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Abstract

Background: J591 is a monoclonal antibody that targets the external domain of the prostate-specific membrane
antigen (PSMA). Besides prostate cancer cells, it also targets the neovasculature of non-prostate solid tumors. We
provide an analysis of the antibody mass-dose dependency of lesion uptake and normal tissue retention, together
with an assessment of lesion detectability using '''In-J591 imaging, compared with conventional imaging in
patients with a variety of solid tumors.

Methods: Twenty patients in six cohorts received fixed amounts (5, 10, 20, 40, 60, and 100 mg) of J591 in a phase |
trial. A maximum of four administrations per patient was given, with each administration separated by 3 weeks. All
antibody administrations included 370 MBq (10 mCi) of '"'In labeled to 2 mg of J591 via the chelating agent DOTA.
Three whole body (WB) gamma camera scans with at least one SPECT scan, along with multiple WB count-rate
measurements and blood samples, were obtained for all patients. The effect of escalating antibody mass on lesion
uptake and normal tissue retention was evaluated using lesion, liver, serum, and WB residence times and ratios
thereof for each treatment cycle. Lesion detectability using '''In-J591 imaging was compared to the standard
imaging on a lesion-by-lesion basis.

Results: A total of 170 lesions in 20 patients were detected by standard or '''In-J591 imaging. '"'In-J591 targeted
both skeletal and soft tissue diseases in all tumor types. "Mn-J591 imaging identified 74% (20/27) of skeletal lesions,
53% (18/34) of nodes, and 64% (70/109) of other soft tissue/organ lesions. There was increasing "Mn-J591 uptake in
lesions with increasing antibody mass-dose, coupled with decreasing retention in the liver for increments up to 20
mg, and no significant change at higher antibody mass.

Conclusions: Radiolabeled J591 antibody has potential as a targeting agent for solid tumor vasculature and lesion
detection. Bone and soft tissue lesions arising from tumors of diverse origin were targeted by the anti-PSMA
antibody J591. For the detection of lesions in these tumors by J591 antibody scans, an antibody mass of 20 mg is
adequate. The optimal time of imaging is 5 to 7 days post-injection.
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Background

Prostate-specific membrane antigen (PSMA) is a tumor
marker associated with prostate cancer. It is a 100-kDa
transmembrane glycoprotein found on prostate epithelial
cells including both benign and malignant prostatic tis-
sues [1-4]. While PSMA expression appears to be great-
est in prostate adenocarcinoma, primary tumor, and
nodal metastasis [5,6], it is also present in the neovascu-
lature of solid tumors [7-12]. Most commonly express-
ing tumors include renal, lung, gastric, colon, and breast
[7,13]. It has been shown that the expression is associ-
ated with the endothelium of the neovasculature of these
tumors [7]. Tissue microarray analysis of the renal tumors
showed PSMA expression and positive PSMA staining in
tumor-associated vasculature in 76.2% of CCRCC, 31.2% of
chromophobe RCC, 52.6% of oncocytoma, and 21.4% of
transitional cell carcinoma (TCC) [12]. J591 is a humanized
monoclonal IgG1 antibody that targets the external domain
of PSMA [14-16].
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Pilot studies to evaluate safety and biodistribution in
patients with solid tumors have shown that J591 is safe
to administer, localizes to bone and soft tissue metastatic
sites, and exhibits serum pharmacokinetics and hepatic
uptake that is dependent on the mass-dose of the anti-
body [17-19]. Detection of the lesions appears to be
dependent on the antibody mass and time of imaging
[20], while the determination of antibody mass depend-
ency helps to establish optimal doses for immunotherapy
and radioimmunotherapy [21].

