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Abstract

Common neurodegenerative diseases include Parkinson’s disease (PD), Alzheimer's disease (AD), amyotrophic lateral
sclerosis (ALS) and Huntington's disease (HD). Transcranial magnetic stimulation (TMS) is a noninvasive and painless
method to stimulate the human brain. Single- and paired-pulse TMS paradigms are powerful ways to study the
pathophysiological mechanisms of neurodegenerative diseases. Motor evoked potential studied with single-pulse
TMS is increased in PD, AD and ALS, but is decreased in HD. Changes in motor cortical excitability in neurodegenerative
diseases may be related to functional deficits in cortical circuits or to compensatory mechanisms. Reduction or even
absence of short interval intracortical inhibition induced by paired-pulse TMS is common in neurodegenerative diseases,
suggesting that there are functional impairments of inhibitory cortical circuits. Decreased short latency afferent inhibition
in AD, PD and HD may be related to the cortical cholinergic deficits in these conditions. Cortical plasticity tested by
paired associative stimulation or theta burst stimulation is impaired in PD, AD and HD. Repetitive TMS (rTMS) refers to the
application of trains of regularly repeating TMS pulses. High-frequency facilitatory rTMS may improve motor symptoms in
PD patients whereas low-frequency inhibitory stimulation is a potential treatment for levodopa induced dyskinesia. rTMS
delivered both to the left and right dorsolateral prefrontal cortex improves memory in AD patients. Supplementary motor
cortical stimulation in low frequency may be useful for HD patients. However, the effects of treatment with multiple
sessions of rTMS for neurodegenerative diseases need to be tested in large, sham-controlled studies in the future before

they can be adopted for routine clinical practice.
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Background

Neurodegeneration involves progressive structural and
functional loss of specific groups of neurons. The risk of
being affected by a neurodegenerative disease increases
dramatically with age. With increasing lifespan due to
the population-wide health improvements, more individ-
uals will be affected by neurodegenerative diseases in the
coming decades. Common neurodegenerative diseases
include Parkinson’s disease (PD) [1], Alzheimer’s disease
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(AD) [2], amyotrophic lateral sclerosis (ALS) [3] and
Huntington’s disease (HD) [4]. The mechanisms under-
lying neurodegenerative diseases are multifactorial and
include genetic and environmental factors. Current
treatments for neurodegenerative diseases are symptom-
atic and there is no accepted disease modifying therapy
to slow disease progression [1-4].

Transcranial magnetic stimulation (TMS) is a nonin-
vasive and painless method to stimulate the human
brain [5, 6]. When stimulation is applied to the primary
motor cortex (M1), it activates the corticospinal pathway
and generates motor evoked potential (MEP) in the tar-
get muscles (Fig. 1) [6-8]. In addition to activation of
corticospinal neurons, TMS also activates intracortical
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Fig. 1 Transcranial magnetic stimulation and its measurements. a When TMS is applied to the primary motor corte, it produces descending volleys in
the spinal cord. This in turn activates the spinal motoneurons and a motor-evoked potential (MEP) can be recorded in the target muscle (e.g. FDI muscle)
with surface EMG. b MEP measurements. When TMS is delivered during voluntary muscle contraction, an MEP is followed by a silent period with no
background EMG activity. MEP latency is defined as the time from TMS delivery to the onset of MEP. MEP amplitude is usually measured as the peak-to-
peak value. Silent period can be measured from the onset or the end of MEP to the first recovery of background EMG activity. EMG = electromyogram,
FDI=first dorsal interosseous, MEP = motor evoked potential, TMS = transcranial magnetic stimulation. Modified from Ni et al,, Transcranial magnetic
stimulation in different current directions activates separate cortical circuits, Journal of Neurophysiology 2011, 105:749-756 [8]

inhibitory and excitatory neural circuits in the M1. Repeti-
tive TMS (rTMS) refers to application of trains of regu-
larly repeating TMS pulses. These pulses temporally
summate to cause changes in neural activity that can out-
last the stimulation by minutes to hours [9]. Repeated ap-
plications of rTMS can produce even longer effects that
last for weeks to months [7, 10]. Therefore, rTMS may be
developed as a therapeutic tool for neurodegenerative dis-
eases [7, 10]. In this article, studies investigating the
pathophysiology and focusing on the development of
treatments in PD, AD, ALS and HD will be reviewed.

Parkinson’s disease

The motor symptoms of PD largely result from the degen-
eration of dopaminergic neurons in substantia nigra pars
compacta. PD is associated with functional deficits in mul-
tiple brain areas, including basal ganglia nuclei, cerebellum
and cortical areas [1]. We discuss here these functional def-
icits as tested by TMS measurements using several experi-
mental designs. The main findings are listed in Table 1.

