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Abstract 

Background:  Enzymatic hydrolysis continues to have a significant projected production cost for the biological 
conversion of biomass to fuels and chemicals, motivating research into improved enzyme and reactor technologies 
in order to reduce enzyme usage and equipment costs. However, technology development is stymied by a lack of 
accurate and computationally accessible enzymatic-hydrolysis reaction models. Enzymatic deconstruction of cel-
lulosic materials is an exceedingly complex physico-chemical process. Models which elucidate specific mechanisms 
of deconstruction are often too computationally intensive to be accessible in process or multi-physics simulations, 
and empirical models are often too inflexible to be effectively applied outside of their batch contexts. In this paper, 
we employ a phenomenological modeling approach to represent rate slowdown due to substrate structure (imple-
mented as two substrate phases) and feedback inhibition, and apply the model to a continuous reactor system.

Results:  A phenomenological model was developed in order to predict glucose and solids concentrations in batch 
and continuous enzymatic-hydrolysis reactors from which liquor is continuously removed by ultrafiltration. A series of 
batch experiments were performed, varying initial conditions (solids, enzyme, and sugar concentrations), and best-fit 
model parameters were determined using constrained nonlinear least-squares methods. The model achieved a good 
fit for overall sugar yield and insoluble solids concentration, as well as for the reduced rate of sugar production over 
time. Additionally, without refitting model coefficients, good quantitative agreement was observed between results 
from continuous enzymatic-hydrolysis experiments and model predictions. Finally, the sensitivity of the model to its 
parameters is explored and discussed.

Conclusions:  Although the phenomena represented by the model correspond to behaviors that emerge from 
clusters of mechanisms, and hence a set of model coefficients are unique to the substrate and the enzyme system, 
the model is efficient to solve and may be applied to novel reactor schema and implemented in computational 
fluid dynamics (CFD) simulations. Hence, this modeling approach finds the right balance between model complex-
ity and computational efficiency. These capabilities have broad application to reactor design, scale-up, and process 
optimization.
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Background
As one of several process steps in the biochemical con-
version of biomass to fuels and chemicals, enzymatic 
hydrolysis (EH) continues to contribute significantly to 
the total conversion cost. Traditionally, the unit opera-
tion (process step) of EH has been performed and 
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analyzed as a batch operation [6], but, more recently, 
there has been interest in alternative conversion strate-
gies in order to reduce enzyme usage and capital costs 
through process intensification [8, 22, 31, 34]. However, 
systematic development and economical evaluation of 
these novel processes are stymied by a lack of accessible 
reaction-kinetics models.

Hydrolysis of lignocellulose via a vendor-provided 
cocktail of enzymes is a very complex and heterogeneous 
reaction. Capturing all the physico-chemical mechanisms 
in a single comprehensive model for a single well-mixed 
batch reactor is a very difficult conceptual task, and 
simulation of these models requires high computational 
costs [11, 18]. When combined with advanced reactor 
schemes, e.g., multiple CSTRs, or with transport models, 
e.g., coupled computational fluid dynamics (CFD) simu-
lations, the use of a comprehensive model requires high-
performance computing resources or may be effectively 
intractable with current computers.

While mechanistic (i.e., physics- and chemistry-based) 
models are preferred by scientists and engineers, much 
can be gained from models that are phenomenologi-
cal (representing observed macroscopic phenomena) 
or empirical (reproducing measured data). These mod-
els may be constructed with mathematical expressions 
that have more relaxed requirements on their form and 
hence are often much more computationally efficient. As 
long as these models faithfully predict the phenomena of 
interest, they may be used for engineering calculations in 
the design of products and processes.

There have been a plethora of phenomenological/
empirical models proposed in the literature for the enzy-
matic hydrolysis of (ligno-)cellulose. Bansal et  al. [2] 
cite more than 70 in their review. Modeling efforts have 
hardly diminished in recent years, although the focus 
has shifted more towards mechanistic models. Many of 
the models are designed to reproduce the rate slowdown, 
employing a wide variety of approaches, and it is clear 
that the reduction in hydrolysis rate is due to multiple 
factors. The most easily modeled is enzyme inhibition 
due to unproductive complexes with product sugars and 
other species like lignin. Yet, even accounting for inhi-
bition, a marked rate slowdown is observed during the 
enzymatic hydrolysis of lignocellulose [29].

Modeling approaches to account for this inherent rate 
reduction may be first classified as either enzyme- or 
substrate-based. Enzyme-based rate slowdown is often 
accomplished by including a rate term for enzyme deac-
tivation [14, 25]. Thermal destabilization and mixing 
shear have been advanced as hypotheses justifying this 
approach [7], although these mechanisms are insufficient 
to describe slowdown of hydrolysis performed at low 
temperature and under limited mixing. A more plausible 

case has been made that enzymes get “stuck” and are no 
longer productive [9, 10]. However, there is evidence that 
this is a temporary phenomenon, and the enzymes are 
still active when exposed to fresh substrate [34].

Another, more compelling, possibility is that the rate 
reduction is due to substrate properties, although the 
precise mechanisms are not yet clearly understood. 
Bansal et al. [3] performed a systematic study and found 
that approximately 90% of the cause of rate retardation 
was due to substrate depletion, accessibility, and “hydro-
lysability” (propensity of cellulose to be hydrolyzed by 
enzymes), while the intrinsic reactivity remained effec-
tively unchanged. Olsen et  al. [21] found a correlation 
between hydrolysis rate and surface area (and roughness) 
of cellulose particles, which decrease with the extent of 
conversion.

