cal evidence of misfolded SOD1 proteins in non-SOD1
ALS cases.

Immunoprecipitation from spinal cords of non-SOD1 ALS
with misfolded-SOD1 antibodies
Immunohistochemical examinations require several
harsh treatments of tissue samples (depaffinization,
antigen retrieval, etc.) that can significantly affect pro-
tein conformations; therefore, the presence or absence
of misfolded wild-type SOD1 proteins in tissues may
not be accurately evaluated. Instead, more accurate
evidence on misfolded wild-type SOD1 in ALS could
be provided by immunoprecipitation (IP) from
unfixed spinal cord homogenates with misfolded-
SOD1 antibodies, which are summarized in Table 2.
Again, experimental details required for testing repro-
ducibility were not fully described in most of the pa-
pers, and the results were sharply divided. Mutant
SOD1 in all SOD1-ALS cases examined was success-
fully immunoprecipitated with any of misfolded-SOD1
antibodies listed in Table 2, and wild-type SOD1 in
sporadic ALS cases without SOD1 mutations was also
immunoprecipitated in the studies by Grad et al. [61]
and Paré et al. [69]. In contrast, the other studies by
Liu et al. [78], Kerman et al. [76], and Da Cruz et al.
[77] have concluded that no wild-type SOD1 proteins
are immunoprecipitated from spinal cords of sporadic
ALS cases with misfolded-SOD1 antibodies. Nonethe-
less, we note that the interpretation on the immuno-
precipitation results appears somewhat different
among those studies; namely, no SOD1 proteins were
observed in immunoprecipitates from sporadic ALS
with SEDI (Liu et al. [78]) and USOD (Kerman et al.
[76]) antibodies, while the misfolded-SOD1 antibodies
(3H1, 4A1, A5E5) used in the Da Cruz et al. paper
did immunoprecipitate SOD1 proteins in sporadic
ALS cases but also in non-neurological controls [77].
Using the 3H1 antibody, furthermore, Grad et al. were
found to immunoprecipitate wild-type SOD1 from spinal
cords of sporadic ALS cases but not from those of non-
neurological controls [61]. Again, it is highly possible that
some differences in experimental procedures influence the
detection of misfolded wild-type SOD1 in sporadic ALS
tissues, and much more numbers of studies with detailed
description on IP methods are definitely required.
It is also important to note that wild-type SOD1

immunopurified with anti-SOD1 antibody from spinal
cord homogenates of sporadic ALS inhibited antero-
grade but not retrograde fast axonal transport in the
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assay using isolated squid axoplasm through a mech-
anism possibly involving specific activation of p38
MAPK [59]. Such inhibition was no longer observed
when the immunopurified SOD1 proteins were first
mixed with the misfolded-SOD1 antibody C4F6 and
then perfused into squid axoplasm. These results have
thus supported toxic and pathogenic roles of mis-
folded wild-type SOD1 in sporadic ALS (Fig. 1, left).

Misfolded forms of SOD1 in cerebrospinal fluid of ALS
As described, SOD1 is localized mostly in the cytoplasm
(Human Protein Atlas, see above), and the intraneuronal
inclusions containing SOD1 are the pathological hall-
mark of SOD1-ALS [5]. Many researchers thus focused
on the toxic/conformational properties of SOD1 within
cells, even though SOD1 proteins were reported to be
present also in the extracellular space by their active and
constitutive secretion from cells (Fig. 1, upper) [80, 81].
Recently, misfolded/aggregated proteins are considered
to propagate between cells, which would contribute to
the pathological progression in many of neurodegenera-
tive diseases including SOD1-ALS [82–86]. For example,
premature motor neuron disease in transgenic mice ex-
pressing human SOD1 with G85R mutation is triggered
by inoculation of detergent-resistant fractions of SOD1
from a SOD1-ALS patient (G127Gfs*7) into the lumbar
spinal cord [83]. Also, much attention has been paid on
glymphatic system [87] and intramural peri-arterial
drainage pathway [88], by which misfolded/aggregated
proteins in interstitial fluid (ISF) of the brain and spinal
cord could be drained into cerebrospinal fluid (CSF) and
then cleared [89]. Regarding SOD1-ALS, indeed, the dis-
ease duration of transgenic mice expressing ALS-linked
mutant SOD1 was shortened by deletion of aquaporin-4
[90], a water channel playing central roles in the extra-
cellular clearance through the glymphatic system [87].
Furthermore, pathologies and amyloid-β accumulation
in transgenic mouse models of Alzheimer’s disease were
aggravated by disrupting meningeal lymphatic vessels,
which are proposed as a drain of macromolecules from
ISF and CSF [91]. Therefore, SOD1 proteins that are se-
creted from neurons and glia and then possibly drained
into CSF will be important in understanding the path-
ology of ALS.
Indeed, SOD1 is well known as a constituent of CSF,