Single-pulse TMS measurements for Parkinson’s disease
Motor threshold

Motor threshold is an important parameter of motor
cortical excitability. Rest and active motor thresholds are

defined as the minimum TMS intensities that elicit small
but reproducible MEPs at rest and during voluntary
muscle contraction, respectively [6]. The motor threshold
reflects the excitability of the most sensitive group of neu-
rons in the stimulated area in M1. Most studies have re-
ported that rest motor threshold is normal in PD [11-13].
Involuntary contraction caused by tremor and rigidity
may affect the measurement in PD. Active motor thresh-
old in PD appears to be normal although a correlation be-
tween the degree of bradykinesia and active threshold has
been reported [14]. In addition, MEP threshold does not
change with medication status [11-13] or deep brain
stimulation of the internal globus pallidus [15] or the sub-
thalamic nucleus [16].

MEP amplitude

MEP amplitude (Fig. 1b) reflects the global excitability of
cortical interneurons, corticospinal neurons and spinal
motoneurons [7]. Increased MEP amplitude at rest in PD
patients has been reported [17, 18]. Increased MEP ampli-
tude in PD may be related to an imbalance towards disin-
hibition in the motor pathway. Studies that showed
decreased cortical inhibition, increased cortical facilitation
and changes in cortical plasticity in PD are discussed
below. Patients with internal globus pallidus deep brain
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Table 1 Abnormalities in TMS measurements in
neurodegenerative diseases®

Measurements PD AD ALS HD
OFF  ON

Single-pulse MEP threshold o o - A
MEP amplitude — + + + + -
Silent period - o/+ - - -

Paired-pulse SICI - -/o - - -
ICF o o o + X
LICI - - X X X
SAl o - - X -
LA - - X X X
IHI - X - - X

Cortical plasticity ~ LTP-like effect! - o® - x -
LTD-like effect?  x X /o x -

Abbreviations: AD Alzheimer's disease, ALS amyotrophic lateral sclerosis, HD
Huntington’s disease, PD Parkinson’s disease, OFF off dopaminergic
medication, ON on dopaminergic medication

+ increase; - decrease; x not tested; o normal

ICF intracortical facilitation, IHI interhemispheric inhibition, LA/ long latency
afferent inhibition, LICI long interval intracortical inhibition, LTD long-term
depression, LTP long-term potentiation, MEP motor evoked potential, SA/ short
latency afferent inhibition, SIC/ short interval intracortical inhibition

Notes:

*TMS measurements with different stimulus parameters may lead to different
results in testing cortical circuits in neurodegenerative diseases. We only list
the most consistent findings in the literatures. Detailed discussion is in the
main text of the review

PMEP threshold increased in ALS but could be decreased at early stage of

the disease

“Only long latency IHI was decreased in PD patients with mirror movement.
Such abnormality was found from both the less affected to more affected side
and from the more affected to less affected side. Short latency IHI does

not change

9L TP-like effects are tested by facilitatory repetitive stimulation protocols including
high-frequency repetitive transcranial magnetic stimulation, intermittent theta burst
stimulation and paired associative stimulation while LTD-like effects are tested by
inhibitory repetitive stimulation protocols including low-frequency repetitive
transcranial magnetic stimulation and continuous theta burst stimulation

€LTP-like cortical plasticity tested with paired associative stimulation is
impaired in PD patients off medication. Dopaminergic medications restore the
plasticity in non-dyskinetic patients but not in the dyskinetic patients

stimulation also showed larger MEP amplitude than con-
trols regardless of whether the stimulation was turned on
or off [15].

Silent period

When TMS is applied during voluntary contraction, a dis-
ruption of the ongoing muscle activity known as the silent
period can be recorded following the MEP (Fig. 1b). The
first part of the silent period is partly due to decreased
spinal excitability. The latter part of the silent period
mainly involves inhibitory effects at the cortical level, me-
diated by gamma-aminobutyric acid type B (GABAg) re-
ceptors [6, 19]. Shortening of the silent period in PD has
been reported in many studies [20]. However, such abnor-
mality may not be pronounced at low stimulus intensities
[12]. Dopaminergic medication normalizes the shortened

Page 3 of 12

silent period in PD [12]. High doses of levodopa may even
lengthen the duration beyond the normal range [15].

Tremor reset

An asymmetric 4-6 Hz resting tremor is a cardinal symp-
tom of PD. Many PD patients also have postural tremor
[1]. When stimulation is applied to the motor pathway,
the tremor may be transiently disrupted. The reoccur-
rence of the tremor is then time-locked to the stimulation
and this phenomenon is referred to as tremor reset.
Mechanical perturbation which modulates spinal reflex
pathways has very little effect on postural tremor in PD,
suggesting that spinal circuits may not be involved in gen-
erating PD postural tremor [21]. TMS applied to M1 com-
pletely resets postural tremor in PD [22]. PD rest tremor
can also be reset by M1 TMS, suggesting that the M1 is
involved in both resting and postural tremor in PD. In
addition, cerebellar TMS is effective in resetting the PD
postural tremor but not rest tremor, suggesting that the
cerebellum is involved in the generation or transmission
of postural tremor but not rest tremor in PD [23].

