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Abstract

Chromatin interactions play important roles in regulating gene expression. However,
the availability of genome-wide chromatin interaction data is limited. We develop a
computational method, chromatin interaction neural network (ChINN), to predict
chromatin interactions between open chromatin regions using only DNA sequences.
ChINN predicts CTCF- and RNA polymerase II-associated and Hi-C chromatin
interactions. ChINN shows good across-sample performances and captures various
sequence features for chromatin interaction prediction. We apply ChINN to 6 chronic
lymphocytic leukemia (CLL) patient samples and a published cohort of 84 CLL open
chromatin samples. Our results demonstrate extensive heterogeneity in chromatin
interactions among CLL patient samples.
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Introduction
Chromatin interactions play important roles in regulating gene expression [1–3]. They

bridge enhancers to genes [4–6] and create insulated domains to constrain the reach

of enhancers [7]. High-throughput experimental techniques such as high-throughput

chromosome conformation capture (Hi-C) [8] and chromatin interaction analysis with

paired-end tags (ChIA-PET) [9] have been developed to detect genome-wide chroma-

tin interactions. These techniques greatly advanced the understanding of genome

organization and its roles in transcription regulation [4, 10–12]. However, due to costs

and technical challenges, these methods have not been widely applied to large cohorts

of cell lines or clinical samples. Hence, our understanding of how common or rare

chromatin interactions are in different patient samples is limited.
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A predictor that uses DNA sequences to predict chromatin interactions could poten-

tially expand our understanding of genome organization. Sophisticated computational

methods such as DeepSea [13] and DeepBind [14] have demonstrated that many

transcription factors binding sites in open chromatin regions could be predicted from

DNA sequences. Additionally, various computational methods have been developed to

predict chromatin interactions to complement the experimental techniques [15–21].

Many of these methods rely on using various functional genomics data, meaning the

use of chromatin immunoprecipitation sequencing (ChIP-seq) data of transcription factors

and histone modifications, open chromatin data, and transcription data [15, 17, 19, 21].

Methods such as RIPPLE [17], TargetFinder [19], and JEME [15] reported high

performances in predicting enhancer-promoter interactions using supervised machine

learning approaches. However, the reported performances were exaggerated by using

cross-validation with random splitting of samples [22, 23]. The lack of effective

machine learning approaches has motivated the field to develop new methods.

Recently, the convolutional neural network framework was adapted to predict Hi-C

contact matrices from 1-dimentional sequence data in a method called “Akita” [24].

There are other methods that predict Hi-C-like data and chromatin interactions,

namely DeepTACT [25], SEPT [26], and DeepC [27]. A detailed comparison and

description of these methods is discussed in Additional file 1: Table S1.

CTCF-associated genome folding patterns can be observed in the prediction results

of Akita, suggesting the importance of CTCF in regulating chromatin interactions. In

addition, prediction results can recapture the differences in genome folding between a

normal and genetically altered cell lines, indicating that machine learning framework

can predict different genome folding profiles given different input DNA sequences.

However, there are several limitations to these methods. First, Akita and DeepC only

performs predictions with limited sequence regions (in the case of Akita, this is 1 Mb),

thus long-range chromatin interactions cannot be predicted and genome-wide chroma-

tin interactions cannot be obtained with these methods. Second, it is unclear whether

ChIA-PET data can be predicted, as DeepTACT predicts promoter capture Hi-C data

[25], and Akita, DeepC, and SEPT are restricted to Hi-C data. Third, none of these

methods have been tested for their abilities to predict chromatin interactions de novo

in patient cancer samples.

To overcome these challenges, in this study, we investigated the possibility of utilizing

DNA sequence features to predict chromatin interactions between open chromatin re-

gions, regardless of distance between them. Our study has several advantages. First, we

demonstrated that open chromatin interactions can be predicted accurately from func-

tional genomic data at the resolutions of the experimental techniques.

Second, we then developed a novel method, called chromatin interaction neural

network (ChINN) to predict open chromatin interactions from DNA sequences. This

model has been developed for RNA Polymerase II (RNA Pol II) ChIA-PET interactions,

CTCF ChIA-PET interactions, and Hi-C interactions, overcoming previous limitations

in terms of data input. Moreover, ChINN is able to identify open chromatin interac-

tions in a genome-wide manner, overcoming the limitations of previous methods which

were restricted to specific genomic regions.