An initial analysis of the use of '"'In-J591 as a vascular
tumor targeting agent in a phase I mass-dose-escalation
study has been previously reported [18,22]. It was ob-
served that the clearance rate of antibody from serum was
inversely related to antibody mass-dose, that liver uptake
of antibody was also dependent on antibody mass-dose
with greater proportional uptakes seen for lower mass-
doses, and that liver saturation appeared to occur by 60
mg, based on point estimates of proportional hepatic
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Figure 1 Residence times with increasing antibody mass in whole body (WB) (A), serum (B), liver (C), and lesion (D). Values are mean parameter
estimates for all available cycles for the patients within a cohort. Error bars represent standard errors.
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Table 1 Summary of kinetic/uptake data

Antibody mass (mg) 5 10 20 40 60 100

W8 residence time (h) 700+ 06 676+ 1.2 75127 784+ 4.1 948+43 95.1£39
Serum residence time (h/l) 29+06 50+£08 10.1+06 108 +0.6 15616 145+03
Liver residence time (h) 319+1.1 222+1.1 149+0.7 187+13 140+0.7 129+06
Lesion residence time (h) 0.14£0.01 0.22 £0.05 054+0.13 044 £0.07 033+0.08 0.51£0.05

Values are mean parameter estimates for each administered mass of hu-J591. Quoted uncertainties are the standard error of the mean.

uptake. A preliminary analysis of lesion targeting showed
that 17 of 18 (94%) patients with soft tissue disease on
standard scans showed uptake in the soft tissues on anti-
body scans, as did 6 of 6 patients with bone disease. We
now report a more detailed analysis for lesion detectability
with 'In-J591 on a lesion-by-lesion basis in patients with
a variety of solid tumors. The lesion detection and resi-
dence times are evaluated in relation to the whole body
(WB), serum, and liver **'In-J591 residence times.

Methods

Clinical study

Patients with histologically proven, advanced non-prostate
solid tumors with evidence of disease progression were

eligible. The clinical protocol was approved by the
Institutional Review Board of Memorial Sloan Kettering
Cancer Center, and all patients signed written informed
consent forms [18]. Each patient received up to a max-
imum of four administrations of an identical mass-dose of
J591 antibody, each separated by 3 weeks. The mass-dose
of antibody was increased between cohorts (each of three
patients) starting at 5 mg and increasing through 10, 20, 40,
and 60 mg to a maximum of 100 mg. Every antibody infu-
sion included a fixed amount of radiolabeled antibody
"n-DOTA-J591 (2 mg of J591 labeled with 370 MBq [10
mCi] of "''In). The patients did not receive any other con-
current therapy during the study period, including between
the infusion cycles.
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Figure 2 Lesion uptake ratios. Lesion-to-WB ratio (A), lesion-to-liver ratio (B), liver-to-WB ratio (C), and normalized lesion-to-liver ratio (D). Values
are mean parameter estimates for all available cycles for the patients within a cohort. Error bars represent standard errors.
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prominent uptake in the last cycle (D).

Figure 3 Patient with metastatic renal cell carcinoma. Received 5 mg of '''In hu-J591 for 4 cycles. Anterior and posterior WB images from cycles
1 to 4 are shown from left to right (A-D). Uptake in the lumbar lesion (E) (bone scan) is seen in all images from cycles 1 to 4 (A-D) with most

Imaging

Anterior and posterior WB planar scans were acquired
on a Philips dual-head gamma camera (Philips Inc.,
Andover, MA, USA), using dual-energy acquisition cen-
tered at 171 and 245 keV with 20% windows. Following
each antibody administration, patients underwent at
least three WB scans, the first obtained within 2 to 4 h
of administration, followed by at least two additional
scans between 24 and 196 h. Patients were also imaged
by single-photon emission computerized tomography
(SPECT) after each antibody administration. SPECT im-
ages were generated using iterative reconstruction and
attenuation correction.