Intracortical circuits in Parkinson’s disease

The excitability of intracortical circuits in M1 can be in-
vestigated by a paired-pulse TMS paradigm. The effect
of the first conditioning stimulus on the MEP elicited by
the second test stimulus depends on the stimulus inten-
sities, the interstimulus interval and the location of con-
ditioning stimulus.

Short and long interval intracortical inhibitions

Short interval intracortical inhibition (SICI) (Fig. 2) and
intracortical facilitation can be tested with both condition-
ing and test stimuli delivered to the M1, with a subthresh-
old conditioning stimulus followed by a suprathreshold
test stimulus. The test MEP is inhibited at interstimulus
interval of 1-5 ms, and facilitated at interval of 7-30 ms
[24]. SICI is enhanced by positive allosteric modulators of
GABA, receptors, suggesting that SICI is likely mediated
by GABA,4 receptors [25—-27]. The mechanism mediating
intracortical facilitation remains unclear but activation of
cortical glutamate circuits may be involved [6]. One early
study showed that SICI was reduced in PD patients and
levodopa partly normalized this impaired inhibition [12].
Subthalamic nucleus deep brain stimulation increased the
reduced SICI both in the on and off medication states [16]
while internal globus pallidus stimulation had little effect
on SICI [15]. Later studies reported controversial results
that SICI was normal in PD patients either on or off medi-
cation [28] and decreased SICI was found only at high
conditioning intensities [13]. Interestingly, a recent study
showed that short interval intracortical facilitation, which
is caused by summation of activation of different facilita-
tory interneurons in the M1, is increased in PD patients
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Fig. 2 Abnormal SICI in PD patients. Example of recordings from
representative subjects are shown in a. The top row represents the
recordings with test stimulus alone and other five rows are
recordings for paired-pulse stimulation at different interstimulus
intervals. SICI was tested at the interstimulus intervals where short
interval intracortical facilitation was at its peaks and troughs. An
additional interval of 1 ms was also tested. Note that SICI was
decreased at facilitatory peaks and troughs in the PD OFF medication
state, and this was normalized in the PD ON state. The group data
analysis is shown in b. The abscissa indicates the interstimulus
interval. The ordinate indicates the degree of SICl. It represents
the amplitude of paired-pulse induced MEP expressed as a percentage
of the MEP amplitude induced by test stimulus alone. Values more than
100 % indicate facilitation and those less than 100 % indicate inhibition.
Filled circles indicate MEP in PD patients OFF medication.

Triangles indicate MEP in PD patients ON medication. Open circles
indicate MEP in healthy controls. * p < 0.05, ** p < 001, comparing PD
OFF to control. # p < 0.05, comparing PD OFF to PD ON. “S" p < 0.05,
comparing PD ON to control. SICI was reduced in PD OFF compared to
controls at an ISl of 1 ms, at short interval intracortical facilitation peak 1,
trough 1, peak 2 and peak 3. Reduced SICl in PD OFF compared to PD
ON group was only found at facilitatory peaks. SICI for PD ON was still
decreased compared to controls at ISI of 1T ms and at facilitatory trough
1. MEP = motor evoked potential, PD = Parkinson’s disease, SICI = short
interval intracortical inhibition. Modified from Ni et al,, Increased motor
cortical facilitation and decreased inhibition in Parkinson disease,
Neurology 2013, 80:1746-1753 [11]. Promotional and commercial
use of the material in print, digital or mobile device format is prohibited
without the permission from the publisher Wolters Kluwer Health. Please
contact healthpermissions@wolterskluwer.com for further information
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[11]. Since the stimulus parameters (interstimulus interval
and stimulus intensities) for SICI and short interval intra-
cortical facilitation overlap considerably, decreased SICI
(Fig. 2) may partly be explained by increased facilitation in
PD [11]. Specifically, short interval intracortical facilitation
at the first peak increased from about 200 % of test alone
(MEP induced by test stimulus alone) in healthy controls
to about 300 % of test alone in PD patients. Concurrently,
SICI at the same interstimulus interval turned from inhib-
ition (about 50 % of test alone) to facilitation (about 130 %
of test alone). In addition, SICI was reported to be normal
on the less affected side and be reduced on the more af-
fected side in newly diagnosed PD patients [29]. The ab-
normal SICI with asymmetry was observed up to 1 year
after diagnosis [30].

Long interval intracortical inhibition is elicited when a
suprathreshold conditioning stimulus is applied 50-200 ms
prior to the test stimulus and is likely mediated by GABAg
receptors [6]. Long interval intracortical inhibition is re-
ported to be decreased in PD [28]. This is consistent with
shortened silent period (related to GABAg receptors) in
PD. Using a triple-pulse TMS paradigm, it has been found
that SICI is suppressed in the presence of long interval
intracortical inhibition in a manner consistent with reduc-
tion in GABA release caused by presynaptic GABAg inhib-
ition. The suppressive effect of long interval intracortical
inhibition on SICI seen in healthy controls is absent in PD
patients. Dopaminergic medications do not normalize this
deficit, suggesting that presynpatic inhibition is impaired
in PD and the impairment may be a non-dopaminergic
feature of PD [28].