Third, we extensively validated our method. ChINN was able to identify convergent

CTCF motifs, AP-1 transcription family member motifs such as FOS, and other
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transcription factors such as MYC as being important in predicting chromatin interac-

tions. Moreover, we further applied our model to a set of 6 newly generated chronic

lymphocytic leukemia samples, which showed patient-specific chromatin interactions.

We were able to validate predicted interactions by Hi-C and 4C. The models were then

applied to a cohort of previously published 84 chronic lymphocytic leukemia (CLL)

samples [28]. Thus, we demonstrated the prediction power of our method in practice.

Fourth, we used ChINN to characterize the levels of open chromatin interaction hetero-

geneity in patient samples. While we found that many chromatin interactions are ubiqui-

tous, we also found widespread evidence for patient-specific open chromatin interactions,

and open chromatin interactions that were different in different subtypes of CLL.

Taken together, our results indicate both functional genomics models and ChINN

can predict open chromatin interactions, and application of ChINN to cancer patient

samples demonstrates widespread patient heterogeneity in chromatin interactions.

Results
Open chromatin interactions can be predicted from functional genomic features

In light of Xi et al. [22] and our previous study [23] showing that the existing prediction

methods have exaggerated performances, we first tried to demonstrate that chromatin

interactions could be predicted from functional genomic data. Many previous studies

focused on enhancer-promoter interactions that were annotated using chromatin interac-

tions derived from Hi-C or ChIA-PET [15, 17, 19]. The enhancers used were typically

hundreds of base pairs, while the chromatin interaction anchors were much larger in size.

For example, Hi-C anchors are normally 5 to 100 kb long (while only in rare case with

extremely deep sequencing are the anchors down to 1 kb size) [29, 30], and ChIA-PET is

normally several kilobase pairs long [31, 32]. The resolution discrepancy could lead to the

introduction of a lot of noises to the training datasets (Fig. 1a). Thus, we used the chroma-

tin interaction anchors directly.

Fig. 1 Performances of the functional genomic models on distance-matched datasets. The “Pol2” in the
figure represents “RNA Pol II”. a Illustration of resolution discrepancy between cis-regulatory elements and
chromatin interaction anchors. Precision-recall curves of the functional genomic models on distance-
matched datasets using features based on b functional genomic data and distance (dis), c only functional
genomic data, and d only distance. Numbers in brackets indicate the area-under precision-recall curve. e, f,
Across-sample performances using distance (dis) and e signal values and f peak counts
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Positive samples were constructed from ChIA-PET datasets separately and the corre-

sponding distance-matched negative datasets were generated (Additional file 1: Fig. S1).

The resulting distance-matched datasets have positive-to-negative ratios of approxi-

mately 1:5 and all chromatin interactions were between open chromatin regions in the

corresponding cell types (Additional file 1: Table S2). We used ChIP-seq data of tran-

scription factors and histone modifications commonly available to GM12878, K562,

and HelaS3 and DNase-seq data from ENCODE [33] to annotate the anchors and build

the feature vectors (Additional file 1: Table S3). For each chromatin interaction, the

average signal of each transcription factor, histone modification, and open chromatin

were calculated for both anchors. The distance between two anchors was also used as a

feature.

Gradient boosted trees [34] were used to build models for each dataset. We tested

three feature sets: (1) all common functional genomics data and distance, (2) distance

only, and (3) common functional genomics data only. A precision-recall curve (PR)

curve shows the trade-off between precision and recall across different decision thresh-

olds. The auPRC is calculated as the area under the PR curve. The models trained on

all features achieved auPRC ranging from 0.62 to 0.77 (Fig. 1b), while models trained

on distance are mostly at baseline (Fig. 1d), showing that distance is properly controlled

between positive and negative samples. The models trained on functional genomics fea-

tures achieved auPRCs ranging from 0.58 to 0.69 (Fig. 1c), lower than models trained

on all features. These results showed that although distance alone cannot predict chro-

matin interactions, combining distance feature with other features together can help to

distinguish the positive and negative chromatin interaction considering the working

mechanisms of the GB model (Additional file 1: Text S1).

The across-sample performances were lower than within-sample performances

(Fig. 1e). Using peak counts instead of signal values produced better across-

sample performances but lower within-sample performances (Fig. 1f). Models

trained on RNA Pol II datasets generalize well to each other. Models trained on

CTCF ChIA-PET datasets, however, did not generalize well to each other. Models

trained on CTCF ChIA-PET data perform poorly on RNA Pol II ChIA-PET

datasets and vice versa.