WB and serum measurements

WB clearance was assessed by serial measurements of
count-rate using a 12.7-cm (5 in.)-thick sodium iodide
Nal (TI) scintillation probe. Duplicate anterior and pos-
terior measurements were made at fixed geometry, and
background-corrected geometric mean values were used
for clearance curve fitting. Probe measurements were
made immediately post-administration and subsequently
for up to 7 days following antibody administration. An
"MIn standard of known activity was counted contem-
poraneously. The median number of WB count-rate
measurements was 6 (range 4 to 7). The count rates
were normalized to the value immediately post-
administration (taken as 100%) to yield relative retained
activities (in %).

A median of 10 (range 8 to 10) venous blood samples
(approx 5 ml) were drawn at nominal times of 5, 15, 30,
60, and 120 min and on multiple occasions up to 7 days
following administration. Aliquots (500 pl) of serum
were counted in duplicate in a Nal (Tl) gamma well-
type detector (Wallac Wizard 1480 automatic gamma
counter, PerkinElmer Inc., Waltham, MA, USA) cali-
brated for '*'In, with the net count rates converted to
activities and the results expressed in percentage of the
injected dose per unit volume (%ID/1).

Derivation of kinetic parameters

A mono-exponential function was fitted to the WB data,
and both mono- and bi-exponential functions were fitted
to the serum data using the SAAM II software applica-
tion [23]. Biological and effective clearance rates and
corresponding half-times for WB and serum were esti-
mated for each treatment cycle. Subsequently, cumula-
tive activity per unit of administered activity (also known
as residence time), 1, was calculated for WB (in h) and
serum (in h/l) according to the formula 7= A/A,, where A
equals the cumulated activity (derived by integration of
the activity-time curve) and A, is the administered
activity.

Determination of uptake in liver and lesions and
comparative metrics

Regions of interest (ROI) were drawn on anterior and
posterior gamma camera images to encompass the
whole liver, up to two index lesions, and normal tissue
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(CT image (G) and axial SPECT images (H) and (I)).

Figure 4 Patient with metastatic renal cell carcinoma post left nephrectomy. Patient received 5 mg of '"'In hu-J591. Delayed WB images
(day 6 or 7; cycles 1 to 4) show uptake in left neck (A to D, respectively; black arrows) corresponding to the left paratracheal nodal mass seen
on CT image (E) (white arrow). This is also seen in the coronal, sagittal, and axial SPECT images (respectively in (F)). Uptake was also seen
corresponding to the right adrenal mass (blue arrow), pancreatic head mass (short green arrows), and left renal bed mass (long green arrow)
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background. Typically, ROI were drawn on the latest im-
ages (where lesions were generally most clearly seen)
then copied and pasted to the other images. In all, a
total of 19 liver ROI and 23 lesion ROI (in 14 patients)
were examined. The background-corrected, geometric
mean count-rate was used as the primary metric for
image-based uptake analysis. Areas under the count-
rate-time curve (AUC) for WB, liver, and lesions were
estimated by trapezoidal integration. The contribution of
the area under the terminal portion of the clearance
curve was estimated by extrapolation using the apparent
terminal clearance rate or physical decay, whichever rate
was shorter. Subsequently, the relative AUC for liver and
lesions was calculated as fractions of the image-derived
AUC values for WB and converted to cumulative activ-
ities per unit of administered activity (residence times)
using the probe-derived WB residence time estimates.
Comparative metrics were derived based on the ratios
of residence times; in particular, lesion to liver, lesion to
WB, and liver to WB. These were used to compare the
different mass cohorts. In addition, a normalized lesion-

to-liver ratio was used in an effort to investigate trends
with increasing cycle numbers. This metric was con-
structed as follows: for each lesion at each imaging time,
a lesion-to-liver count-rate ratio was derived; these ratios
were then normalized to the first non-day-of-administra-
tion image for the first cycle. Finally, the average values
of these ratios were calculated for each cycle, excluding
any images acquired on the day of administration. The
advantage of this metric was that it eliminated the lesion
size dependency of the lesion-to-liver ratio.

