Ma et al. Parasites & Vectors (2016) 9:229

DOI 10.1186/513071-016-1508-3 Par-asites & Vector-s

RESEARCH Open Access

MicroRNAs of Toxocara canis and their ® e
predicted functional roles

Guangxu Ma'?, Yongfang Luo', Honghong Zhu', Yongli Luo', Pasi K. Korhonen? Neil D. Young?,
Robin B. Gasser’” and Ronggiong Zhou'"

Abstract

Background: Toxocara canis is the causative agent of toxocariasis of humans and other animals. This parasitic
nematode (roundworm) has a complex life cycle, in which substantial developmental changes and switches occur.
As small non-coding RNAs (sRNAs) are key regulators of gene expression in a wide range of organisms, we
explored these RNAs in T. canis to provide a basis for future studies of its developmental biology as well as host
interactions and disease at the molecular level.

Methods: We conducted high-throughput RNA sequencing and bioinformatic analyses to define sRNAs in
individual male and female adults of T. canis.

Results: Apart from snRNA and snoRNA, 560 and 619 microRNAs (miRNAs), including 5 and 2 novel miRNAs,
were identified in male and female worms, respectively, without piRNAs being detected in either sex. An
analysis of transcriptional profiles showed that, of 564 miRNAs predicted as being differentially transcribed
between male and female individuals of T. canis, 218 miRNAs were transcribed exclusively in male and 277
in female worms. Functional enrichment analysis predicted that both male and female miRNAs were mainly
involved in regulating embryonic morphogenesis, hemidesmosome assembly and genetic information
processing. The miRNAs differentially transcribed between the sexes were predicted to be associated with
sex determination, embryonic morphogenesis and nematode larval development. The roles of miRNAs were
predicted based on gene ontology (GO) and KEGG pathway annotations. The miRNAs Tc-miR-2305 and
Tc-miR-6090 are proposed to have roles in reproduction, embryo development and larval development,

and Tc-let-7-5p, Tc-miR-34 and Tc-miR-100 appear to be involved in host-parasite interactions. Together

with published information from previous studies, some miRNAs (such as Tc-miR-2861, Tc-miR-2881 and
Tc-miR-5126) are predicted to represent drug targets and/or associated with drug resistance.

Conclusions: This is the first exploration of miRNAs in T. canis, which could provide a basis for
fundamental investigations of the developmental biology of the parasite, parasite-host interactions and
toxocariasis as well as applied areas, such as the diagnosis of infection/disease, drug target discovery and
drug resistance detection.
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Background

Toxocara canis is an important intestinal nematode of
dogs and the principal causative agent of human toxo-
cariasis worldwide [1, 2]. Humans, particularly children
[3, 4], can be infected through the accidental ingestion
of embryonated eggs of Toxocara or infective larvae in
raw/undercooked meats or viscera [5-8]. Once the
human host is infected, larvae can invade multiple
tissues or organs, causing visceral larva migrans, ocular
larva migrans, neurotoxocariasis and/or covert toxocar-
iasis [7, 9, 10]. Although many infections are likely to be
asymptomatic, the relationship between toxocariasis and
epilepsy as well as asthma has raised considerable public
concern [11-13]. In addition, epidemiological studies
have indicated a relatively high prevalence (12-93 %) of
toxocariasis in humans in some African, Asian and Latin
American countries [1, 3, 4, 14-16], although prevalence
levels are likely to be underestimated due to limited
investigations around the world [17].

Various studies have given improved insights into the
epidemiology of Toxocara species using molecular
methods [18], and knowledge of the genome and tran-
scriptomes is now helping us gain a better understand-
ing of the fundamental molecular biology, biochemistry
and physiology of T. canis [19, 20]. Central to many
biological processes of this parasite is knowledge of the
regulators of survival, development, reproduction, inva-
sion and immune evasion, namely small RNAs (sRNAs).
However, there is no information on these RNAs for any
ascaridoid nematode, except Ascaris [21].