Interhemispheric inhibition

Interhemispheric inhibition can be measured by two
TMS coils placed on bilateral M1s. Both conditioning and
test stimuli are suprathreshold. Short and long latency in-
terhemispheric inhibitions peak at interstimulu intervals
of ~10 and ~50 ms. Inhibition is likely produced by inter-
hemispheric inputs largely mediated through the corpus
callosum [31]. There is less long latency interhemispheric
inhibition in PD patients with mirror movement than
those without mirror movement, suggesting that deficits
in transcallosal function may contribute to mirror activity
in PD. Such abnormality is found for long latency inter-
hemispheric inhibition from both the less affected to more
affected side and from the more affected to less affected
side. There is no significant abnormality in short latency
interhemispheric inhibition in PD [32].

Afferent inhibition

Afferent input activated by electrical peripheral nerve
stimulation inhibits the contralateral M1. Short (SAI) and
long latency afferent inhibition refer to the inhibitory
phases at interstimulus intervals of ~20 and ~200 ms.
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Cholinergic and GABA mediated pathways are involved in
generating SAI, whereas transmitter involved in long la-
tency afferent inhibition is not known [6, 8]. Figure 3
showed that SAI inhibited the MEP induced by test stimu-
lus to about 60 % of its initial size. SAI is normal in PD off
dopaminergic medications, but is reduced on medication
state (MEP conditioned by electrical peripheral nerve
stimulation was about 80 % of test alone). SAI probably
represents a direct interaction between the sensory inputs
and the M1. This pathway is unaffected by PD but is al-
tered by dopaminergic medication and may contribute to
the side effects of dopaminergic drugs. Long latency affer-
ent inhibition is reduced in PD patients independent of
their medication status, and probably involves indirect in-
teractions between sensory inputs and the M1 via the
basal ganglia or other cortical areas. This defective sen-
sorimotor integration may be a non-dopaminergic mani-
festation of PD [33]. In addition, reduced SAI in the on
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Fig. 3 Short latency afferent inhibition in Parkinson'’s diseasepatients
with subthalamic nucleus deep brain stimulation. The abscissa indicates
the different experimental conditions. The ordinate indicates the
degree of short latency afferent inhibition. It represents the amplitude
of paired-pulse induced MEP expressed as a ratio of the MEP amplitude
induced by test alone. Values more than 1 indicate facilitation and
those less than 1 indicate inhibition. * p < 0.05, comparing patients at
ON medication OFF stimulation state to healthy controls and patients
at ON medication ON stimulation state. The ring asterisks above the
columns represent significant inhibition compared to test alone.
Note that short latency afferent inhibition was normal in Parkinson'’s
disease patients at OFF medication state while it was reduced at ON
medication state. Reduced inhibition at the ON medication state was
normalized by the deep brain stimulation. MEP = motor evoked
potential. Modified from Sailer et al,, Subthalamic nucleus stimulation
modulates afferent inhibition in Parkinson disease, Neurology 2007,
68:356-363 [34]. Promotional and commercial use of the material in
print, digital or mobile device format is prohibited without the
permission from the publisher Wolters Kluwer Health. Please contact
healthpermissions@wolterskluwer.com for further information
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medication state could be restored by subthalamic nucleus
deep brain stimulation (Fig.3) and reduced long latency
inhibition was partially normalized by the subthalamic
stimulation in the on medication state [34]. Furthermore,
such normalization of SAI and long latency afferent inhib-
ition with subthalamic nucleus deep brain stimulation
only occurred at 6 months but not at 1 month after im-
plantation of stimulation electrodes and these effects were
accompanied by normalization of proprioception (spatial
and distance errors) [35]. Normalization of afferent inhib-
ition with delayed time course suggests that the effect of
subthalamic nucleus deep brain stimulation is related to
the plastic changes in basal ganglia and cortical circuits
produced by the chronic stimulation. In addition, the
modulation of intracortical circuits by afferent inputs can
be tested with a triple-pulse TMS paradigm. While long
interval intracortical inhibition is reduced by long latency
afferent inhibition in healthy controls, such modulation of
long interval intracortical inhibition by afferent inputs is
impaired in PD patients in both off and on medication
states, which is manifested as similar degree of long inter-
val intracortical inhibition in the presence of long latency
afferent inhibition compared to that without afferent in-
hibition [33].