Several modeling approaches have been used to imple-
ment hydrolytic rate reduction due to substrate proper-
ties. Some have implemented a substrate “reactivity” 
parameter that decreased with fractional conversion [12]. 
Another interesting approach is the use of so-called frac-
tal kinetics to describe the progression of EH on spatially 
confined (ligno-)cellulosic substrates [33, 36]. However, 
both of these approaches (substrate reactivity and frac-
tal kinetics) require knowledge of the extent of conver-
sion of the substrate. While this is trivial when evaluating 
simple well-mixed batch reactions, it is harder to imple-
ment in advanced reactors (e.g., multiple continuous 
reactor systems) and in coupled CFD simulations. Liang 
et  al. [14] resolved this difficulty for a countercurrent 
unit operation by applying a Continuum Particle Distri-
bution Modeling (CPDM) approach to a countercurrent 
saccharification process. CPDM theory was developed by 
Loescher [16], who derived equations for several different 
process configurations. Similarly, Tervasmaki et  al. [32] 
modeled fed-batch reaction by discretizing the substrate 
according to its time in the reactor while forcing several 
kinetic properties to change with increasing conversion. 
However, these approaches do not seem to be portable or 
flexible, requiring either re-derivation of the underlying 
systems of equations for new applications or implemen-
tation of a computationally expensive population balance 
model. Therefore, we prefer rate-based kinetics models 
that depend only on state variables without requiring 
knowledge of past history.

Many mechanistic models emphasizing the impact of 
substrate properties exist, but are often too detailed to 
efficiently calculate in a dynamic system. For example, 
Levine et  al. [13] modeled substrate as populations of 
mono- and poly-disperse spheres which reduce enzyme-
available surface area over time, Luterbacher et  al. 
[17] modeled diffusion of a generalized enzyme into a 
porous cylinder where it reacted with substrate to form 
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products, Zhang et al. [37] developed a structural model 
of interweaving cellulose and xylose and modeled several 
enzyme modalities, and Nag et  al. [18] considered the 
depolymerization of cellulose partitioned into crystal-
line and amorphous populations. More recently, Ahamed 
et  al. [1] modeled cellulose particles as a heterogenous 
cylinder wherein both enzyme transport and cellulose 
degree of polymerization vary across the domain, and 
applied the reaction scheme to model a fed-batch reac-
tion. While all of these models elucidate important fea-
tures of enzymatic deconstruction, each of these models 
requires features to represent the kinetics that are com-
putationally difficult to resolve (diffusive transport in 
Luterbacher et al. [17], population balance in Levine et al. 
[13], Nag et al. [18], and Ahamed et al. [1]), and thus are 
poorly suited for direct application in process design or 
CFD models.

Here we describe a relatively simple model for the 
enzymatic hydrolysis of lignocellulose. Several estab-
lished reaction mechanisms are ignored, including syn-
ergistic action of component enzymes, interdependent 
and evolving substrate microstructure and accessibility, 
and the size-polydispersity of the cellulose substrate. We 
do consider the important macroscopic phenomenon of 
reaction-rate slowdown. As discussed above, this phe-
nomenon is likely due to the complex evolution of sub-
strate structure and morphology. Nonetheless, we assert 
that the rate slowdown may be sufficiently represented 
by using a two-phase substrate formalism, i.e., a cel-
lulose substrate that is composed of two populations: a 
facile population that is easily digested and a recalcitrant 
population that is digested more slowly. Conceptually, we 
consider that the difference between these populations is 
due to their different accessibility to enzymes rather than 
a difference in kinetic rate. Adsorption and rate expres-
sions are used for each glucan population that do not 
require knowledge of their history, making the model 
easy to implement in larger simulation systems. Interac-
tions with lignin and xylan are also considered, includ-
ing xylan hydrolysis and unproductive adsorption of 
enzymes on soluble lignin. A cellulose-only application of 
this model has previously been implemented in the con-
text of CFD simulation of a stirred reactor, quantifying 
the impacts of an under-mixed hydrolysis environment 
[27].

We illustrate the application of this model with a con-
tinuously stirred tank reactor (CSTR) system in which 
liquor is continuously removed via cross-flow ultrafiltra-
tion in a pump-around loop. This advanced reactor con-
cept has potential, compared to batch reactors, to improve 
rates through reduced product inhibition while retaining 
enzyme within the reactor system, and to provide a solids-
free sugar source for downstream upgrading. This system 

will be described in “Materials and methods” section and 
has been studied previously [31], although with a less-rig-
orous modeling approach. Batch experiments are used as 
the basis for parameter determination, the model is applied 
to the CSTR system using the mass-flow rates calculated by 
the control system, and sugar concentrations and insoluble 
solids fraction from continuous EH experiments are com-
pared to model predictions. Presentation of these results is 
followed by a sensitivity study of the model parameters.

Results and discussion
A full discussion of the model, phenomenological features 
represented, and its parameters may be found in “Materials 
and methods: Enzymatic-hydrolysis model” section. Briefly, 
cellulose (glucan) is divided into recalcitrant and facile cat-
egories (where yF0 indicates the initial mass fraction of the 
facile population) to reflect the biphasic character of cellu-
lose digestion. Recalcitrant cellulose is modeled as having 
structure, such that enzyme-accessible recalcitrant cellu-
lose is less than the total amount of recalcitrant cellulose. 
Enzyme is considered to be adsorbed in equilibrium with 
the various substrates and inhibitors: specifically, enzyme 
is partitioned between the cellulose fractions, xylan, lignin, 
and soluble sugars, as well as some enzyme remaining free 
in solution. Using equilibrium constants for adsorption to 
each species ( Kdi ), κij parameters are derived to indicate the 
relative strength of each adsorption effect at equilibrium. 
The hydrolysis-rate parameters ( ki ) control the rates of con-
version of the xylan and glucan populations, and the solu-
bilization of lignin.