The sRNAs are usually 20-30 nucleotides (nt) in length,
and are key players in gene perturbation by interacting with
mRNAs (e.g., microRNAs (miRNAs) and silencing RNAs),
and by regulating genes through chromatin modification
(e.g., small interfering RNAs and piwi-interacting RNAs,
piRNAs) (cf. [22—25]). Specifically, since lin-4 was originally
identified in Caenorhabditis elegans [26], knowledge of
miRNAs in organisms ranging from unicellular to multicel-
lular organisms has expanded substantially in the last
decade [27], thereby significantly broadening our know-
ledge of the roles of miRNAs in regulating biological pro-
cesses [28-30]. Recently, some studies of parasites have
elucidated the regulatory roles of some miRNAs in survival
[31, 32], tissue development and reproduction [32—34]. Of
particular interest is that selected miRNAs of parasitic
nematodes might also play roles in the regulation of
parasite-host interactions [35-37] and drug resistance
[29, 38]. Given the lack of information for most ascar-
idoid nematodes, we characterized here the sRNAs of T.
canis and conducted comparative analyses to provide a
basis for future fundamental investigations of development,
reproduction, host-parasite interactions, and possibly for
applied areas, such as the diagnosis of infection and detec-
tion of drug resistance as well as drug target discovery.

Page 2 of 9

Methods

Ethics statement

All experiments involving dogs were approved by
Southwest University, China, using a protocol that com-
plied with the requirements of the Ethics Procedures and
Guidelines of the People’s Republic of China.

Procurement of adult T. canis

Adult T. canis were expelled from naturally infected
dogs in the Rongchang Campus Animal Hospital of
Southwest University, China. Male and female adult
worms of T. canis were washed three times in sterile
physiological saline (37 °C), and each worm was snap-
frozen separately and stored at -80 °C until use. The
specific identity of each worm was verified by morpho-
logical and molecular identification using established
descriptions and methods [39, 40].

Small RNA library construction and RNA-sequencing
High-quality total RNA was extracted (separately) from
the entire body of a male and a female adult worm using
Trizol reagent (Invitrogen, Carlsbad, CA, USA). RNA
yield and quality were measured spectrophotometrically
(BioPhotometer, Eppendorf, Germany). The total RNA
(20 pg) from each of the two samples was fractionated using
Novex 6 % TBE-Urea gels (Invitrogen, Carlsbad, CA, USA),
and the fragments of 18—-30 nt were ligated with 5" and 3’
adaptors (Illumina) for reverse transcription. The resultant
first-strand cDNA was amplified with a small RNA primer
set to enrich the libraries, and the cDNA libraries were se-
quenced (BGI-Shenzhen, China) using Illumina technology
(HiSeq2000; sequencing length: 50 nt; paired-end).

Processing and analysis of sequencing data

The raw sequence reads were pre-processed for quality,
and adaptors, reads of <18 nt and low-complexity reads
were removed; then, the length distribution of the “clean”
reads was assessed. All clean reads were mapped to the
transcriptome of T. canis (accession no. GSE75536) using
the program SOAP [41]. The identification and annotation
of matched sRNAs were conducted by homology-based
searching against ribosomal RNA (rRNA), small nucleolar
RNA (snoRNA), small nuclear RNA (snRNA), piRNA and
transfer RNA (tRNA) data in GenBank within the National
Center for Biotechnology Information (NCBL [42]) and
Rfam release 10.1 [43] databases using BLASTn. Perfectly
matched sequences were excluded, and the unmatched
sequences were compared with the precursor/mature
miRNAs in miRBase release 18.0 [44] to identify known
miRNAs, allowing two mismatches and no gaps. The
miRNAs levels (both strands) were estimated based
on read counts; the minimum number of counts was
set at 100. Novel miRNAs were predicted based on
their secondary structures, the Dicer cleavage site and
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the minimum free energy (18 kcal/mol) using the tool
MIREAP [45]. Transcriptomic and small RNA data have
been deposited in the NCBI Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo) under accession nos.
GSE75536 and GSE68710, respectively.

The prediction of miRNA targets and annotation

Target genes were predicted using RNAhybrid software
[46], and their functions were annotated using gene ontol-
ogy (GO) [47] and KEGG pathway analyses [48]. Functional
enrichment analysis of miRNA targets was conducted. The
significance of GO and pathway enrichment was set at a
P-value of < 0.05 (corrected). In addition, miRNAs targeting
genes linked to reproductive processes, host-parasite inter-
actions or drug resistance were predicted on the basis of
enriched GO terms and/or pathways.