Open chromatin interactions can be predicted from DNA sequences

In our previous section, we showed that open chromatin interactions can be predicted

from functional genomics data, which consists of transcription factor data. As tran-

scription factor binding can be predicted from sequences as shown by methods such as

DeepSea (Zhou et al, Nature Methods, 2015) and DeepBind (Alipanahi et al, Nature

Biotech, 2015), we reasoned that open chromatin interactions can be predicted from

DNA sequences. Consequently, we went on to explore whether open chromatin inter-

actions can be predicted from DNA sequences.

We built a convolutional neural network, ChINN, to predict chromatin interactions

between open chromatin regions using DNA sequences (Fig. 2a). These models are

called the ChINN sequence-based models. The models were trained on GM12878

CTCF, GM12878 RNA Pol II, HelaS3 CTCF, K562 RNA Pol II, and MCF-7 RNA Pol II

datasets separately.
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Compared to using functional genomics data for prediction, using sequences pro-

duced better within-sample performances for CTCF ChIA-PET datasets with auPRCs

of 0.77 for GM12878 CTCF and 0.75 for HelaS3 CTCF (Fig. 2b), but worse within-

sample performances for RNA Pol II ChIA-PET datasets with auPRC of 0.51 for

GM12878 RNA Pol II, 0.6 for K562 RNA Pol II, and 0.47 for MCF-7 RNA Pol II. In-

cluding distance as a feature to classifier only slightly improved the performances for

Fig. 2 Architecture and performances of the ChINN sequence-based models on distance-matched datasets.
The “Pol2” in the figure represents “RNA Pol II”. a The architecture of the sequence-based models using to
train on distance-matched datasets. Precision-recall curves of the sequence-based models on distance-
matched datasets using b only sequence features or c sequence features with distance. The numbers in the
brackets indicates the area-under precision-recall curves. Across-sample performances as measured by area-
under precision-recall curve (auPRC) of the models on distance-matched datasets using d only sequence
features or e sequence features with distance. Precision-recall curves of the sequence-based models on
distance-matched Hi-C datasets using f only sequence features or g sequence features with distance. The
numbers in the brackets indicates the area-under precision-recall curves. Across-sample performances as
measured by area-under precision-recall curve (auPRC) of the models on distance-matched Hi-C datasets
using h only sequence features or i sequence features with distance
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the distance-matched datasets (Fig. 2c). The across-sample performances of CTCF

models showed well generalizability to each other (Fig. 2d). RNA Pol II models can also

generalize to each other. Models trained on CTCF ChIA-PET datasets perform poorly

on RNA Pol II ChIA-PET datasets and vice versa (Fig. 2d, e). The inability to generalize

between CTCF chromatin interactions and RNA Pol II chromatin interactions could be

attributed to the different sequence contexts.

For each model, we obtained and matched the position-weight matrices for all

kernels on the first convolutional layer to known transcription factor binding motifs

(Additional file 1: Fig. S2). As expected, CTCF motif was captured by both CTCF

models. Other than the CTCF motif, the remaining known transcription factor binding

motifs learned by the two models were different, indicating the possible cell-type-

specific motifs. Our findings of the cell-type-specific motifs were supported by other

pieces of evidence: studies show that cell-type-specific CTCF-mediated interactions are

important in gene regulation [35, 36] and CTCF binding sites vary extensively across

cell types [37, 38]. The patterns learned by RNA Pol II models showed more diversity

and no matching transcription factor binding motif was shared among the three

models. Interestingly, some of the transcription factors identified, such as ZNF143 in

K562 and GATA3 in MCF-7, play important roles in the relevant cancer types [39, 40].

Besides, we also trained ChINN model on GM12878, HeLaS3, HMEC, HUVEC,

IMR90, K562, KBM7, and NHEK Hi-C data, respectively. The auPRCs of within-sample

performances using only sequences range from 0.52 to 0.77 for the above eight Hi-C

models (Fig. 2f). Including distance as a feature to classifier only slightly improved the

performances for the GM12878, HeLaS3, and NHEK Hi-C models (Fig. 2g). The

across-sample performances of all eight Hi-C models showed well generalizability to

each other (Fig. 2h, i).