Image interpretation and lesion detection

All images were reviewed for tumor targeting by two
nuclear medicine physicians, blinded to other conven-
tional imaging results. For each patient, anterior and
posterior WB images and SPECT images were visually
analyzed. Sites of abnormal uptake were defined as those
that were not within the physiologic distribution of the
antibody (blood pool, liver, mild diffuse spleen, and renal
and GI activity) and that appeared more focal and in-
tense. All foci of abnormal uptake had to be clearly
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delineated in two views and visually greater than the
adjacent normal background activity. All visualized
areas of increased uptake were graded on a scale of 1 to
5 (1 = negative, 2 = probably negative, 3 = equivocal, 4 =
probably positive, and 5 = definitely positive), based on
a visual comparison with background activity in a nor-
mal adjacent region. Grade 5 indicates very intense ac-
tivity (similar to liver); grade 4 signifies a definite
increase in activity but less than that of the liver; grade
3 is equivocal to uptake in adjacent normal back-
ground; grade 2 is less than adjacent normal back-
ground uptake; and grade 1 is no uptake. The anatomic
locations of all such areas were recorded.

Baseline CT scans and Tc-99m MDP bone scans were
reviewed for lesions by a radiologist who was blinded to
the results of the antibody scans. All lesions detected by
each modality were recorded separately, and the lesions
detected by antibody scans were compared to those de-
tected by CT or bone scan. The CT and bone scans were
performed clinically within a month of the antibody in-
fusion and imaging. The CT scans and bone scans were

Table 2 Lesion distribution and detection in patients

Number

Patients

Total 20

Bone metastasis 9

Nodal metastasis 14

Other organ metastasis 7

Lung 11

Liver 6
Lesions

Total lesions 170

Bone 27

L. node and organs (soft tissue) 143
Concordance: bone lesions

CT or bone scan positive and 20
antibody scan (Ab) positive

CT or bone scan positive, Ab 7
scan negative

CT and bone scan negative, Ab 0
scan positive
Concordance: nodal lesions

CT scan and antibody scan 18
(Ab) positive

CT scan positive, Ab scan negative 16

CT scan negative, Ab scan positive 0
Concordance: soft tissue lesions

CT scan and antibody scan (Ab) positive 69

CT scan positive, Ab scan negative 39

CT scan negative, Ab scan positive 1

Page 6 of 13

independently read by separate radiologists. Detected le-
sions were noted and characterized on a similar (1 to 5)
scale for possibility of disease. CT scans were read per
RECIST 1.1 criteria, soft tissue disease was measured
per RECIST 1.1, and bone lesions were measured if they
were lytic with soft tissue component.

Statistics

Parameter estimates are quoted in terms of mean values
and associated standard errors. For lesion detection, de-
tection rates of the three modalities were compared
using McNemar’s test. All analyses took into account the
clustering that resulted from multiple lesions per patient
using the methods described by Gonen et al. [24].

Results

Patients

A total of 20 patients (12 male and 8 female) were
treated in 6 cohorts starting at a dose of 5 mg up to 100
mg of J591. The median age of the patients was 65
(range of 39 to 80). The distribution of tumors included
melanoma (n=5) and cancers of the kidney (n=5),
colon (n =2), head and neck (n =2), TCC of renal pelvis
(n=2), stomach (n=1), bladder (n=1), breast (n=1),
and liver (z =1). For the mass-dose levels of 5, 20, 40,
and 60 mg, three patients were included in each cohort.
Four patients were treated in cohorts 2 (10 mg) and 6
(100 mg) due to the need for replacement of patients
who could not continue for medical reasons unrelated to
the antibody infusions following the first antibody ad-
ministration. Patients received a median of 2 cycles
(range 1 to 4) with 16 patients receiving 2 or more cy-
cles. The injected activity range was 9.3 to 10.4 mCi
(mean 9.9 mCi of "'In). Lesion detection analysis was
performed on all 20 patients, while mass escalation ana-
lysis was performed only on those who received more
than 1 cycle.