Comparative analysis between the worms

The transcriptional profiles for identified miRNAs were
clustered using tag2miRNA software (custom-designed by
BGI-Shenzhen), and the transcription levels of novel miR-
NAs were produced by summing up the counts of miRNAs
with no more than 3 mismatches at the 5 and 3" ends, and
with no mismatch in the middle of their sequence align-
ment. To infer a list of miRNAs that were exclusive to male
and female libraries, the fold-change was calculated (log,
(female/male)) from the normalised transcription (miRNA
count/total count of clean reads x 1,000,000), in which a
given value (0.01) was added to that of extremely lowly
transcribed miRNAs. The miRNAs differentially tran-
scribed between male and female T. canis were inferred
based on a log, fold-change of > 2 in read count using the
program EdgeR (http://bioconductor.org/packages/release/
bioc/html/edgeR.html). Then, a functional enrichment
analysis of differentially transcribed miRNA targets was
carried out to predict gender-enriched GO terms and
pathways. In addition, miRNAs with gender-enriched anno-
tations and predicted to be involved in reproduction or
larval development were identified. Moreover, miRNAs in
T. canis inferred to be involved in parasite-host interactions
were identified by sequence comparison with secretory
miRNAs reported previously for some filarioid nematodes,
including Brugia malayi, Dirofilaria immitis, Loa loa,
Onchocerca ochengi, and the strongylid nematode Heligmo-
somoides polygyrus (bakeri) [36, 49-51], as were those pre-
dicted to play roles in regulating arrested development
(dauer) employing larval miRNAs for Ascaris suum, B.
malayi, C. elegans and H. polygyrus (bakeri) [32, 36, 51,
52]; miRNA matches were defined on the basis of 100 %
identity in the seed sequence. The miRNAs sequences
were aligned using Clustal software [53], and align-
ments adjusted manually. Additional analyses and
data preparation were conducted in a Microsoft Excel
2013 using standard commands.

Page 3 of 9

Quantitative real-time PCR (qPCR) assays

To investigate the transcriptional profiles of miRNAs
predicted to be involved in developmental and repro-
ductive processes, qPCR was employed to assess levels
of transcription for selected miRNAs in the different
body parts of the two (male and female) adults of T.
canis. Total SRNAs were extracted separately from the
reproductive tracts, intestines and body walls of the male
and female worms using the EasyPure miRNA Kit
(TransGen Biotech, Beijing, China). Then, sRNAs were
polyadenylated and transcribed into first-strand cDNA,
according to the manufacturer’s protocol. To estimate
transcription levels, a two-step qPCR was carried out
using a TransScript Top Green qPCR Supermix (Trans-
Gen Biotech, Beijing, China) employing the following
cycling protocol: 94 °C/30 s, followed by 40 cycles of
94 °C/5 s and 60 °C/30 s. The primers used are shown in
Additional file 1: Table S1. Although no universally
applicable normaliser gene has yet been identified [54],
based on an appraisal of some previous studies [55-57],
we elected to employ the small subunit of the nu-
clear ribosomal RNA (18S) gene as an internal ref-
erence control. Three independent replicates were
performed, and the relative transcription level was
established using the 272C method [58], and presented
as X * standard deviation (SD).

Results

Features of sRNA libraries

Libraries were constructed separately for the male and
female individuals of 7. canis, and paired-end se-
quenced. In total, 11,824,662 and 11,486,831 raw reads
were produced by deep sequencing, with high quality
tags constituting 99.5 % and 99.4 % of all reads, respect-
ively, from which 11,632,676 and 10,723,433 “clean”
reads were derived, following the removal of adaptors,
short reads (<18 nt) and low complexity reads. The male
sRNAs were between 18 and 28 nt in length, compared
with 16-29 nt for female sSRNAs. Specifically, 5,792,295
(49.79 %) and 6,094,798 (56.84 %) reads mapped to the
total RNA data representing male and female T. canis,
respectively. Following annotation, snoRNA, snRNA and
miRNA accounted for 0.01 %, 0.07 % and 24.92 % of all
male sRNAs, compared with 0.01 %, 0.04 % and 32.86 %
of female sSRNAs, respectively (Table 1). Interestingly, no
piRNA sequence was detected in either the male or
female sSRNA library representing 7. canis.