Similarly, we obtained and matched the position-weight matrices for all kernels on

the first convolutional layer to known transcription factor binding motifs for eight Hi-

C datasets (Additional file 1: Table S4) and counted how many times each motif was

detected (Additional file 1: Table S5). The CTCF motif was captured by all Hi-C

models. The known transcription factor binding motifs learned by different Hi-C

models were different. Some motifs, such as FOS, were learned by all models, but other

motifs showed diversity, for example, ZN436 is detected by all other models except for

HMEC, and ZIC3 is only detected by HeLaS3 (Additional file 1: Table S5). We noticed

that the motifs detected in all cell lines exhibit smaller p-values than the cell-type-

specific motifs, indicating that these “general” motifs are very important in predicting

chromatin interactions. We speculate a model of chromatin interactions whereby there

are general chromatin interactions facilitated by general transcription factors and com-

mon across different cell types, as well as cell-type specific chromatin interactions facil-

itated by cell-type specific transcription factors which can control cell-type specific

transcription.

Convergent CTCF motifs are important for prediction of CTCF-associated open chromatin

interactions

After extracting the sequence features from both the forward and reverse complement

sequences of the anchors, the sequence features were fed into the classifier to obtain a
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probability score that indicated how likely the pair of anchors were involved in a chro-

matin interaction. We obtained the feature importance scores of the gradient boosted

trees trained and validated using a set of extended datasets that includes more negative

samples than the distance-matched datasets (Methods, Additional file 1: Fig. S3a-d).

We noted that the PR curves of the datasets that used sequence features and distance

(Additional file 1: Fig. S3a) were better than that of sequence features alone (Additional

file 1: Fig. S3b). However, distance alone was uninformative by itself in predicting chro-

matin interactions (Additional file 1: Fig. S3c), suggesting that it is the combination of

distance as a property in addition to sequence features that provide predictive power.

The sequence and distance-trained datasets were able to predict chromatin interac-

tions across different cell types (Additional file 1: Fig. S3d). Consequently, we focused

on the sequence features that were important for the prediction. As convergent CTCF

motif has been observed in the anchor regions of CTCF loops [41–43], this suggests

that the other sequence features or binding motifs at CTCF ChIA-PET anchors may

also have such convergent orientation. Interestingly, in CTCF models the important se-

quence features were on different strands of the two anchors in a convergent manner

(Fig. 3a, Additional file 1: Fig. S3e), while RNA Pol II models did not show such pattern

(Fig. 3b, Additional file 1: Fig. S3f-g). For the CTCF models, importance scores of fea-

tures on different strands of the two anchors showed good correlation, while import-

ance scores of features on the same strand of the two anchors did not show much

Fig. 3 Sequence feature importance scores of gradient boosted trees trained on extended datasets. The
“Pol2” in the figure represents “RNA Pol II”. a, b The importance scores of sequence features extracted from
both directions (F, forward; RC, reverse complement) of the two anchors (left and right) by models trained
on different datasets. The orange horizontal lines indicate average importance scores of the features from
the strand of the anchor. c Pearson correlations between feature importance scores of the two anchors. d
The importance scores of sequence features extracted from both directions (F, forward; RC, reverse
complement) of the two anchors (left and right) by models trained on Hi-C datasets. The orange horizontal
lines indicate average importance scores of the features from the strand of the anchor. e Pearson
correlations between feature importance scores of the two anchors in Hi-C datasets
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correlation (Fig. 3c). In contrast, the importance scores of features of RNA Pol II

models were generally highly correlated regardless of the strand. These results are con-

sistent with the previously observed convergent CTCF motifs at CTCF ChIA-PET and

further suggest that other transcription factors also binds to CTCF loops in a similar

manner.

The kernels on the last convolutional layer that generated the most important

features in the extended CTCF models captured the CTCF motif (Additional file 1: Fig.

S3h), suggesting that convergent CTCF motifs were important for the prediction of

CTCF-associated chromatin interactions. However, using only CTCF motif information

for the prediction of CTCF-associated open chromatin interactions could not recapitu-

late the performance achieved by the convolutional neural network (Additional file 1:

Fig. S3i), indicating that CTCF was not the sole determining factor of chromatin inter-

actions. We also showed the results when training with NN model (same NN structure

as ChINN sequence-based models) on the same datasets using sequence and distance

feature to illustrate the superiority of GB model here (Additional file 1: Fig. S3j).