Uptake and retention in WB, serum, liver, and lesions
Figure 1A,B,C,D illustrates graphically the antibody mass
dependency of residence time estimates for WB, serum,
liver, and index lesions (numerical values are also pro-
vided in Table 1). There was little difference between
mono- and bi-exponential curve-based serum residence
times; the values shown are for mono-exponential clear-
ance. These data show increasing retention in WB,
serum, and lesions with increasing antibody mass,
coupled with decreasing retention in liver. For lesions
and liver, there is little evidence of mass dependency for
antibody masses greater than 20 mg, whereas for WB
and serum, mass dependency appears to extend up to
the 60 mg level.

Figure 2A,B,C,D shows a summary of the comparative
metrics of uptake and retention in lesions, liver, and WB
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as a function of antibody mass. Similar to the lesion resi-
dence times, the general trends indicate an increase in
comparative lesion uptake with antibody mass of up to
20 mg with no obvious increase thereafter (Figure 2A,B),
coupled with a decrease in comparative liver uptake of
up to 60 mg (Figure 2C). There was a slight (statistically
non-significant) trend of an increase in normalized
lesion-to-liver ratio trend with higher cycle numbers
(Figure 2D).

Image interpretation and lesion detection

Twenty patients with a variety of solid tumors including
melanoma (7 = 5) and cancers of the kidney (# =5), colon
(n=2), head and neck (n =2), TCC of renal pelvis (n = 2),
stomach (# = 1), bladder (n=1), breast (n=1), and liver
(n=1) were included in the study. For the mass-dose
levels of 5, 20, 40, and 60 mg, three patients were included

Table 3 Lesion detection by modality
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in each cohort. Four patients were treated in cohorts 2
(10 mg) and 6 (100 mg) due to the need to replace patients
who could not continue for medical reasons (unrelated to
the antibody infusions) after the first antibody administra-
tion. Patients received a median of 2 cycles (range 1 to 4),
with 16 patients receiving 2 or more cycles.

All antibody scans were positive for either bone or soft
tissue lesions (Figures 3 and 4). A total of 170 lesions,
including 27 bone lesions, 34 nodal lesions, and 109 le-
sions in non-nodal soft tissue or organs were detected
by any imaging modality including conventional imaging
(CT or bone scan) or antibody imaging (Tables 2 and 3).
The organs included the lung, liver, renal fossa, spleen,
adrenal, and bladder. Other soft tissue lesion sites in-
cluded the skin or subcutaneous tissue.

Out of 27 bone lesions detected by CT or bone scan,
20 were identified by antibody scan (Tables 2 and 3). CT

Primary Skeletal Soft tissue lesions or Nodes
tumor lesions seen organ involvement seen
Ab No. of Total CT scan Antibody Total CT  Antibody Total CT  Antibody
dose cycles or BS scan scan scan scan scan
(mg)
Melanoma 5 2 0 0 0 3 3 3 1 1 0
Renal cell 5 4 3 3 3 6 6 4 3 3 2
Renal cell 5 4 2 2 2 9 9 4 1 1 0
Hepatocellular 10 1 0 0 0 6 6 4 0 0 0
Melanoma 10 2 4 4 0 12 12 7 3 3 2
Melanoma 10 2 1 1 0 5 5 5 3 3 3
Renal cell 10 4 0 0 0 8 7 4 2 2 1
Adenoca 20 2 3 3 2 12 12 10 3 3 0
colon
Melanoma 20 2 5 5 5 8 8 2 0 0 0
SCC hypoph 20 2 0 0 0 2 2 2 1 1 1
TCC renal 20 4 0 0 0 2 2 2 1 1 0
pelvis
Adenoca 40 1 0 0 0 2 2 1 0 0 0
colon
TCC renal 40 2 0 0 0 1 1 1 3 3 2
pelvis
Melanoma 60 2 1 1 1 8 8 3 3 3 3
Renal cell 60 1 0 0 0 5 5 4 2 2 2
Renal cell 60 4 0 0 0 6 6 3 0 0 0
Adenoca 100 4 0 0 0 5 5 5 3 3 0
gastric
Breast 100 1 7 7 6 0 0 0 0 0 0
SCC tongue 100 2 1 1 1 3 3 3 0 0 0
TCC-bladder 100 2 0 0 0 6 6 3 5 5 2
27 27° 20 109 108 70 34 34 18