Cerebellar inhibition

Cerebellar inhibition refers to the phenomenon that stimu-
lation over the cerebellum suppresses the MEP produced
by contralateral M1 TMS delivered 5 to 7 ms later. Cere-
bellar inhibition is mediated by the cerebellothalamocorti-
cal pathway. Cerebellar TMS activates cerebellar Purkinje’s
cells that inhibit the deep cerebellar nuclei, which has an
excitatory projection to the motor cortex via the ventral
thalamus [6]. Cerebellar inhibition is decreased in PD. De-
creased inhibition correlated with the degree of reset of
postural tremor caused by cerebellar stimulation, suggest-
ing that the deficits on the cerebellothalamocortical path-
way may be related to the tremor generation in PD [23].

Connectivity between the basal ganglia and M1

Inputs from the basal ganglia modulate M1 excitability. In
PD patients with subthalamic nucleus deep brain stimula-
tion, subthalamic stimulation leads to cortical evoked po-
tential on the scalp with peak latencies of ~3 and ~20 ms
[36]. Moreover, single pulse subthalamic stimulation
produced two phases of MEP facilitation at 2-4 ms and
21-24 ms after the stimulation. The time course of MEP
facilitation coincides with that of the evoked potentials
recorded at the scalp. Antidromic conduction along the
corticosubthalamic pathway likely mediates the early
phase of facilitation while the late phase is likely me-
diated by synaptic transmission through the basal
ganglia-thalamo-cortical circuit [36].
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Cortical plasticity in Parkinson’s disease

Cortical plasticity can be tested by paired associative
stimulation, which involves repetitive application of elec-
trical peripheral nerve stimulation followed by TMS to
ML. If peripheral stimulation precedes TMS by ~25 ms,
the two stimuli arrive at the M1 at about the same time
and lead to MEP facilitation in M1 [37]. This type of
cortical plasticity is impaired in PD patients off medica-
tion. Dopaminergic medications restore the plasticity in-
duced by paired associative stimulation in non-dyskinetic
PD patients but not in the dyskinetic PD patients, suggest-
ing that the development of dyskinesia is associated with
greater disturbance of cortical plasticity [38]. In more ad-
vanced PD patients implanted with subthalamic nucleus
deep brain stimulation, restoration of plasticity with paired
associative stimulation was only observed in the medica-
tion on and stimulation on state (Fig. 4) [39]. Specifically,
MEP amplitude 30 and 60 min after the paired associative
stimulation increased to about 150 % of that at baseline in
healthy controls. In patients with either medication off or
deep brain stimulation off, MEP amplitude after paired as-
sociative stimulation was still about 100 % of baseline.
When the patients were at both stimulation and deep
brain stimulation on state, MEP after paired associative
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stimulation was facilitated to the similar level to that in
healthy controls (about 150 % of baseline). The result sug-
gests that the restoration of cortical plasticity is related to
the clinical benefits of deep brain stimulation in PD. On
the other hand, MEP facilitation induced by paired asso-
ciative stimulation on the less affected side in the newly
diagnosed PD patients was increased while the same
protocol did not produce MEP facilitation on the more af-
fected side in these patients [29]. Furthermore, the asym-
metric responses to paired associative stimulation was
found up to one year after diagnosis and the degree of
asymmetry correlated with asymmetry in clinical rating
scores for the less and more affected sides [30]. Inter-
mittent theta burst stimulation produces MEP facilita-
tion in healthy subjects [40]. Similar MEP facilitation
has been reported in PD patients [41] whether in the
medication on or off state [42]. However, this form of
cortical plasticity may be impaired in more advanced PD
patients [43].

Therapeutic rTMS in Parkinson’s disease

rTMS involves trains of TMS pulses delivered with dura-
tions ranging from several seconds to several minutes at
various frequencies and intensities. The effects of these
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Fig. 4 Motor cortical plasticity induced by paired associative stimulation in Parkinson’s disease with subthalamic nucleus deep brain stimulation. The
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pulses temporally summate to cause greater and longer
duration of changes in neural activity than those from
single-pulse TMS. Generally, high-frequency rTMS po-
tentiates MEP and low-frequency rTMS suppresses MEP
when delivered to the M1 [6, 7]. Since the effects of a
single session of rTMS can last for several hours and re-
peated sessions may last for months, rTMS is a potential
treatment for neurological disorders.

While many studies investigated the effects of rTMS
on PD symptoms, the results were variable [44]. A large
placebo effect with sham stimulation has been observed
[45]. Meta-analyses found that high-frequency rTMS im-
proved motor symptoms in PD patients while low-
frequency rTMS had little benefit [44, 46] (Table 2).
Intermittent theta burst stimulation has also been used
to treat PD motor symptoms. However, a study that used
eight sessions of stimulation over two weeks did not find
long-term effect on PD motor symptoms but there were
benefits on mood [41]. Low-frequency rTMS has been
used to treat levodopa induced dyskinesia. One Hz
rTMS over the M1 [47] with a two-week course pro-
duced short term improvement in levodopa induced
dyskinesia [48]. Similar improvement was confirmed by
a sham-controlled study. However, significant improve-
ment in dyskinesia after rTMS was only found when
compared to baseline and the difference between real
and sham stimulations was not significant [49].