and amounts of SOD1 in CSF tended to increase as a
function of age albeit with a low correlation coefficient
(r2 = 0.1 ~ 0.2) [92–94]. In most studies, total SOD1
levels in CSF appear to be not significantly different be-
tween ALS and neurological/non-neurological controls
[92–96]. Alternatively, absolute levels of SOD1 in CSF
were reported to show substantial variability among in-
dividuals but with little variability in each individual over
time [97]. In the same study [97], ALS cases and

neurological controls were characterized by slightly
higher levels of SOD1 in CSF compared to those of
healthy controls; however, the amount of SOD1 in CSF
did not correlate with the severity of ALS. In CSF, sig-
nificant fractions of SOD1 were also reported to be N-
terminally truncated, but the amount of such truncated
proteins did not differ between ALS and controls, sug-
gesting little pathological roles of the truncated SOD1 in
ALS [93, 95]. In electrophoretic analysis of CSF, further-
more, neither SOD1-positive smears nor high-
molecular-weight ladders were observed, indicating that
detergent-resistant oligomers/aggregates were not evi-
dent in CSF of ALS [93, 95]. Based upon those reports,
SOD1 in CSF appears to have no pathological roles in
ALS. Nonetheless, it is quite notable that, in rats overex-
pressing wild-type human SOD1, half-life of the SOD1
protein was significantly longer in CSF (14.9 days) as
well as in spinal cord (15.9 days) than that in liver and
kidney (1.7 and 3.4 days, respectively) [98]. Also in CSF
of human subjects, the turnover rate of SOD1 was found
to be significantly slower (half-life: 25.0 +/− 7.4 days)
than that of total proteins (half-life: 3.6 +/− 1.0 days)
[98]. Accordingly, slow turnover rate of SOD1 in CSF as
well as in spinal cord would allow sufficient time for
SOD1 to become misfolded and to contribute to the de-
velopment of pathological changes.
To test if SOD1 becomes misfolded in CSF of ALS,

CSF samples from 96 ALS cases (57 sporadic ALS, 22
SOD1-ALS, 17 Non-SOD1 familial ALS) and 38 neuro-
logical controls were examined with sandwich ELISA
using misfolded-SOD1 antibodies (Ra 24–39, Ra 57–72,
and Ra 111–127) [94]. Signals indicating the presence of
misfolded SOD1 were found in all samples, but no sig-
nificant differences were confirmed between ALS with
and without SOD1 mutations and also between the ALS
cases combined and the controls [94]. In contrast, by
using other types of misfolded-SOD1 antibodies, we re-
cently showed that wild-type SOD1 proteins were mis-
folded in CSF of sporadic ALS cases as well as of a
SOD1-ALS case [95]. More precisely, sandwich ELISA
was performed on CSF from 21 ALS cases (20 sporadic
ALS, 1 SOD1-ALS) and 40 controls by using misfolded-
SOD1 antibodies (C4F6, UβB, EDI, apoSOD, 24–39 and
SOD1int). Among those, C4F6, UβB, EDI, and apoSOD
were found to give significantly higher signals in CSF of
ALS cases compared to those of controls; in contrast, no
differences were observed with 24–39 and SOD1int. It
was also surprising to us that large fractions of SOD1 in
CSF of sporadic ALS cases were immunoprecipitated
with C4F6 antibody [95]. CSF collected from ALS pa-
tients has been known to exert toxicity toward motor-
neuron like cells NSC-34 [99], and we revealed that the
toxicity was alleviated by removing the misfolded SOD1
from CSF with immunoprecipitation using C4F6
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antibody [95]. It is also notable that misfolded SOD1 im-
munoreactive to C4F6 and UβB was observed, albeit
with less amount, in CSF of a subset of patients with
Parkinson’s disease (PD) and progressive supranuclear
palsy (PSP). Therefore, not all types of misfolded-SOD1
antibodies could detect pathological forms of wild-type
SOD1 in CSF, but our study has suggested that wild-
type SOD1 in CSF adopts a misfolded, toxic conforma-
tion(s) in pathological conditions of ALS and also a sub-
set of PD and PSP. In that sense, it is important to
note that levels of SOD1 in CSF of SOD1-ALS pa-
tients were reduced by oral medication with pyri-
methamine [100].