Similarly, we trained gradient boosted trees with the corresponding extended datasets

for eight Hi-C datasets. Distance was the largest contributor (in terms of feature im-

portance score) when it was used together with sequence features (Additional file 1:

Fig. S4a-d). But on its own, it was not very informative. This suggests its interaction

with the sequence features is informative. When we visualized the sequence feature im-

portance, although not as obvious as that of the CTCF models, we observed that the

important sequence features were on different strands of the two anchors according to

the corresponding mean values (Fig. 3d, Additional file 1: Fig. S4e). However, the

importance scores of features did not show high correlation on Hi-C datasets (Fig. 3e).

All the extended Hi-C models captured the CTCF motif via the kernels of the most im-

portant feature on the last convolutional layer (Additional file 1: Fig. S4f), indicating

that convergent CTCF motifs were important for the prediction of Hi-C data chroma-

tin interactions. The results trained with NN model using sequence and distance fea-

ture were also shown for reference (Additional file 1: Fig. S4g).

Predicting chromatin interactions from open chromatin regions

The above models were trained and evaluated on known chromatin interactions. With-

out knowledge of chromatin interactions, as is the case for many clinical samples and

cell types, the locations of the anchors would not be known. To be able to predict chro-

matin interactions between open chromatin regions, the models need to be able to pre-

dict chromatin interactions between paired genomic regions (anchors) of open

chromatin regions.

We tested different combinations of merging distances and extension sizes (Fig. 4a)

based on validation datasets and determined that the merging distance of 3000 bp and

extension size of 1000 bp for the construction of anchors in GM12878 cells (Additional

file 1: Fig. S5a).

The pairs generated between anchors constructed from open chromatin regions in

GM12878 were used to train gradient boosted trees for both CTCF and RNA Pol II

models (see Methods). The positive-to-negative ratios were about 1:122 for CTCF chro-

matin interaction labeled samples and 1:186 for RNA Pol II chromatin interaction
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labeled samples. The CTCF model achieved within-sample auPRC of 0.514 and the

RNA Pol II model achieved auPRC of 0.347 (Fig. 4b). In cross-sample evaluation, the

CTCF model achieved auPRC of 0.359 on HelaS3 dataset and the RNA Pol II model

achieved auPRCs of 0.232 and 0.164 on K562 and MCF-7 datasets, respectively (Fig.

4b). We were able to validate some of the predicted chromatin interactions in MCF-7

cells using 4C-seq (Additional file 1: Fig. S5b-d). Some of the validated chromatin inter-

actions were not captured by the MCF-7 RNA Pol II ChIA-PET dataset, thus ChINN is

able to identify bona fide chromatin interactions that might have been previously

missed out due to insufficient sequence coverage.

We also generated pairs between anchors constructed from open chromatin regions

in GM12878 and K562 Hi-C datasets with different combinations of merging distances

and extension sizes (Additional file 1: Fig. S6a). We kept to the same parameters as the

CTCF model, i.e., merging size of 3000 and extension size of 1000, to train gradient

boosted trees due to the insignificant difference in auROC achieved by different param-

eters. The GM12878 and K562 Hi-C model had relatively low auPRC in the within-

sample and cross-sample evaluation (Fig. 4c). However, we found that the auPRC of

our ChINN method showed at least 4 times improvement over that of the random clas-

sifier. In cell line IMR90 tested by K562 model, ChINN showed as high as 57 times im-

provement. As there are a lot of data in the datasets (for example, the IMR90 dataset

has 979,699 samples), these improvements in the auPRC could lead to many chromatin

interactions being predicted correctly. Moreover, some of the predicted chromatin in-

teractions in MCF-7 cells using 4C-seq were able to be validated by our Hi-C models

(Additional file 1: Fig. S6b-d).

Other methods that predict Hi-C-like data and chromatin interactions are available,

namely DeepTACT [25], SEPT [26], Akita [24], and DeepC [27]. However, except for

SEPT, the other three machine learning methods are very different from ChINN in

terms of the data. For example, DeepTACT uses promoter capture Hi-C input data,

which is quite different from the use of Hi-C and ChIA-PET input data. For Akita and

DeepC, their output consists of Hi-C contact matrices on lists of user-specified

Fig. 4 Performances of the final “from-open chromatin” models and validations. The “Pol2” in the figure
represents “RNA Pol II”. a Illustration of the two parameters, merging distance and extension size, used in
constructing putative chromatin interactions anchors from open chromatin regions. b Area-under precision-
recall curves of the “from-open ChIA-PET chromatin” models. c Area-under precision-recall curves of the Hi-
C “from-open chromatin” models
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genomic regions, while our output is chromatin loops and probabilities of interaction

across the whole genome. As a consequence, we cannot call loops from these partial

Hi-C matrices of Akita and DeepC, because we would not know the background gen-

omic interaction distribution. Therefore, direct comparison between ChINN output

and Akita/DeepC output is not possible.