*Total bone lesions detected by CT only: 13. Adenoca, adenocarcinoma; hypoph, hypopharynx; SCC, squamous cell carcinoma; TCC, transitional cell carcinoma.
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alone detected 13/27 (48%) of bone lesions. There were
7 (26%) bony lesions seen on bone or CT scans that
were not seen on antibody imaging, and 14 lesions seen
on bone scan were not detected by CT scan, while the
bone scan detected all lesions. Those bone lesions not
seen with antibody imaging included sub-centimeter rib
lesions located anterolaterally in the chest and small le-
sions in the transverse process close to costovertebral
junctions in the thoracic vertebrae. In one patient, a
pubic symphysis lesion was difficult to detect due to a
combination of overlap with bladder activity and small
lesion size. There was a statistically significant difference
for the detection of bony lesions between CT and anti-
body imaging (adjusted McNemar’s chi square P = 0.01),
with antibody imaging identifying significantly more
lesions than CT.

Out of 34 nodal lesions detected by CT, antibody im-
aging identified 18 (53%). Detection was mainly limited
by size (generally limited below 2 ¢cm) and/or proximity
to the mediastinal blood pool or large vessels in the
abdomen and pelvic regions. For non-nodal soft tissue
lesions, a total of 109 lesions were seen on either CT
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scan or antibody scan (Table 2); CT detected 108 (99%)
and antibody detected 70 (64%) of the lesions. There
were 69 lesions seen concurrently on CT and antibody
imaging, while in one case, the antibody scan identified
a soft tissue lesion not seen on CT, which was confirmed
as a true-positive lesion on follow-up CT scan performed
within 1 month after the antibody scan.

Soft tissue lesions not seen with antibody imaging in-
cluded small lung lesions; of 25 such lesions, 18 were ap-
proximately 5 mm in size, with 7 between 1 and 1.5 cm.
In addition, the lung lesions located close to the heart or
mediastinum tended to be obscured by nearby activity
and image noise. Ten lesions in the liver were not de-
tected, probably due to high levels of antibody uptake in
normal liver. Due to this physiologic uptake, liver lesions
were likely to be missed; although in six patients, liver
lesions (mainly larger lesions of >2.5 c¢cm in size) were
detected by antibody imaging (Figure 5). Other missed
soft tissue lesions included a splenic lesion, a metastatic
lesion in an ovary, and two small subcutaneous lesions.
Fourteen patients had nodal involvement, while lung
and liver involvement was seen in eleven and six

liver disease seen on CT images (E).

Figure 5 Female with metastatic hepatocellular carcinoma. Anterior and posterior WB images from day 0, day 3, and day 6 ((A-C), respectively)
show heterogeneous activity in the liver steadily increasing in later images (C), more clearly seen on SPECT (D), corresponding to the progressive
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patients, respectively. Antibody imaging was positive for
other organ involvement in seven patients, including
kidney lesions or renal bed recurrence, adrenal bed dis-
ease, the pancreas, spleen, bladder, skin, and subcutane-
ous lesions.

Based on a 5-point scoring scale for the detection of
lesions, more lesions (>50%) were considered true le-
sions in the later scans (5 to 7 days after each infusion)
than in scans performed earlier (Figures 5 and 6). In
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addition, lesions were more prominently seen on scans
obtained with later infusions for patients with multiple
cycles of infusion (cycle 3 or 4) (Figure 7). However, pa-
tient numbers were limited for such cases, as not all pa-
tients completed 4 cycles of treatment.