Stimulation of other areas outside the M1 may also be
effective. In particular, a sham-controlled study with a rela-
tively large sample size reported that 5 Hz rTMS applied
to the supplementary motor area significantly improved

Table 2 Therapeutic repetitive TMS protocols for
neurodegenerative diseases

Protocol®  Target Potential beneficial
effects
Parkinson’s Facilitatory M1, SMA,  Improve motor symptomsb,
disease PMd mood®
Inhibitory M1, Improve levodopa induced
cerebellum dyskinesia
Alzheimer's Facilitatory DLPFC Improve memory,
disease cognition
Amyotrophic Inhibitory M1 Improve motor symptoms
lateral sclerosis
Huntington's Inhibitory ~ SMA, M1 Improve chorea

disease

Abbreviations: DLPFC dorsolateral prefrontal cortex, M1 primary motor cortex,
PMd dorsal premotor cortex, SMA supplementary motor area

Notes:

“Facilitatory protocols include high-frequency repetitive transcranial magnetic
stimulation and intermittent theta burst stimulation; inhibitory protocols include
low-frequency repetitive transcranial magnetic stimulation and continuous theta
burst stimulation

PFacilitatory protocols with different stimulus parameters applied to M1, SMA
and PMd may improve motor symptoms in PD

A study of eight sessions of intermittent theta burst stimulation of M1 over
two weeks reported benefits in mood in PD
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the clinic rating scores and bradykinesia in PD patients
[50]. Continuous theta burst stimulation, a type of inhibi-
tory r'TMS, delivered to the cerebellum improved levodopa
induced dyskinesia in PD [51]. In addition, 5 Hz rTMS
over dorsal premotor cortex facilitated MEP in healthy
controls but not in PD patients off medications. After levo-
dopa administration, the facilitatory effect of premotor
cortical stimulation on the motor cortex was restored [52].

Alzheimer’s disease

AD is the most common form of dementia and is char-
acterized by progressive neuronal degeneration. The de-
generative process leads to atrophy initially in the
hippocampus and entorhinal cortex, then progressively
expanding into wide areas including the cerebral cortex
and subcortical regions [2, 53]. Mild cognitive impair-
ment (MCI) is considered a transitional stage between
normal aging and clinically probable AD. The functional
impairments in AD measured with TMS paradigms are
summarized in Table 1.

Single-pulse TMS measurements for Alzheimer’s disease
Motor threshold

Rest motor threshold is decreased in AD [54]. However,
the threshold is preserved in patients with early disease
[55] and in patients with MCI [56], suggesting that re-
duction in rest threshold may be a compensatory mech-
anism for the neuronal loss in motor cortical areas and
may reflect a functional change in these areas with dis-
ease progression. Reduction in active motor threshold in
AD has also been reported [54].

MEP amplitude and silent period

MEP amplitude may be normal at early stage of AD [54]
but is increased in patients at advanced stages [57].
Interestingly, a TMS mapping study showed that the
hotspot did not change while the center of gravity for
MEP amplitude shifted in a fronto-medial direction in
patients with mild to moderate AD, suggesting an early
cortical reorganization in AD [58]. Silent period is short-
ened in moderate to severe AD, suggesting that AD may
impair the function of GABAg receptor mediated inhibi-
tory circuits in M1 at late disease stages [59].

Intracortical circuits in Alzheimer’s disease

Short latency afferent inhibition

Reduction in SAI is significant at many disease stages in
AD [54, 56, 60—64] and this is consistent with postmor-
tem studies showing central cholinergic impairment in
AD [53]. Decreased SAI correlated with the degree of
memory loss [60] and the degree of euphoric manic state in
AD [61]. These correlations may be explained by the cho-
linergic dysfunction in temporo-limbic areas such as hippo-
campus, entorhinal cortex and amygdala. Administration of
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a single dose of rivastigmine (an acetylcholinesterase inhibi-
tor) restored the decreased SAI in AD [54]. Since decreased
SAI was found in early AD [62] and even in amnesic MCI
patients [63, 64], it is a potential biomarker for the diagno-
sis of AD.

Other intracortical circuits

Reduction in SICI has been reported [65]. The degree of
disinhibition correlated with the severity of AD [65].
However, other studies reported no difference in SICI
between patients and controls [54, 57]. Although AD
may be related to changes in cortical glutamatergic
transmission [53, 58], intracortical facilitation in AD and
MCI patients were normal [54, 57, 64]. Interhemispheric
inhibition is decreased in amnesic MCI patients [64].
However, decreased inhibition does not correlate with
the scores of mini-mental status examination or reduced
SAI, suggesting that structural or functional impairment
in transcallosal connection may occur earlier than the
cognitive impairments in MCI [64].