Transcriptional profiles and functional enrichment

By aligning miRNA precursors with mature miRNA
sequences in miRBase, we defined 555 and 617 ‘known’
miRNAs from 2,899,258 male reads and from 3,524,138
female reads, respectively (Table 1). Particular miRNAs,
such as Tc-miR-51-3p (with 1,571,239 reads) and Tc-
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Table 1 Statistics of the small RNAs sequenced from
libraries representing male and female adult individuals
of Toxocara canis

Description Male library
11,824,662 (100)
11,766,843 (99.51)
11,632,676 (98.38)
11,632,676 (100)
5,792,295 (49.79)

988 (0.01)

Female library
11,486,831 (100)
11,415,284 (99.38)
10,723,433 (93.35)
10,723,433 (100)
6,094,798 (56.84)
615 (0.01)

Total number of reads (%)

High quality reads (%)

Clean reads (%)

Total sSRNA reads (%)

Mapping to genome (%)
sNoRNA reads (%)
sNRNA reads (%) 7659 (0.07) 4815 (0.04)
miRNA reads (%) 2,899,258 (24.92) 3,524,138 (32.86)

Known miRNAs (n) 555 617

Novel miRNAs (n) 5 2

miR-3070-2-3p (with 1,333,544 reads) were very highly
transcribed in the male T. canis, compared with Tc-
miR-279b-3p (with 451,632 reads), Tc-miR-71c-5p
(with 340,196 reads), Tc-miR-71 (with 339,285 reads)
and Tc-miR-265 (with 231,054 reads) in the female
worm (Additional file 1: Table S2). In addition, 5 novel,
male miRNAs and 2 novel, female miRNAs were predicted
(Table 1); most of these miRNAs had low levels of
transcription, except for novel_Tc-miR-47, which was
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represented by 5888 reads in the male library (Additional
file 1: Table S2).

Target prediction was carried out using transcrip-
tomic data from adult 7. canis. The results showed
that 213 known miRNAs targeted 10,815 genes in the
male worm, and 223 known miRNAs targeted 9,076
genes in the female worm, compared with 5 novel
miRNAs with 44 target genes in the male T. canis,
and 2 novel miRNAs with 73 targets in the female T.
canis. Following GO annotation and pathway enrich-
ment analyses, we inferred that male-enriched miR-
NAs have roles in regulating the biological processes
of embryonic morphogenesis and hemidesmosome as-
sembly, and pathways involving spliceosomes, basal
transcription factors, biotin metabolism, proteasome,
ribosome, ubiquitin-mediated proteolysis, adherens
junction, protein digestion and absorption, focal adhe-
sion and the PI3K-Akt signalling pathway (Fig. 1;
Additional file 1: Table S3). On the other hand,
female-enriched miRNAs were predicted to be linked
to processes including embryonic morphogenesis, RNA
polyadenylation, hemidesmosome assembly, regulation of
cell division and nucleus organisation (Fig. 1; Additional
file 1: Table S3), with pathways associated with spliceo-
somes, biotin metabolism and proteasome (Additional
file 1: Table S3).

Male sex determination
Purine nucleotide metabolic process
Germ cell repulsion
Male genitalia morphogenesis
Fc gamma R-mediated phagocytosis

Q

Embryonic morphogenesis
Store-operated calcium entry
Acyl-CoA metabolic process
Nematode larval development
Sphingolipid metabolism

sphingolipid metabolism in the female worm (bottom box)

Fig. 1 Summary of functional enrichment analyses of microRNAs (miRNAs) in adult worms of Toxocara canis. In both male and female worms,
miRNAs (i.e. those for which homologs have been described previously for other nematodes) were predicted to be involved in regulating
embryonic morphogenesis, hemidesmosome assembly, genetic information processing (including spliceosome and proteasome) and biotin
metabolism (right box). Differentially transcribed miRNAs were predicted to be mainly associated with male sex determination, purine nucleotide
metabolism process, germ cell repulsion, male genitalia morphogenesis and Fc gamma R-mediated phagocytosis exclusively in the male worm
(top box), and with embryonic morphogenesis, store-operated calcium entry, Acyl-CoA metabolic process, nematode larval development and

J&Q
Embryonic morphogenesis
Hemidesmosome assembly
Genetic information processing
(spliceosome and proteasome)
Biotin metabolism
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Transcriptional differences between male and female
worms, and functional enrichment