Discussion
We have previously described the feasibility of imaging
vascular solid tumors using antibody J591 and its serum

F 2y -8

Figure 6 Patient with metastatic melanoma. Treated with 20 mg hu-J591 doses. Day 1, day 4, and day 7 images (A-C) after treatment cycle 2
show multiple foci of uptake in the skin and subcutaneous lesions (D, E) most prominent in the abdominal wall and right thigh. Uptake also
localized focally on SPECT coronal, sagittal, and axial images (F-H) along known lesions.

H
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pharmacokinetics [18]. The current report describes a
detailed analysis of the lesion uptake and targeting based
on the full kinetic profiles of ''In-J591 using residence
times in WB, liver, serum, and index lesions. This ana-
lysis showed no significant decrease in liver uptake be-
yond 20 mg and that the decrease in liver-to-WB ratio
can be ascribed to an increase in WB retention, which
continues up to an antibody mass of at least 60 mg. The
observation that the lesion residence times and lesion-
to-liver and lesion-to-WB ratios did not increase for
antibody masses greater than 20 mg implies that for de-
tection of vascular lesions by J591 antibody scans, an
antibody mass of 20 mg is adequate.

This is the first detailed analysis of lesion-by-lesion
targeting of '"'In-J591 vascular targeted imaging versus
conventional imaging in solid tumors. Lesion targeting
with "'In-J591 was seen in all patients and all types of
solid tumors imaged in this study. *''In-J591 had good
detection rates for skeletal lesions (20/27). For bone
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lesions, the overall sensitivity of antibody scanning was
higher than CT alone (74% vs. 48%) and it detected more
lesions (n = 7), including those in the ribs, vertebrae, and
proximal femora that were true positives based on
visualization and progression on follow-up imaging, in-
cluding bone scans or CT scans. The comparative num-
bers with bone scan and CT combined were lower;
however, the specificity of targeted imaging of lesions as
compared to BS may be a benefit. The current study is
limited due to small numbers. Targeting of nodal and
soft tissue disease was also seen in all tumor types, al-
though detection rates were lower than for bone lesions.
Overall, the positivity for nodal disease was 53% (18/34),
with a suggestion of relatively greater targeting to more
vascular tumors such as melanoma or renal cell carcin-
oma where respectively, 86% and 66% of nodal lesions
were seen (Table 4); however, these numbers were lim-
ited. The majority of soft tissue lesions were non-nodal
soft tissue disease totaling 109 lesions, which involved

Ao A

!

Cycle 2

A Cycle 1

DA A

\ »

Cycle 3 Cycle 4

Figure 7 Patient with renal cell carcinoma. Injected with a total of 60 mg of antibody each for 4 cycles. Anterior and posterior WB images from
day 4 imaging are shown corresponding to cycles 1 to 4 (A) (from left to right). Images show physiologic uptake in liver, blood pool in heart and
vasculature, and spleen. Focal activity is seen in the region of right jaw (arrows) (A,B), which corresponds to soft tissue metastasis in right cheek
overlying the masseter muscle, confirmed on a follow-up CT scan (C).
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Table 4 Lesions detected by '''In-J591 imaging out of the total detected

Number of patients Tumor type Bone lesions Organ lesions Nodal lesions
3 Colon/Gastric 2/3 16/19 0/6

3 Bladder/Renal TCC 0/0 6/9 4/9

5 Melanoma 6/11 20/36 8/10

1 Breast 6/7 0/0 0/0

1 Liver-HCC 0/0 4/6 0/0

5 Renal cell 5/5 19/34 5/8

2 Head & neck SCC 11 5/5 11

TCC, transitional cell carcinoma; HCC, hepatocellular carcinoma; SCC squamous cell carcinoma.

organs, post-surgical bed of resected primaries or skin,
and subcutaneous tissue. 1'In-J591 detected 64% (70/109)
of these lesions.