Cortical plasticity in Alzheimer’s disease

Long term potentiation-like cortical plasticity is im-
paired in AD. Five Hz rTMS which produced MEP in-
crease in healthy controls decreased MEP in AD
patients [66]. Similarly, paired associative stimulation
[67] and intermittent theta burst stimulation [68], which
induce MEP facilitation in normal subjects, also led to
reduced cortical excitability in AD patients. Whether
long term depression-like effect is altered in AD is con-
troversial. One Hz rTMS, which produced MEP inhib-
ition in healthy controls [47], had no effect in AD
patients [69]. However, MEP inhibition with continuous
theta burst stimulation in AD was normal [68].

Therapeutic rTMS for Alzheimer’s disease

The assumption in AD that memory deficit is related to
functional impairment in dorsolateral prefrontal cortex
[70] makes this cortical area a common target of thera-
peutic intervention (Table 2). It was reported that appli-
cation of 20 Hz rTMS to both the left and right
dorsolateral prefrontal cortex improved the accuracy of
an action naming task in both mild and moderate to se-
vere AD patients [71]. A subsequent study with daily
20 Hz rTMS with 2000 pulses applied to the left dorso-
lateral prefrontal cortex for 2 or 4 weeks showed long-
lasting improvement (8 weeks) in language comprehen-
sion in moderate AD patients [72]. Another study re-
ported that 20 Hz right side followed by left side dorsal
lateral prefrontal cortical stimulation applied for 5 days
improved the score of mini-mental status examination
in AD patients. On the other hand, 1 Hz stimulation ap-
plied in the same order (right followed by left side
stimulation) had no effect, suggesting that facilitatory
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but not inhibitory stimulation has therapeutic effects in
AD [73]. However, another study reported that a single
session of inhibitory 1 Hz rTMS over right dorsolateral
prefrontal cortex increased the recognition memory per-
formance in both healthy controls and MCI patients [74].

Amyotrophic lateral sclerosis

ALS is a rapidly progressive neurodegenerative disorder
of the motoneurons in the M1, brainstem and spinal
cord. A combination of upper and lower motoneuron
dysfunction comprises the clinical ALS phenotypes [3].

Single-pulse TMS measurements in amyotrophic lateral
sclerosis

MEP threshold is increased in ALS [75, 76] (Table 1).
However, a longitudinal study reported reduced MEP
threshold at early stage of the disease, which may ex-
plain muscle fasciculation with motor neuronal changes
at this stage [76]. Central motor conduction time is pro-
longed in ALS, reflecting axonal degeneration of the fast
conducting fibers of corticospinal neurons [76]. MEP
amplitude increases in sporadic [77] and familial forms
of ALS [78], prominently in the early stage of the dis-
ease. In addition, MEP amplitude correlates with traditional
measurement of peripheral nerve functions (compound
muscle action potential) and with measurement for axonal
excitability in ALS, suggesting an association between cor-
tical hyperexcitability and motoneuron degeneration [77].
Reduction in duration of silent period is also prominent at
early stage of ALS, indicating degeneration or dysfunction
of inhibitory interneurons with reduced GABAg receptor
functions in ALS [77, 78].

Intracortical circuits in amyotrophic lateral sclerosis

SICI is reduced or absent in ALS [77-79] (Table 1). This
is consistent with the pathological finding of degener-
ation of inhibitory cortical interneurons in ALS [80]. In
addition, reduction in SICI precedes the clinical develop-
ment of familial ALS, which may help in establishing the
diagnosis [78]. Intracortical facilitation is increased in
ALS [77, 78], suggesting that glutamate mediated excito-
toxicity may be involved in motoneuron hyperexcitability.
Involvement of glutamate circuit in ALS pathophysiology
is supported by the interesting finding that glutamate an-
tagonist riluzole restored the decreased SICI in ALS pa-
tients [79]. Interhemispheric inhibition is also decreased in
ALS [81]. Taken together, the reduction in cortical inhib-
ition and increase in cortical facilitation may be related to
hyperexcitability of cortical motoneurons in ALS patients.

Cortical plasticity and therapeutic rTMS for amyotrophic
lateral sclerosis

Two weeks of daily sessions of 5 Hz rTMS only had
transit benefit on motor performance and the quality of



Ni and Chen Translational Neurodegeneration (2015) 4:22

life in ALS patients [82]. Twenty Hz rTMS even showed
a tendency to accelerate disease progression [83]. These
studies suggest that facilitatory rTMS may have minor
beneficial effects or may be harmful in some circum-
stances in ALS. Inhibitory 1 Hz rTMS showed slight
benefits in two ALS patients [83], supporting the idea
that down regulation of hyperexcited motoneurons may
improve symptoms (Table 2). Subsequent studies by the
same group tested the effect of inhibitory rTMS with a de-
sign delivering 5 consecutive daily sessions of continuous
theta burst stimulation per month. Long term benefit was
observed in studies with different durations (0.5-2 years)
and different sample sizes. A 26-month trial in a single
case reported a slower rate of deterioration with stimula-
tion compared to baseline. The strongest beneficial effect
was found in the first 12 months with stimulation [84]. A
six-month study reported a slight but significantly slower
disease progression in 7 patients with real stimulation
compared to 8 patients with sham stimulation [85]. Unfor-
tunately, a one-year follow up double blinded placebo-
controlled study with more patients failed to confirm the
positive effects of the previous studies [86].