In the differential transcription analysis, we predicted
564 gender-biased miRNAs, in terms of read counts and
calculated fold-changes (log, female vs. male); 218 and
277 of these miRNAs were exclusive to male and fe-
male 7. canis, respectively (Additional file 1: Table S4).
In addition, sequence-dependent transcription was re-
corded in male and in female T. canis; for instance,
transcription levels differed among miRNAs 7Tc-miR-
100, Tc-miR-100d, Tc-let-7-5p, Tc-let-7b-5p, Tc-let-7c-
5p, Tc-let-7e-5p, Tc-let-7f-5p, Tc-miR-87, Tc-miR-874a,
Tc-miR-87b, Tc-miR-103a and 7c-miR-103b (Fig. 2a;
Additional file 1: Table S5), whereas only limited differ-
ences in transcription were recorded for 342 miRNAs
shared by male and female T. canis, with these miRNAs
having a conserved seed sequence between the two
sexes (Fig. 2b; Additional file 1: Table S5).

In the functional enrichment analysis, biological pro-
cesses linked to male-enriched miRNAs in T. canis
included embryonic morphogenesis, hemidesmosome
assembly, masculinization of hermaphroditic germ-line,
negative regulation of vulval development, nematode
larval development, regulation of DNA-templated tran-
scription, termination, synaptic vesicle priming, embryo
development ending in birth or egg hatching, male
somatic sex determination, male germ-line sex deter-
mination, moulting cycle, collagen and cuticulin-based
cuticle, locomotion, purine nucleotide metabolic process,
positive regulation of Rac protein signal transduction,
positive regulation of Rho protein signal transduction,
germ cell repulsion and male genitalia morphogenesis
(Additional file 1: Table S6), as well as pathways in-
volving basal transcription factors, spliceosomes and Fc
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gamma R-mediated phagocytosis (Additional file 1:
Table S6). On the other hand, processes linked to female-
enriched miRNAs in 7. canis included hemidesmosome
assembly, embryonic morphogenesis, moulting cycle, col-
lagen and cuticulin-based cuticle, positive regulation of
smooth muscle contraction, receptor localisation to syn-
apse, regulation of actin cytoskeleton reorganisation,
store-operated calcium entry, positive regulation of en-
gulfment of apoptotic cell, short-term memory, barbed-
end actin filament capping, acyl-CoA metabolic process
and nematode larval development (Additional file 1:
Table S6), and enriched pathways including proteasome,
sphingolipid metabolism and spliceosomes (Additional
file 1: Table S6).

MiRNAs predicted to be associated with development
and reproduction

Based on GO annotation analysis, we predicted 52
differentially transcribed miRNAs to be involved in
developmental and reproductive processes. These miR-
NAs were classified into 28 seed sequence families
(Additional file 1: Table S7). Notably, Tc-miR-2305 and
Tc-miR-6090, with a seed sequence 5'-GGGAGCG-3" or
5'-GGGGGGC-3’, were inferred to be involved in
meiosis, and embryonic and larval development. In
addition, qPCR data showed that Tc-miR-3885, Tc-miR-
4459, Te-miR-3610 and Tc-miR-265 had different levels
of transcription in germline, intestine and body wall
between the male and female worms of T. canis (Fig. 3).
Specifically, Tc-miR-3885 (Fig. 3a) and 7Tc-miR-4459
(Fig. 3b) were transcribed significantly higher in the
germline tissues in the male than in the female worm,
whereas the opposite was the case for 7Tc-miR-3610
(Fig. 3c) and Tc-miR-265 (Fig. 3d) in the intestine.

a Normalized transcription
[
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seed 1500
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internal miRNA isoforms
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Fig. 2 Sequence-dependent transcription profiles for selected microRNAs (miRNAs) in adult Toxocara canis. Panel a: Normalised transcription for
distinct miRNAs Tc-miR-100, Tc-miR-100d, Tc-let-7-5p, Tc-let-7b-5p, Tc-let-7¢-5p, Te-let-7e-5p, Te-let-7f-5p, Te-miR-87, Te-miR-87a, Tc-miR-87b, Tc-miR-103a
and Tc-miR-103b. Panel b: Log, transcription ratio between the male and female worms for conserved miRNAs, with Tc-miR-2a,
Tc-miR-5359-5p, Tc-miR-10a, Tc-miR-6129, and Tc-miR-6000a-3p having a conserved seed sequences between male and female, and
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Fig. 3 Transcription of microRNAs predicted to be linked to reproductive processes. To estimate the levels of transcription of miRNAs in male and
female adult T. canis, quantitative real-time PCR was performed employing specific forward and universal reverse primers. The relative
levels of Tc-miR-3885 (a), Tc-miR-3610 (b), Tc-miR-4459 (c) and Tc-miR-265 (d) are indicated (*P=0.01; **P=0.001)
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MiRNAs predicted to be linked to host-parasite
interactions