Misfolding of wild-type SOD1 under oxidative
environment of spinal cord and CSF
Another important issue to be solved is where SOD1 is
misfolded; in other words, it remains to be tested
whether SOD1 is misfolded in CSF, or misfolded SOD1
in affected spinal cord (or some other tissues) is drained
into CSF (Fig. 1). As of now, we do not have an answer
to this question; nonetheless, one of the notable features
observed commonly in spinal cord and CSF of ALS pa-
tients is significantly elevated levels of oxidative markers,
which has been summarized in an excellent review
[101]. It is thus plausible that oxidative environment in
the spinal cord/CSF of ALS is important to understand
any pathological changes occurring in SOD1.
In accordance with this, we have detected abnormal

SOD1 oligomers crosslinked via intermolecular disul-
fide bonds in spinal cord of SOD1-ALS cases as well
as transgenic mice expressing human SOD1 with ALS
mutations (G37R, G93A, and L126Z) [31, 102]. While
the disulfide-crosslinked SOD1 oligomers were not
evident in CSF of sporadic ALS cases and a SOD1-ALS
case [95], reductant (DTT)-sensitive aggregates of
wild-type SOD1 were detected in affected spinal cord
of sporadic ALS cases [42]. Furthermore, Xu et al. sug-
gested the oxidation of Cys111 in SOD1 to a sulfenic
acid (−SOH) in CSF of a subset of sporadic ALS cases
[103], and we also found that Cys111 was oxidized to
a sulfonic acid (−SO3H) in CSF of a subset of ALS,
PD, PSP, and AD cases [95]. In our experiments
in vitro [104], followed by the sulfenylation of Cys111
in metal-bound SOD1 with H2O2, dissociation of the
bound metal ions from the protein was found to allow
another free Cys residue (Cys6) to attack the sulfeny-
lated Cys111. SOD1 has a canonical intramolecular di-
sulfide bond between Cys57 and Cys146; therefore,
oxidation with H2O2 led to the formation of abnormal
SOD1 (SOD12xS-S) with two intramolecular disulfide
bonds (Cys6-Cys111 and Cys57-Cys146), and
SOD12xS-S was prone to aggregation and also toxic to
motor-neuron like cells NSC-34 [104].

As summarized above, Cys is considered to be the
most susceptible to oxidation among amino acids and
would hence be a key residue for oxidative modifications
under pathological conditions. Notably, several other ox-
idized forms of SOD1 have been also reported in cell
lines, transgenic mice, and purified SOD1 proteins. For
example, SOD1 proteins with oxidized carbonyl groups
were detected in lymphoblasts derived from sporadic
ALS with bulbar onset [105]. SOD1 oxidized at trypto-
phan (Trp32) was found to accumulate in the micro-
somal fractions purified from spinal cord of transgenic
mice expressing wild-type human SOD1 [42] and was
also detected in human blood and the blood isolated
from transgenic mice expressing wild-type or ALS-
linked mutant human SOD1 [106]. Furthermore, several
His residues as well as Trp32 are also susceptible to oxi-
dation, which has been proposed to trigger the aggrega-
tion of SOD1 in vitro [107–110]. It, however, remains to
be tested whether the His and/or Trp oxidations occur
on SOD1 in ALS patients.