Huntington'’s disease

HD is a genetic neurodegenerative disease due to patho-
logical expansion of the triplet cytosine-adenine-guanine
(CAQG) repeat in the Huntingtin gene in chromosome 4,
which results in an excessively long polyglutamine
stretch in protein Huntingtin and eventually causes loss
of GABAergic neurons in striatum [4]. HD is character-
ized by a triad of symptoms with motor, cognitive and
psychiatric disturbances.

Single- and paired-pulse TMS measurements in Huntington'’s
disease

Higher rest and active motor thresholds and smaller rest
MEP size compared to healthy controls were found in
both very early symptomatic HD patients and HD gene
carriers [87]. However, probably due to the small sample
size and phenotypic heterogeneity, other studies found
no difference in MEP threshold [88, 89] or amplitude
[88] between HD patients and controls (Table 1). Al-
though silent period may be normal at the early or pre-
clinical stage of HD [87], progressive shortening in silent
period with functional decline was found in symptomatic
patients at two-year follow up [90]. The finding is consist-
ent with HD pathology with GABAergic neuronal loss in
the brain and suggests that the silent period may be a po-
tential biomarker of the disease progression. Several studies
reported normal SICI in symptomatic HD patients [89, 91].
However, the results may be confounded by inclusion of
patients with chorea due to various etiologies. The condi-
tioning stimulus intensity for producing same degree of
SICI was found to be increased in early and even in the
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preclinical stage of the disease [87]. SAI was decreased in
the same group of patients [87]. These studies with single-
and paired-pulse measurements support the view that cor-
tical functional impairments occur early in HD.

Cortical plasticity and therapeutic rTMS in Huntington'’s
disease

Cortical plasticity is impaired in HD. MEP facilitation
produced both by 5 Hz rTMS [92] and by paired asso-
ciative stimulation [93] were reduced in HD patients.
MEP inhibition produced by continuous theta burst
stimulation was decreased in early symptomatic HD pa-
tients and HD gene carriers [88]. The use of rTMS as a
treatment for HD has been studied (Table 2). One Hz
but not 5 Hz rTMS applied to the supplementary motor
area reduced chorea scores in HD patients, suggesting
that suppression of supplementary motor cortical excit-
ability may lead to improvement in HD symptoms [94].
Interestingly, dramatic improvement in dyskinesia lasting
for 24 h after a single session of continuous theta burst
stimulation to M1 was reported in a case of hemichorea
secondary to midbrain and caudate hemorrhage [95].

Conclusions and final remarks

Although aging is the greatest risk factor for neurode-
generative diseases, many neurodegenerative diseases
can be caused by genetic mutations and are associated
with protein misfolding and degradation. The effects of
neurodegeneration can be found in many different levels
of neuronal circuitry ranging from the molecular level to
the systems level. Studies using animal models and neu-
roimaging techniques are searching for the biomarkers
for neurodegenerative diseases. Development of disease
modifying therapies such as gene therapy, stem cell
transplant and neuroprotective agent are actively being
pursued [96].

TMS provides a non-invasive and powerful process to
investigate the synaptic activity and to manipulate the
synaptic plasticity in human cortex at the systems level.
Studies with single- and paired-pulse TMS showed ab-
normal cortical excitability in patients with neurodegen-
erative diseases. r'TMS within established guidelines is
safe for the patients with neurodegenerative diseases and
showed symptomatic benefit in some studies. Several
major issues should be considered for future studies that
focus on better understanding of the pathophysiology
and novel therapeutics for neurodegenerative diseases.
First, the protocols with diagnostic or therapeutic poten-
tials should be translated into clinically practical applica-
tions. Currently, this is largely limited by the fact that
many TMS measurements have large within-subject and
between-subject variations [6, 7]. Second, there is no
current biomarker which can confirm the diagnosis of
neurodegenerative disease at early stage and monitor the
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disease progression. Recently, genetic (such as genome
sequencing, proteomics) and neuroimaging (such as
positron emission tomography, functional magnetic res-
onance imaging) approaches are being undertaken to
identify potential biomarkers for neurodegenerative dis-
eases. Future studies combining TMS with these tech-
niques may provide new opportunity to find clinically
useful biomarkers for neurodegenerative diseases. Third,
the current evidence showed that the beneficial effects
of rTMS for neurodegenerative diseases are mild to
moderate and short-lasting. While multiple sessions of
rTMS may extend the clinical benefit, development of
rTMS into a practical treatment requires large, sham-
controlled studies and may need to introduce new
stimulation parameters. In addition, the combination of
rTMS with other traditional therapeutic methods such
as medications and deep brain stimulation may lead to
new treatment strategies for neurodegenerative diseases.
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