Fit to batch data
A series of batch experiments were performed (details in 
Materials and methods: Batch enzymatic hydrolysis), and 
best-fit model parameters were determined by constrained 
nonlinear least-squares fitting methods (SciPy’s implemen-
tation of Nelder–Mead [19, 20]). The resulting parameters 

Table 1  Summary of the fitted model parameters

All parameters result from a constrained nonlinear constrained least-squares fit 
against the batch data

Parameter Value Units

kR = kF 14,713 h−1

kX 10,000 h−1

kL 729.5 m3 liquid/kmol

KdR 0.05 kmol/m3 liquid

κRF 9.34 (–)

κRL 50 (–)

κRX 11.3 (–)

κRs 50 (–)

yF0 0.60 (–)
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are given in Table  1, and the model fits against glucose, 
xylose, and insoluble solids fraction ( fis ) data are shown in 
Fig. 1. The model predictions fit the glucose data well, with 

most data falling within a few percent of the model predic-
tion. This shows that the reaction model is able to account 
for the effects of differing solids concentration, enzyme 
loading, and glucose concentration on the outcomes of 
enzymatic hydrolysis, at least for the range of parameters 
tested. We observe that the model systematically over-
estimates sugar concentration for the case with 50 g/L 
added glucose (Fig.  1a), indicating that the best-fit model 
may be slightly underestimating the impact of soluble sugar 
inhibition. 

The model estimates for xylose concentration capture 
the initial curvature of the xylan conversion, but each 
experiment ended at a higher xylose concentration than 
the asymptotic value in the simulation (Fig. 1b). It should 
be noted that the pretreatment conditions were targeted 
towards optimal conversion of xylan to xylose mono-
mers in order to maximize substrate reactivity during 
EH. This resulted in a low fraction of xylan in the solids 
( wx = 0.06 ) and a liquor with significant background 
xylose. Thus, initial background sugar levels dominate 
the soluble sugars measured throughout conversion, 
rather than converted sugars. Based on our experience 
performing similar experiments, we think that the total 
amount of xylan available for conversion may have been 
underestimated by the analytical methods, hence the sys-
tematic under-estimation of xylose liberation.

The estimated end-point fis values agree well with 
the experimental data (Fig.  1c), supporting the model 
assumption that lignin is solubilized over the course of 
reaction [23]. Model simulations without lignin solubili-
zation ( kL = 0 ) resulted in much higher estimation of fis 
(results not shown). The fis measurements at 24 h show 
much more spread than the model fit. We do not know 
why this is, but it may suggest a mechanism for lignin 
solubilization that is not exactly proportional to sugar 
hydrolysis, as assumed here.

Modeled overall carbohydrate conversion, calculated 
by Eq. 45, is compared to the experimental data (calcu-
lated in the same way) in Fig.  2. As a derived quantity, 
conversion amplifies the experimental uncertainties 
and highlights the differences between predicted and 
experimental values. We observe that the experimental 
conversion has plateaued by the end of the experiment 
(168 h), while the modeled conversions are continuing 
to increase. While better long-term agreement could be 
obtained by reducing the adsorption of enzyme to recal-
citrant glucan (relative to facile), the agreement would 
suffer at earlier times. The current model parameters 
achieve a good fit for the overall conversion profiles, 
effectively capturing the macroscopic phenomenon of 
hydrolysis-rate slowdown.

It should be noted that these model coefficients 
should not be considered to be universal coefficients 

a

b

c

Fig. 1  Best-fit model compared to batch experiments. Batch 
experiments were conducted where enzyme loading, initial insoluble 
solids, and background glucose were varied, and the kinetics model 
was fit to these data. Glucose (a), xylose (b), and insoluble solids 
(c) concentrations are shown along with the model fits for each 
experiment. In the legend, “ref” refers to the reference condition, 
10 and 15mg/g refer to experiments where enzyme loading was 
reduced from 20mg/g cellulose, 5 and 7.45% refer to experiments 
where fis was reduced from 10% , and 20 and 50 g/L refer to 
experiments where glucose was added exogenously to the initial 
condition

Table 2  Run conditions for each CEH experiment

Units I II III

Target reactor fis – 5% 7.5% 8.5%

Enzyme loading mg/g 10 10 10

Enzyme solution feed rate kg/h 0.138 0.072 0.054

Enzyme feed concentration g/L 0.89 2.7 3.6

PT slurry feed rate kg/h 0.42 0.426 0.348

PT slurry fis – 5% 7.5% 10%

Permeate rate kg/h 0.276 0.222 0.152

Purge rate kg/h 0.282 0.276 0.250

Nominal residence Time h 17.7 18.1 20.0
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nor to correspond precisely to detailed low-level physi-
cal mechanisms (such as the processive rate of cellulose 
digestion by CBH I). Because enzyme activity is lumped, 
these should be understood as phenomenological esti-
mates of this particular system (substrate and enzyme). 
Additionally, the model parameters resulting from the 
best-fit approach are closely tied to model assumptions. 
For example, in this work, we assume that the kinetic rate 
coefficients for deconstruction are identical for facile and 
recalcitrant glucan, and that the difference in observed 
rate is due to reduced accessibility of the recalcitrant cel-
lulose. Flipping these assumptions, such that rate coeffi-
cients are allowed to be independent while accessibility 
is assumed to be identical, will produce a similar fit to 

experimental data, but with significantly different values 
for the parameters.

Despite these qualifications, the model variables and 
parameters are associated with distinct physico-chem-
ical phenomena and can guide researchers performing 
integrated pretreatment and EH development. Vari-
ous pretreatment technologies improve the enzymatic 
digestibility of biomass, but the mechanisms by which 
the material is made more digestible can, and does, vary. 
For example, lignocellulose may be made more digestible 
by increasing delamination of cell walls or by extraction 
of hemicellulose [5, 15]. Our model captures these two 
phenomena separately: by increased fraction of facile cel-
lulose (and possibly lower values for KdR ) in the case of 
delamination; and by lower xylan content (which com-
petes for enzyme adsorption) in the case of hemicellulose 
extraction. For a given system (feedstock, pretreatment, 
and enzyme cocktail), individual model parameters and 
initial conditions that are associated with feedstock com-
position, pretreatment severity, or enzyme dosing may 
be varied, and the enzymatic-hydrolysis outcome can be 
predicted with reasonable quantitative confidence. Fur-
ther, we can use the reaction model to predict outcomes 
in different reactor systems, as shown in the next section.