As for the SEPT, following its pipeline, we extended the input sequences or cut to 3

or 2 kb flanking regions from the center. But SEPT performs worse as compared with

ChINN on our dataset (AUPRC = 0.0016 evaluated on K562 Hi-C test datasets with

HeLaS3 as source data), as the sequences in our dataset are longer than these input se-

quences. Therefore, cutting the sequence to 3 or 2 kb according to what SEPT does

would not let the model learn much useful information.

We concluded that each method is designed to investing ate different questions, and

in Additional file 1: Fig. S7, we summarized the decision making process for researchers

who wish to use the different methods. For example, if the researcher is interested in

promoter-promoter or promoter-enhancer interactions identified by PCHi-C (Promoter

Capture Hi-C), they should use DeepTACT. If the researcher is interested in an output

that is shown as a Hi-C heatmap, they should use Akita. If the researcher is interested

to look at general chromatin interactions predicted from Hi-C data, or RNA Pol II and

CTCF chromatin interactions predicted from ChIA-PET data, they should use ChINN.

ChINN is the only machine learning method currently available for predicting Hi-C

and ChIA-PET chromatin interactions from sequences with outputs specified as open

chromatin associated chromatin interactions instead of Hi-C matrices.

Exploring chromatin interactions in patient samples

Next, we wished to apply our machine learning methods to patient samples to under-

stand if our method could predict chromatin interactions in a completely new dataset.

We obtained 6 chronic lymphocytic leukemia (CLL) patient samples. The clinical char-

acteristics are described in Additional file 1: Table S6.

We prepared integrated Hi-C, ATAC-Seq, and RNA-Seq libraries from these 6 sam-

ples. We used Juicer to call topologically associated domains and loops from these pa-

tient samples. Our CLL samples showed many TADs and loops (Additional file 1:

Table S7), thus indicating that we were able to perform Hi-C in these patient samples.

Next, we applied GM12878 and K562 Hi-C models to six new CLL samples. We used

GM12878 and K562 Hi-C models for this prediction because CLL, GM12878, and

K562 all come from hematopoietic lineages, and therefore GM12878 and K562 predic-

tions would be likely to have captured both general chromatin interaction mechanisms

and tissue-specific mechanisms that are relevant to hematopoietic cells.

The auPRC achieved by GM12878 Hi-C model range from 0.2772 to 0.4362, which

are a bit higher than that of K562 Hi-C model, whose auPRC range from 0.2607 to

0.3996 (Fig. 5a). We calculated the F-score with different thresholds and finally deter-

mined the threshold of 0.025 for GM12878 model and 0.016 for K562 model to make

the prediction on new CLL samples (Additional file 1: Fig. S8a-b), where the corre-

sponding confusion matrix was shown as Fig. 5b and c.

One question we asked was whether there is patient heterogeneity in Hi-C data. We use

“heterogeneity” to indicate that the chromatin interactions are different across patients.
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Clinical samples differ from each other due to a wide variety of factors including different

driver mutations and different underlying genetics and epigenetics of each patient.

Here, we asked whether the subtype of the CLL samples could be one factor giving

rise to patient heterogeneity. The CLL samples could be divided into two subtypes

based on IGHV mutation status. In our data, two samples (102 and 344) are IGHV-

unmutated CLL (uCLL) type and 4 samples (312, 324, 401, and 484) are IGHV-

mutated CLL (mCLL) type. IGHV mutation status is an important prognostic bio-

marker in CLL, with mCLL being less aggressive [44].

Genomic sequences are almost identical across different patient samples, except for

regions of patient-specific cancer structural variations and single nucleotide variations.

Thus, if two anchors are identical in a different cell type, the probability that they are

interacting given by the model will be the same. In this study, we have limited the

scope of chromatin interaction prediction to only open chromatin regions, and call the

predicted chromatin interactions “open chromatin interactions”.