Misfolded SOD1 in extracellular fluid as a potential
immunotherapeutic target
As reviewed above, formation of misfolded and plausibly
toxic SOD1 species in extracellular fluid is well expected
as a pathological change occurring in ALS cases. This
could in turn open the way to alleviate the disease by re-
moving such extracellular SOD1 proteins with the
humoral immune response. Indeed, the survival of trans-
genic mice expressing ALS-linked mutant SOD1 was ex-
tended by vaccination with full-length misfolded SOD1
proteins [111, 112] and with peptides corresponding to
the region available only in misfolded SOD1 [113, 114].
Passive immunization with several misfolded-SOD1 anti-
bodies was also reported to be beneficial to the SOD1-
ALS model mice [112, 115–117] except for one study
[118]. Furthermore, sera from sporadic ALS patients were
found to contain IgM antibodies reacting with misfolded
SOD1 (recombinant SOD1 oxidized with 10mM H2O2),
and the sporadic ALS cases with higher levels of the IgM
antibodies (n = 153) exhibited a longer survival of 6.4 years
than the subjects lacking those antibodies (n = 127) [119].
Notably, Maier et al. screened human memory B cell

repertoires from a large cohort of healthy elderly sub-
jects and successfully generated a monoclonal antibody
(α-miSOD1) that can react selectively with misfolded/
oxidized SOD1 but not with native SOD1 [71]. Based
upon the presence of B cell memory against misfolded
SOD1 in a majority of those healthy elderly subjects,
Maier et al. suggested that misfolding of SOD1 and the
subsequent humoral immune response are frequent
events in the elderly [71]. This antibody, α-miSOD1, was
found to stain motor neurons of the spinal cord samples
from ALS including sporadic as well as familial cases
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with and without SOD1 mutations, but not from non-
neurological controls (Table 1) [71]. Furthermore, intra-
cerebroventricular infusion and also intraperitoneal in-
jections of α-miSOD1 antibody to transgenic mice
expressing ALS-linked mutant human SOD1 (G37R and
G93A) delayed the onset of motor symptoms and ex-
tended survival [71]. Therefore, clearance of misfolded
SOD1 by utilizing the immune system would be a poten-
tial treatment for patients with sporadic as well as famil-
ial ALS; nonetheless, it should be also noted that, in sera
of sporadic ALS subjects, higher levels of IgG antibodies
reacting with normal wild-type SOD1 associated with a
shorter survival of 4.1 years [119]. For successful im-
munotherapy to treat ALS, it will be critical to develop
antibodies specifically recognizing toxic, misfolded
SOD1 and/or to design antigens efficiently producing
such antibodies.

Conclusions
While misfolding of ALS-linked mutant SOD1 has been
established as a pathological change occurring in SOD1-
ALS, roles of wild-type SOD1 in more prevailing non-
SOD1 ALS have long been debated. Even in SOD1-ALS,
involvement of wild-type SOD1 in the pathology re-
mains obscure. As reviewed above, we performed an ex-
tensive literature search and found that a number of
studies supported the presence of misfolded wild-type
SOD1 in spinal cord and CSF of non-SOD1 ALS cases
(Fig. 1). Nonetheless, not all studies detected misfolded
wild-type SOD1 proteins in non-SOD1 ALS, possibly
suggesting the importance of experimental conditions in
their immunohistochemical and immunochemical detec-
tion. Also, some of misfolded-SOD1 antibodies gave
positive signals in SOD1-ALS but not in non-SOD1 ALS,
which may indicate distinct conformations of misfolded
SOD1 between SOD1-ALS and non-SOD1 ALS. As we
recently reported [95], CSF of non-SOD1 ALS contained
misfolded forms of wild-type SOD1. The misfolded
SOD1 in CSF was toxic to cultured cells, but it still
needs to be tested whether it is a pathogenic species
causing degeneration of motor neurons. Quite notably,
misfolding of SOD1 could occur in the healthy elderly,
and the humoral immune response to the misfolded
SOD1 would be a key to prevent ALS. Consistent with
beneficial results of immunization-based treatment of
transgenic mouse models, therefore, immunological
modulation of misfolded SOD1 in extracellular fluids
such as CSF would be a promising strategy to delay on-
set and/or relieve symptoms of ALS.
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