Application to continuous EH data
A series of continuous EH (CEH) experiments were con-
ducted at several targeted insoluble solids concentrations 
( 5% , 7.5% , and 8.5% ) for up to 72 h of run-time. After 
an initial batch-startup phase, the flow rates in and out 
of the reactor were controlled and measured using an 
Opto 22 (Temecula, CA) automation system. Samples 
were collected at regular intervals and tested for sugar 
concentration in the liquor as well as insoluble solids 
concentration. Mass-balance calculations based on these 
flow rates were coupled with the kinetics model, using 
parameters from the batch fit, and the concentration of 
sugars, solids, and constituents inside the reactor was 
predicted (Fig. 3). Target solids feed rate was set to main-
tain a constant feed-weighted residence time across runs, 
and enzyme was added in solution with a buffer to main-
tain a constant enzyme loading at a pH of 5. The enzyme 
solution also acted as a makeup water feed, where water 
was added in proportion to the liquor lost via perme-
ate, balanced somewhat with deconstruction of solids to 
liquids, so as to achieve the targetted fis . However, due 
to handling issues discussed below, the actual feed rates 
sometimes varied from their setpoints. The measured 
flow rates and other values relevant to the continuous EH 
experiments are listed in Table 2.

Reasonable quantitative agreement with soluble-glu-
cose and insoluble solids data was achieved. For both the 
5% and 7.5% targeted fis experiments, the steady-state 

a

b

c

Fig. 2  Best-fit conversion compared to batch experiments. In the 
legend, “ref” refers to the reference condition (shown in all three 
plots), 10 and 15mg/g refer to experiments where enzyme loading 
was reduced from 20mg/g cellulose (a), 5 and 7.45% refer to 
experiments where fis was reduced from 10% (b), and 20 and 50 g/L 
refer to experiments where glucose was added exogenously to the 
initial condition (c)
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model predictions lie close to the experimental data. For 
the 8.5% data, there is considerably more variatiability 
in the data, but the model predictions are nonetheless 
within the observed range of glucose and concentration 
and fis.

There are some places where the agreement could be 
improved, especially during the transition from batch to 

continuous operation, but we think these discrepancies 
are more likely due to experimental errors rather than 
due to inadequacies of the model. It should be noted that, 
as insoluble solids increase, difficulty in handling the 
material streams likewise increases. Thus, for the higher 
fis experiments, the feed, permeate, and purge stream 
rates are considerably more variable. However, for sim-
plicity, the mass-balance terms imposed for the kinetic 
model use only static-stream flow rates. These flow rates 
were determined by the median enzyme solution, solids 
feed, and permeate flow rates, as these were the most 
stable measurements available. The system is assumed 
to maintain a constant mass, and thus the purge rate 
was calculated from the other flow rates to enforce that 
assumption.

The ability to quantitatively predict fis is important. 
While sugar conversion is of course the desired goal of 
the enzymatic-hydrolysis process, the rheology of these 
process slurries are nonlinear functions of the insolu-
ble solids concentrations, where an increase in fis by 5% 
can result in an increase in the yield stress by an order of 
magnitude [30]. The rheology in turn impacts the costs 
of slurry handling (mixing, pumping, etc.), and in some 
cases may necessitate different reactor technologies.

Overall, reasonable quantitative agreement was 
observed between the model predictions (generated by 
only batch experimental information) and continuous 
EH data. This agreement between orthogonal data sets 
supports the simplified phenomenological modeling 
approach we propose—modeling this reactor would be 
computationally inaccessible with a more detailed, mech-
anistic model. It should be noted that residence times 
(calculated as the volume of the reactor divided by the 
purge rate) of the CEH experiments were relatively short 
(18 to 28 h), resulting in overall low conversion. Thus, 
in the model simulations, these CEH conditions did not 
result in significant digestion of recalcitrant glucan, and 
hence the apparent hydrolysis-rate slowdown observed in 
the batch system was less significant for the CEH experi-
ments. The operation of CEH-CSTRs in sequence, where 
the purge of the first reactor is the fed to the second and 
so on, would be a more rigorous challenge to the model. 
Nonetheless, the batch and CEH experiments presented 
here sufficiently validate the multi-component substrate 
(glucan, xylan, lignin) parts of the model, while our pre-
vious work, in which the kinetics model was coupled to 
CFD [27], further supports the two-phase glucan part of 
the model.

Sensitivity analysis
A few key parameters were systematically varied to dem-
onstrate model features, and the predicted total biomass-
conversion (sum of glucan and xylan conversion) was 

a

b

c

Fig. 3  Comparison of continuous EH data to model prediction. Three 
continuous enzymatic-hydrolysis experiments were performed at 
5% (a), 7.5% (b), and 8.5% (c) target insoluble solids concentration. A 
period of batch hydrolysis (gray) was performed before the various 
reactor streams (solids and enzyme feed, membrane filtration, and 
purge stream) were initiated to decrease the time for the reactor to 
reach steady state. The data are compared to a model prediction 
based on parameters generated by the batch experiments and the 
measured flow rates of the reactor system

Table 3  Batch experimental conditions

The condition of the first row is considered the reference condition (“ref”) and 
was performed in duplicate

fis � (mg-CTEC3/g-
cellulose)

Added glucose (g/L)

0.10 20 0

0.075 20 0

0.05 20 0

0.10 15 0

0.10 10 0

0.10 20 20

0.10 20 50
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calculated (Fig. 4). The reference-case scenario is defined 
according to the fit performed above, under the same 
conditions ( fis,0 , etc.) associated with the experimental 
reference case, and variations were performed by increas-
ing and decreasing parameter values by 30%.