We predicted that 60 miRNAs, including particularly Tc-
miR-2881, Tc-miR-2305 and 7Tc-miR-2861 (Additional
file 1: Table S8), have roles in regulating mucin type
O-glycan biosynthesis and vesicular transport in T.
canis and/or modulating immune responses (SNARE
interactions in vesicular transport, antigen presenta-
tion, intestinal immune network for IgA production,
cytokine-cytokine receptor interaction and natural killer
cell-mediated cytotoxicity) in the host. In addition, 42
miRNAs, particularly Tc-let-7-5p, Tc-lin-4, Te-bantam, Te-
miR-10, Tc-miR-34, Te-miR-71 and Te-miR-100, were pre-
dicted to be excreted/secreted by developmental arrested/
infective larvae of T. canis into host tissues. Moreover,
some miRNAs, such as Tc-miR-84-5p, Tc-miR-34, Te-miR-
100, Tc-miR-57-5p, Te-miR-125a-5p, Te-miR-71 and Te-
miR-753b-3p, with seed sequences including 5'-GAGG
UAG-3’, 5'-GGCAGUG-3’, 5'-ACCCGUA-3’, 5'-ACC
CUGU-3’, 5'-CCCUGAG-3’, 5'-GAAAGAC-3" and 5'-G
AGAUCA-3’, respectively (Additional file 1: Table S8),
were predicted to be involved in host-parasite interactions.

MiRNAs as putative drug targets or with a possible link to
drug resistance

Although no miRNAs were linked to nicotinic ace-
tylcholine receptor-, ligand-gated ion channel- or P-
glycoprotein-encoding genes in 7. canis, some miRNAs

(n =35), including Tc-miR-2881, Tc-miR-5126, Tc-miR-
2861 and Tc-miR-3960, did target ABC transporter,
cytochrome P450 and multi-drug resistance-associated
protein genes (Additional file 1: Table S9), suggesting
an involvement in the regulation of transcription of
drug target genes and/or possibly in drug resistance.
We also inferred miRNAs (n=83) targeting genes
encoding signalling molecules, transcription factors,
receptors, kinases and ion channels, suggested to be
involved in the basal calcium signalling pathway and
the phosphatidylinositol signalling system of T. canis
(Additional file 1: Table S9).

Discussion

Genomic, transcriptomic and proteomic investigations
are providing important insights into Toxocara species
as well as parasite-host interactions (cf. [19, 20]). Investi-
gating short non-coding RNAs is part of this focus.
Here, we studied miRNA transcription profiles and
predicted functions of target genes in individual female
and male adults of T. canis. More than 60 % of the miR-
NAs were predicted to be transcribed in a gender-
enriched manner in 7. canis, whereas more than half of
these gender-biased miRNAs were conserved on a
sequence level and had similar transcription levels.
Various mechanisms are associated with the diversifi-
cation of miRNA sequences, including trimming and
tailing [59, 60], which means that various isoforms might
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display differing transcription levels and be “tailored” to
efficiently regulate distinct functions. Apart from the
gender-biased transcription predicted, miRNAs differen-
tially transcribed between the two sexes of T. canis shared
some functional roles, for example, the regulation of
embryonic morphogenesis and hemidesmosome assembly,
whereas the functional prediction highlighted biological
functions for other differentially transcribed miRNAs,
particularly in regulating nematode reproduction, male
germ-line sex determination, embryonic morphogenesis
and larval development.