In all cases, the primary reasons for failing to detect le-
sions on antibody scan included small lesion size and lo-
cally high normal tissue background due either to
proximity of the heart or major vessels (lungs) or physio-
logical uptake (liver). In this study, antibody imaging was
performed using planar scintigraphy and SPECT only and
was thus particularly susceptible to uncertainties associated
with overlapping activities and structural misidentification.
We anticipated that lesion detection and localization would
be superior with SPECT/CT imaging or PET/CT imaging.
Another important issue was the antibody mass-dose de-
pendency of lesion detection. The analysis suggests that
lesion detectability is likely to be optimal for antibody
mass-doses of equal to or greater than 20 mg. However,
due to the small number of patients, the range of antibody
mass-doses investigated, and the diversity of the clinical
population, the analysis was limited.

The lesion, uptake, and residence times seen in this
study are in general concordance with our prior obser-
vations in patients with metastatic prostate cancer
[18,20,21]. In prostate cancer patients, both WB and
serum biologic half-times increased with increasing
antibody mass. A significant difference in all inter-
group values was noted, except for antibody masses of
50 and 100 mg. The current study involved escalation
of antibody mass between cohorts as against within
cohort, limiting the statistical power of the compari-
sons. However, the general trends of antibody mass
dependency in terms of increased lesion uptake for
higher mass-doses of antibody were similar across the
studies.

Based on the increased lesion visualization in later
scans compared to earlier time points, the optimal time
for lesion detection, and therefore imaging, appears to
be 5 to 7 days. This is similar to our prior observation in
prostate cancer patients, wherein more lesions were seen
at the last scan of imaging after each cycle of antibody
administration [20]. In a more recent study with 8971591,
we also saw more lesions at later time points and

the optimal imaging time was determined to be 7+ 1
day [25]. The larger number of lesions detected in
images obtained at later time points is likely due to
clearance of blood pool activity leading to higher tumor-
to-background ratio at later time points, thus allowing
for visualization of lesions with higher contrast. With an
increasing number of infusions, it is possible that the
saturation of antibody accumulation or pooling in normal
organs occurs, e.g., in the liver, which may allow for more
radiolabeled antibody targeting the lesions. Lesion targeting
was seen in all tumor types studied, though due to the low
number of patients included from each tumor type, no
statistical differences in detection rates for specific tumor
types could be derived.

The analysis shows potential of anti-PSMA imaging in
patients with solid tumors. While the tumor types were
not selected based on confirmation of PSMA staining,
targeting of lesions was seen in all tumor types imaged
in this study consistent with prior reports that showed
PSMA expression in vasculature of these tumors
[10,11,22]. PSMA-directed imaging and targeting of neo-
vasculature in these tumors may play a potential role in
developing novel therapies through direct use as a radio-
immunotherapy agent or biomarker for assessment of ef-
ficacy of treatment, especially anti-angiogenic agents.
Imaging time post-injection due to longer circulation
time of the antibody and image quality related to single-
photon-emitting radioisotope are both limitations of
1157591, Smaller anti-PSMA molecules, minibodies,
or ligands directed to PSMA, preferably using PET im-
aging techniques, may be a more suitable approach in
imaging these tumors. This approach also needs to be
established in larger populations with a focus on specific
tumor types.

Conclusions

Antibody J591 imaging allowed visualization of lesions
in solid tumors of diverse origin. The visualization of le-
sions is antibody mass-dependent and may be optimally
seen at 20 mg antibody dose. The optimal scanning time
appears to be 5 to 7 days post-injection. Further studies
in larger subjects, preferably with smaller molecules
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directed to PSMA, are needed to further establish the
role of PSMA-directed targeting of these tumors.
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