First, the rate of glucose production by adsorbed 
enzyme ( kF and kR ) and the degree of competitive 
adsorption by soluble sugars ( κRs ) are considered (Fig. 4a, 
b). Both parameters affect hydrolysis rate directly (recall 
that a substantial amount of xylose is in the initial liq-
uor), and that impact continues through the rest of the 
batch hydrolysis. It is interesting to note that the sensitiv-
ity of kR and κRs are similar—the observed overall rate of 

conversion is as sensitive to the inhibition to sugars as it 
is to the kinetics-rate coefficient, at least for the materials 
and reaction conditions tested. Note also that decreasing 
the value of κRs increases glucose production, following 
our formalism that κij provides a measure of the relative 
strength of enzyme adsorption between two substrates 
of interest; for κRs , it is the relative adsorption between 
recalcitrant cellulose and competitively inhibiting soluble 
sugars, where higher values indicate more adsorption to 
the soluble sugars. This formalism is helpful in analyzing 
the impact of the respective adsorption parameters.

Next, we consider the impact of κRF , which measures 
the degree of inaccessibility of the recalcitrant cellulose 

a

b

c

d

a’

b’

c’

d’

Fig. 4  Sensitivity of batch glucose predictions to selected model parameters. Several parameters are varied by 30% upwards (dashed, green) and 
downwards (dashed, orange) to probe the sensitivity of glucose production to model parameters. The conditions of the experimental reference 
case were selected as the conditions of the model, and the model here predicts batch data. These parameters are a kR , b κRs , c κRF , and d yF,0 . 
Additionally, the sensitivity of continuous EH predictions to the same parameters variations is shown in a′–d′ 
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(Fig.  4c). Increasing κRF increases relative adsorption 
onto facile cellulose, which increases initial rates, and 
vice verse for decreasing κRF . Due to the formulation of 
the model, this parameter does not substantially impact 
final rate. Adsorption extents of all species (facile glu-
can, xylan, soluble sugars, etc.) are related to adsorp-
tion on recalcitrant cellulose (via KdR ), which sets the 
base adsorption level. Therefore, in order to modify the 
final rate in relation to the initial rate, κRF and kR must be 
modified in concert. Finally, it is important to note that, 
in this fit scenario ( KdR = 0.05 ), nearly all of the enzyme 
is adsorbed to substrates and inhibitors; therefore, sugar 
production rate is insensitive to small changes (less than 
an order of magnitude) in KdR.

Finally, we consider the influence of the partitioning 
of cellulose between facile and recalcitrant populations 
( yF0 , Fig.  4d). We observe that the initial rate of carbo-
hydrate digestion is the same for all runs. However, with 
an increased facile population, the extent of conversion 
before slowdown is increased, and vice versa. This con-
firms that the division between facile and recalcitrant cel-
lulose has a significant impact on conversion outcomes.

We may also examine the impacts of changing these 
same model parameters on the predictions for sugar 
and insoluble solids profiles during CEH (Fig.  4a′–d′). 
For each of the parameters, the glucose produced in the 
startup phase are affected, and that impact carries mono-
tonically into the asymptotic glucose concentration in the 
reactor. Modifying these parameters has a similar influ-
ence on fis , which tracks closely with conversion extent. 
These results again emphasize the portability of this 
model between reaction contexts. After determining a 
set of model coefficients for a particular feedstock-pre-
treatment-enzyme system, engineers may use the model 
to evaluate how to adjust process conditions (e.g., CEH 
feed or permeate rate) in response to limited changes to 
feedstock properties and pretreatment conditions.

Conclusions
A phenomenological model was developed in order to 
predict outcomes of enzymatic hydrolysis of lignocel-
lulose for various reactor configurations and operat-
ing conditions. A series of batch experiments were 
performed with varying initial conditions (solids, enzyme, 
and sugar concentrations), and best-fit model param-
eters were determined using nonlinear constrained least-
squares. The model achieved a good fit for overall sugar 
yield and insoluble solids concentration, as well as for the 
reduced rate of sugar production over time. A second set 
of experiments were performed using membrane reac-
tors in which the hydrolysis reactions were performed 
in a continuous mode. Quantitative agreement was 
observed between these continuous enzymatic-hydrolysis 

experiments and model predictions. Finally, the sensi-
tivity of the model to its parameters was explored and 
discussed.

We emphasize again that the phenomena represented 
by the model correspond to behaviors that emerge from 
clusters of mechanisms, and hence a set of model coef-
ficients are unique to the substrate and the enzyme sys-
tem. Nonetheless, we think that this modeling approach 
finds the right balance between model complexity and 
computational efficiency. After fitting our proposed phe-
nomenological model to carefully performed laboratory 
batch experiments, the model may be applied to novel 
reactor schema and implemented in CFD simulations. 
Computationally intensive mechanistic models have their 
use for exploring detailed physico-chemical phenomena 
of enzymatic hydrolysis of lignocellulose—for example, 
evaluating the trade-offs between varying the amounts 
of specific component enzymes. As mechanistic models 
and their numerical solution become more sophisticated, 
they may also become suitable for engineering purposes. 
In the meantime, phenomenological models, like the one 
proposed here, have broad application to reactor design, 
scale-up, and process optimization.

Materials and methods
Pretreated corn stover
Corn stover was obtained from Idaho National Labora-
tory (Idaho Falls, ID, USA) where it was knife-milled 
using a 13mm rejection screen. This feedstock was then 
deacetylated by soaking in 0.4%w/w sodium hydroxyide 
at 80 ◦C for 2 h. It was then rinsed with water and soaked 
in 1.0%w/w sulfuric acid. Free water was removed using 
a screw press, taking the slurry to 50% insoluble solids. 
Finally, the acid-impregnated slurry was thermochemi-
cally hydrolyzed at 160 ◦C for 15 min in a 500 kg/day 
horizonal reactor (Metso, Inc, Norcross, GA) [24].