In the free-living nematode C. elegans, miRNAs, such
as the originally identified lin-4 and let-7, play key
biological roles in regulating development [26, 61].
Although piRNA was not found here in 7. canis, which
was supported by the absence of components of the
piRNA pathway from other clade III parasites (e.g.,
[52, 62, 63]), a considerable number of miRNAs,
particularly novel and differentially transcribed repre-
sentatives, appear to be associated with development
and reproduction. Specifically, a number of miRNAs
were predicted to be involved in the regulation of
embryonic and/or larval development, and miRNAs
including Tc-miR-265, Tc-miR-3885, Tc-miR-4459 and
Tc-miR-3610 were transcribed at higher levels in
germline tissues than other body parts of 7. canis,
whereas several miRNAs with a conserved seed sequence,
5'-GGGAGCG-3" or 5'-GGGGGGC-3" (e.g., Tc-miR-
2305 and Tc-miR-6090), were inferred to be involved in
meiosis. In addition, 342 conserved miRNAs (for which
only the seed sequence was conserved) in both male and
female adults of 7. canis might be post-transcriptional
regulators in developmental arrested larvae, according to
evidence published for C. elegans, Pristionchus pacificus
and Strongyloides ratti [32]. Since dauer larvae have been
suggested to be a “pre-adaptation” of infective larvae in
paratenic animals (cf. [64]), these potential regulators in T.
canis might play roles in larval development, survival and/
or host-parasite interactions.

Helminths secrete miRNAs that are likely important
for host-parasite interactions and are potential targets
for diagnosis. The host immune responses can be trig-
gered by lectins, mucins and other enzymes [65-67],
and can be modulated by parasite-derived miRNAs
[36, 68, 69]. Extracellular vesicles excreted or secreted
by helminths can alter host immune responses to
parasite infection and clearance [36, 51]. Thus, apart
from excretory/secretory (ES) products in the extracellular
vesicles, parasite-derived miRNAs should also be taken
into account in relation to parasite-host interactions,
immune responses and the modulation thereof. In previ-
ous studies, miR-34, miR-71 and miR-100c were identified
as common markers in the sera from hosts infected with
B. malayi, D. immitis, Litomosoides sigmodontis and L. loa

Page 7 of 9

[51]. Considering the relative conservation of miR-34,
miR-71 and miR-100c among some nematode species, we
searched for these and other miRNAs found previously in
dauer larvae of C. elegans [32], larvae of A. suum [52],
extracellular vesicles of H. polygyrus [36] and B. malayi
[51] and serum from hosts infected by D. immitis, L. loa
or O. ochengi [49, 50, 70] among all 7. canis miRNAs
sequenced. Interestingly, the most prevalent, relatively
conserved miRNAs, namely 7Tc-let-7-5p, Tc-lin-4, Tc-
bantam, 7¢-miR-10, 7¢-miR-34, Te-miR-71 and T¢-miR-100,
were identified (Additional file 1: Table S8), suggesting
key roles for them in modulating host/immunological
responses. The common markers, such as let-7, bantam
and miR-100, in parasitic nematodes might have implica-
tions for the diagnosis of infection or disease [37, 71-73].
In addition, interestingly, male-specifically regulated path-
ways were predicted as being linked to immune rather
than reproductive processes; this aspect deserves future
study in T. canis.

In addition to developmental regulation and immune
modulation, some authors have proposed roles for miR-
NAs in drug resistance in pathogens [29, 38], and
changes in transcription of potential drug targets, drug
transporters, receptors and ion channels can associate
with drug resistance [74]. Although mutations in P-
glycoproteins [75], nicotinic acetylcholine receptors [76]
and ligand-gated ion channels [77] have been reported
to play important roles in anthelminthic resistance, no
miRNAs identified in this study were inferred to target
genes encoding such proteins. However, signalling pro-
cesses and distinct biological functions in specific develop-
mental stages are preferentially regulated by miRNAs (e.g.,
[78, 79]), and, in the present study, abundant miRNAs
were predicted to regulate drug transport, metabolism
and drug target pathways (Additional file 1: Table S9).
Given the potential of miRNAs to target and suppress the
expression of drug targets and host target genes, miRNA
inhibitors or miRNA mimics might represent therapeutics
to target parasite pathways and modulate parasite-host
interactions [72, 74, 80].

Conclusions

The present study of miRNAs in 7. canis provides excit-
ing prospects and delivers a resource to deepen and
broaden our understanding of gene regulation in this
enigmatic parasitic nematode. In particular, it provides a
basis for experimental investigations of the developmen-
tal biology of the parasite, parasite-host interactions and
disease, and might also assist in developing tools for the
diagnosis of infection/disease, drug target discovery and
drug resistance detection. Although this study focused
on adult T. canis, the methods used should be readily
applicable to different developmental stages and tissues
of this and related parasites.
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