The material was then neutralized to pH 5.0 using 90% 
sodium hydroxide, and the final insoluble solids fraction 
was measured and found to be fis = 0.23 . Dilutions of 
this material with water and sodium citrate buffer were 
used as the basis for all experiments, and the solids are 
composed of 62% glucan, 6% xylan, 22% lignin, and 10% 
unknown structural carbohydrates and ash [26].

Batch enzymatic hydrolysis
A series of batch enzymatic-hydrolysis experiments were 
performed to estimate rate and other parameter val-
ues for the model. A reference condition was performed 
in duplicate with initial insoluble solids of 10% and an 
enzyme loading of 20mg/g Cellulose (CTEC3, Novo-
zymes). CTEC3 is a commercial cellulase preparation, 
containing a proprietary mixture of enzymes including 
cellulases, hemicellulases, and glucosidases. Additional 
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experiments were performed at the similar conditions 
but with varied initial insoluble solids loading, enzyme 
loading, and initial glucose concentration (glucose was 
added directly to the initial slurry). A complete list of 
experimental conditions is provided in Table 3.

These experiments were performed in 50mL roller bot-
tles [23]. Samples were taken for soluble sugar analysis by 
HPLC [26] at 4, 8, 24, 28, 72, 120, and 168 h, and sam-
ples for insoluble solids measurement [35] were taken 
at 24 and 168 h. Soluble dimer (cellobiose) and oligimer 
concentrations were negligible and therefore are not 
reported. All experiments were performed at 50 ◦C with a 
pH of 5.0 buffered with 100mM sodium citrate.

Continuous enzymatic hydrolysis
A bench-top-scale apparatus was used to test continuous 
enzymatic hydrolysis (CEH) at different targeted insolu-
ble solids loadings ( 5% , 7.5% , and 8.5% ) (Fig. 5) [31]. A 5 L 
vertically stirred tank (BioFlo 3000, New Brunswick Sci-
entific, Inc.) with a marine impeller (2 in diameter, 300 
RPM) was used as the reaction vessel. Temperature in 
this vessel (as measured by a probe inside the vessel) was 
maintained at 50 ◦C by a hot-water jacket. Liquor was 
removed from the system by cross-flow filtration (Koch 
M180, MWCO of 100 kDa , 0.5 in OD, 0.0122m2 surface 
area); experiments showed that this membrane retains 
approximately 50% of soluble enzymes. Fresh substrate, 
fresh enzyme (CTEC3, Novozymes), and buffer (pH 5.0, 
100mM ) were added to the reactor via peristaltic pumps, 
and a purge line maintained the vessel at a constant fill 
volume. Run-time variables were recorded and controlled 
using a data acquisition and control system.

After an initial startup period, where pretreated solids 
were allowed to hydrolyze in a batch-like mode, the CEH 
system was allowed to run for approximately 3 days, with 
slurry samples taken from the reactor vessel three to four 
times a day, and the insoluble solids and soluble sugars of 
the slurry were measured.

Enzymatic‑hydrolysis model
The molar concentrations of the two cellulose (glucan) 
substrates are denoted as c̃GF and c̃GR , for the facile (F) 
and recalcitrant (R) populations, respectively. These 
terms represent the molar concentrations of glucan mon-
omers, not the cellulose polymers. The glucose product 
concentration is denoted cg . Because of the insoluble 
nature of the cellulose substrate, a whole-slurry volume 
basis is used for glucan concentrations, i.e., a tilde over a 
term ( ̃cGR ) denotes a total-slurry-volume basis for con-
centration (  kmol

m3 slurry
 ), whereas the absence of a tilde ( cg ) 

denotes a liquid-volume basis (  kmol
m3 liquid

 ), to be used for 
soluble species. Likewise, there are molar concentrations 
for xylan (X), lignin (L), xylose (x), and soluble lignin (sL). 

The total concentration of soluble sugars (ss) is the sum 
of glucose and xylose concentrations.

Slurry- and liquid-basis molar concentrations may be 
related by

where ǫl is the volume fraction of liquid in the slurry. Sim-
ilarly, the mass fraction of species i relative to the slurry 
( fi ) and the molar concentration may be related by

where MW,i is the molecular weight of species i.
The liquid volume fraction is related to the mass frac-

tion of liquid ( fl ), liquid density ( ρl ), and total slurry den-
sity ( ρT ) by

where fl = 1− fis , and fis = fGF + fGR + fX + fL is the 
mass fraction of insoluble solids. The total slurry density 
is related to the skeletal density of insoluble solids ( ρis ) by

The slurry density may be approximated by that of 
the liquid for low solids concentrations and for den-
sities of solids close to that of the liquid. Specifically, 
ρT ≈ ρl = 1000 kg/m3 (density of water, here), result-
ing in less than 5% error when ρis < 1400 kg/m3 and 
fis < 0.15.

Enzyme adsorption and inhibition
The enzymes in the cocktail are treated collectively, 
and the total molar concentration is denoted c̃ET . The 
enzymes partition between being free in solution ( cEf ), 
adsorbed to each glucan substrate ( ̃cEGF and c̃EGR ), 
adsorbed to xylan ( ̃cEX ), inhibited by soluble lignin ( cEsL ), 
and inhibited by soluble sugars ( cEss ) (Fig. 6), so that

The equilibrium relationships for adsorption and inhibi-
tion are given by

(1)c̃i = ǫlci,

(2)fi =
MW,ic̃i

ρT
=

MW,iǫlci

ρT

(3)ǫl =
ρT

ρl
fl,

(4)ρT =

(

fis

ρis
+

fl

ρl

)

−1

.

(5)c̃ET = c̃Ef + c̃EGF + c̃EGR + c̃EX + c̃EsL + c̃Ess.

(6)KdF =

cEfc̃GF

c̃EGF
,

(7)KdR =

cEfc̃GR

c̃EGR
,
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Fig. 5  Continuous EH experimental apparatus. The experimental apparatus (top) and process-flow diagram (bottom) for the continuous EH 
experiments
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The equilibrium terms, Ki , are dissociation coeffi-
cients—this means that lower values of Ki result in higher 
adsorption/inhibition.

Combining Eqs. 5–10 results in relationships for the con-
centration of enzymes adsorbed to xylan and facile and 
recalcitrant cellulose. Including a few convenience terms:

we have

(8)KdX =

cEfc̃X

c̃EX
,

(9)KIL =

cEfcsL

cEsL
,

(10)KIs =
cEfcss

cEss
,

(11)κRF =

KdR

KdF
,

(12)κRX =

KdR

KdX
,

(13)κRL =

KdR

KIL
,

(14)κRs =
KdR

KIs
,

(15)�FR =

c̃GF

c̃GR
,

(16)�XR =

c̃X

c̃GR
,

where

The κi terms not only help to provide compact equations 
for adsorption, but they are also useful to use directly 
as model coefficients. The adsorption parameter for 
enzymes on recalcitrant glucan, KdR , can be thought to 
set the scale for enzyme adsorption, while the κi relate 
the adsorption on the other species to the adsorption on 
recalcitrant glucan.

Rather than using hydrolysis-rate coefficients (intro-
duced in the next section) to effect biphasic behavior, we 
instead construct the model to emphasize that the struc-
ture of recalcitrant cellulose is the mechanism for the 
emergent biphasic behavior. This is accomplished by hav-
ing different desorption coefficients for recalcitrant and 
facile glucan, where KdF < KdR ( κRF > 1 ) results in more 
enzymes being adsorbed to facile glucan than recalcitrant. 
To further illustrate how this approach is related to struc-
ture, consider that not all recalcitrant glucose is accessi-
ble to enzy‘me. We presume that a simple proportionality 
constant ( α ) can be used to relate the accessible portion of 
recalcitrant glucan to the total concentration of recalcitrant 
glucan:

Thus, an equilibrium coefficient for enzyme adsorption 
to accessible recalcitrant glucan is given by

Because these equilibrium terms correspond to the rela-
tive rates of adsorption and desorption of the enzyme on 
the substrate surface, we may assume that KdF = KdRA . 
Thus,

which is to say that κRF can be thought of as a term cap-
turing the substrate accessibility of the recalcitrant cel-
lulose, at least for the linearly proportional accessibility 
model assumed here.

(17)c̃EGR =

c̃ET

D
,

(18)c̃EGF =

κRF�FRc̃ET

D
,

(19)c̃EX =

κRX�XRc̃ET

D
,

(20)

D = 1+ κRF�FR + κRX�XR +

ǫl

c̃GR
(KdR + κRLcsL + κRscss).

(21)c̃GRA = α · c̃GR, where α ∈ [0, 1].

(22)KdRA =

cEfc̃GRA

c̃EGR
=

cEfαc̃GR

c̃EGR
= αKdR.

(23)κRF =

KdR

KdF
=

KdRA

αKdF
= α−1,

Fig. 6  Adsorption and inhibition of the enzymes in the kinetics 
model
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Reaction kinetics
The molar reaction rates ( kmol

m3 h
 ), on a total slurry basis, of 

digestion for the substrates are given by

where ki are the reaction-rate coefficients.
We have found that carbohydrate digestion alone does 

not fully account for the reduction in fis , as previously 
observed by Roche et  al. [23]. This suggests that lignin is 
also solubilized by the enzymatic reaction, although, to 
our knowledge, the mechanisms for lignin solubilization 
are not understood and likely quite complex. We suggest 
that lignin is structurally integrated with carbohydrates 
such that it is liberated as those carbohydrates are solubi-
lized. Low-molecular-weight lignin-polymers may become 
solubilized as they are liberated, such that fis is reduced by 
lignin solubilization as well as carbohydrate conversion. 
This model captures this phenomenon with a simple rate 
equation:

Initial conditions are commonly given by the initial 
fraction of insoluble solids fis0 , the initial fraction of 
each insoluble species as part of the insoluble solids, wi , 
the initial concentration of soluble species, ρi , and the 
enzyme loading �E = fET/fG0 (where fET is the fraction of 
total enzyme). These parameters are all easily measured 
or directly controlled. It is also necessary to specify the 
initial facile fraction yF0 = fGF0/fG0 . Conceptually, this 
term may be related to cellulose crystallinity, though 
this connection is loose [18], or to the structure of the 
remaining cell wall. In this context, it may be treated as a 
model parameter associated with biomass that may be fit 
to experimental data, along with the adsorption and rate 
parameters.

Model summary and application to reactors
In summary, enzymes in solution are partitioned between 
solid-phase substrate (glucan and xylan) and liquid-phase 
inhibitors. The concentrations of adsorbed and inhibited 
enzymes are determined through algebraic equilibrium 

(24)−r̃GR = kRc̃EGR,

(25)−r̃GF = kFc̃EGF,

(26)−r̃X = kXc̃EX,

(27)r̃g = −(r̃GR + r̃GF),

(28)r̃x = −r̃X,

(29)r̃L = kLc̃L(r̃GR + r̃X),

(30)r̃sL = −r̃L.

relationships (Eqs.  17–19). Adsorbed enzyme-substrate 
complexes then convert solid-phase substrate into solu-
ble sugars by first-order kinetics (Eqs. 24–28), and lignin 
solubilization is modeled as dependent on the rate of 
recalcitrant glucan and xylan conversion (Eqs. 29 and 30).

It is generally convenient to use normalized mass-
based reaction-rate terms ( Ri , with units kg

kg h ), as these 
are quickly relatable to measureable quantities. For the 
batch reactor, the mass-based reaction rates are given by

where MW,i is the molecular weight of species i (with 
the monomer molecular weight used for our polymers). 
Lignin is a special case, as it is a polymer with diverse 
monomers (unlike glucan and xylan), and there is there-
fore a range of monomer molecular weights associated 
with lignin. However, it is outside the scope of this model 
to disentangle lignin chemistry, so we choose 200Da as 
a representative molecular weight, which is within the 
range (188 to 211Da ) reported by Chua and Wayman [4].

Batch reaction
For a well-mixed batch reaction with no time-variable 
inlets and outlets, the rates of change of the species con-
centrations are proportional to the mass-based reaction 
rates:

(31)RGR =

MW,G

ρT
r̃GR,

(32)RGF =

MW,G

ρT
r̃GF,

(33)RX =

MW,X

ρT
r̃X,

(34)RL =

MW,L

ρT
r̃L,

(35)Rg =
MW,g

ρT
r̃g,

(36)Rx =
MW,x

ρT
r̃x,

(37)Rl =
MW,x

ρT
r̃l,

(38)
dfGR

dt
= RGR,
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The total enzymatic conversion of carbohydrates in a 
batch reaction is calculated by

where ri is the ratio of the molecular weight of the pol-
ysaccharide monomer to the molecular weight of the 
hydrolyzed soluble sugar [31].

Continuous reaction
The CEH system requires coupling the reaction rates 
with a mass-balance that accounts for the different 
streams entering and exiting the reactor. As illustrated 
in Fig.  5, these streams include the solids feed ( ṁs,in ), 
the enzyme addition ( ṁe,in ), the membrane-perme-
ate stream ( ṁm,out ), and the purge stream ( ṁp,out ). 
The reactor is considered to be constant mass, and 
so the sum of inputs is equal to the sum of outputs 
( ṁs,in + ṁe,in = ṁm,out + ṁp,out ). Solid components are 
introduced to the reactor in the solids feed, exit the reac-
tor in proportion to the solids fraction in the purge feed, 
and are consumed by reaction:

(39)
dfGF

dt
= RGF,

(40)
dfX

dt
= RX,

(41)
dfL

dt
= RL,

(42)
dfg

dt
= Rg,

(43)
dfx

dt
= Rx,

(44)
dfsL

dt
= RsL.

(45)Xt =
rg(fg − fg,0)+ rx(fx − fx,0)

fis,0(wg,0 + wx,0)
,

(46)
dfGR

dt
=

ṁs,in

mT
fGR,0 −

ṁp,out

mT
fGR +RGR,

(47)
dfF

dt
=

ṁs,in

mT
fGF,0 −

ṁp,out

mT
fGF +RGF,

(48)
dfX

dt
=

ṁs,in

mT
fX,0 −

ṁp,out

mT
fX +RX,

The soluble species are introduced in the feedstock feed, 
exit in the both the permeate and the purge streams, and 
are produced by reaction.

Finally, the enzymes are considered. Enzymes enter 
through the enzyme addition stream, exit through the 
purge stream, and free enzymes in solution as well as 
soluble-species-inhibited enzyme are partially rejected 
by the filter. To test the rejection efficiency of our sys-
tem (nominal MWCO at 100 kDa ) with respect to our 
enzyme, we filtered a dilute solution of our enzyme, and 
then measured total protein in the filtrate and retentate 
by UV–Vis adsorption at 280 nm . Our data indicated that 
the rejection coefficient was approximately ηE = 0.5.

List of symbols

Variables
ci: concentration of species i on a liquid basis (  kmol

m3 liquid
); c̃i: concentration of 

species i on total slurry basis (  kmol
m3 slurry

); ǫl: volume fraction of liquid in the slurry 
(–); fi : mass fraction of species i in the slurry (–); fis: mass fraction of insoluble 
solids in the slurry (–); fRis: mass fraction of recalcitrant solids (GR, X, L) in the 
slurry (–); kR , kF , kX: molar reaction coefficient of recalcitrant (R) and facile (F) 
glucan and xylan (X) complexed with enzyme ( h−1); kL: molar reaction 
coefficient of lignin, which is defined in relationship to glucan and xylan 
deconstruction ( m

2liquid
kmol

); Kdi: dissociation coefficients for reactive solid species 
(GR, GF, X) (  kmol

m3 liquid
); KIi: dissociation coefficients for inhibitory species (soluble 

sugars and lignin) (  kmol
m3 liquid

); κRi: measure of adsorption of enzyme on species i 
relative to adsorption on recalcitrant glucan (–); �FR , �XR: convenience terms 
relating concentration of facile glucan, recalcitrant glucan, and xylan (–); MW,i: 
molecular weight of species i (Da). For polymers, this references the molecular 
weight of the monomer; ρT: density of the slurry ( kg/m3); ρis: density of the 
skeletal solids ( kg/m3); wj: mass fraction of solids consisting of species j (–); Xj: 
molar conversion of species j (–); yF0: initial mass fraction of the glucan 
consisting of the facile population (–).

Species
Ei: Enzyme, complexed with species i, or in total ( i = T ); GR: recalcitrant 
glucan; GF: facile glucan; X: xylan; L: solid lignin; g: glucose; x: xylose; ss: soluble 
sugars (glucose and xylose); sL: soluble lignin.

(49)
dfL

dt
=

ṁs,in

mT
fL,0 −

ṁp,out

mT
fL +RL.

(50)
dfg

dt
=

ṁs,in

mT
fg,0 −

ṁp,out

mT
fg −

ṁm,out

mT

fg

ǫl
+Rg,

(51)
dfx

dt
=

ṁs,in

mT
fx,0 −

ṁp,out

mT
fx −

ṁm,out

mT

fx

ǫl
+Rx,

(52)
dfl

dt
=

ṁs,in

mT
fl,0 −

ṁp,out

mT
fl −

ṁm,out

mT

fl

ǫl
+Rl.

(53)

dfET

dt
=

ṁe,in

mT
fE,0 −

ṁp,out

mT
fET

−

ṁm,out

mT
ηE

cEss + cEsL + cEf

ǫl
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