Fig. 5 Applying Hi-C model on new CLL samples. a The auPRC values achieved by GM12878 and K562 Hi-C
model, x-axis: new CLL samples. b, c The confusion matrices for 6 new CLL samples using K562 Hi-C model
with threshold of 0.016 and GM12878 Hi-C model with threshold of 0.025. x-axis, true label; y-axis, predicted
label; 0, negative; 1, positive. d Summary of the predicted chromatin interactions in the 6 new CLL samples
and the differential chromatin interactions between uCLL and mCLL samples. e Conservation analysis of
predicted chromatin interactions in new CLL samples. All pairs, all possible pairs used for prediction; y-axis,
the proportion of total chromatin interactions that can be found in a particular number of samples. f
Uniqueness analysis of open chromatin regions that overlap with Hi-C peaks from GM12878 cells in new
CLL samples. All, all open chromatin regions; y-axis, the proportion of total chromatin interactions that can
be found in a particular number of samples
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Open chromatin profiles have been used to cluster cell types and cancer subtypes

(Rendeiro et al, Nature Commun, 2016). With the assumption that the mechanisms of

chromatin interactions are similar between different patient samples with the same

cancer and with the patient-specific open chromatin regions, we explored the different

chromatin interactions arising due to open chromatin differences between patient

samples.

As a first step to investigate this question, we applied our ChINN framework on the

six new CLL samples and built models using Hi-C and ATAC-seq data from each CLL

sample. Models built using CLL samples would have captured general chromatin inter-

action mechanisms and tissue-specific mechanisms relevant to hematopoietic cells, as

well as CLL-specific mechanisms.

Figure 5d showed the predicted chromatin interactions in 6 new CLL samples and

the differences between uCLL and mCLL samples. With the selected threshold, a total

of 152,202 Hi-C-associated open chromatin interactions were predicted (Fig. 5d) by

GM12878 Hi-C model. We found extensive patient heterogeneity (Fig. 5e, f), as ob-

served from the lack of similarity of chromatin interactions across the new CLL sam-

ples and the overlapping peaks between new CLL samples and GM12878 Hi-C peaks.

For example, Fig. 5e indicates that 37% of Hi-C identified chromatin interactions can

be found in only one sample, but not the other five samples. This indicates that many

open chromatin interactions can only be found in one sample, and is an illustration of

the level of heterogeneity in terms of the presence and absence of open chromatin re-

gions and their associated chromatin interactions.

In addition, we also applied our ChINN framework on the six new CLL samples and

built models using Hi-C and ATAC-seq data from each CLL sample. Our Hi-C libraries

identified 1795 open chromatin interactions unique to uCLL samples and 10663 open

chromatin interactions unique to mCLL samples (Fig. 6a). Moreover, uniqueness ana-

lysis of the Hi-C interactions from these six CLL samples similarly showed high patient

heterogeneity (Fig. 6b). Thus, both predicted open chromatin interactions and Hi-C

identified interactions indicate high patient heterogeneity.

These models have auPRC range from 0.37 to 0.58 (Fig. 6c). In addition, across-

sample testing of these CLL models on other datasets from other CLL sample suggests

a comparable performance (Fig. 6d). Inclusion of distance did not result in dramatic in-

crease of the model performance (Additional file 1: Fig. S9a-9b). Moreover, the first

convolutional layers of all CLL models were able to capture the CTCF and AP-1 tran-

scription family member (FOS, JUN, JUNB, JUND) binding motif (Additional file 1: Fig.

S9c), similar to the Hi-C models we showed earlier (Additional file 1: Fig. S4e; Add-

itional file 1: Table S4-5).

After that, we trained gradient boosted trees with the corresponding extended

datasets of the CLL samples. We observed that similar correlation of the important

sequence features on different strands of the two anchors (Fig. 6e; Additional file 1:

Fig. S9d-9e), although the within-sample and cross-sample auPRC were decreased

(Additional file 1: Fig. S9f-9g).

We also generated open chromatin pairs using ATAC-seq to train the gradient

boosted trees (merging size, 3000 bp; extension size, 1000 bp). Although the perfor-

mances decreased compared with using Hi-C anchor region pairs as input, they were

still higher than the random auPRC values (Additional file 1: Fig. S9h-9k). We further
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used the 401 CLL sample model to predict open chromatin interactions in MCF7 cells,

as the 401 CLL model has the highest within-sample and across-sample performance.

The predicted interactions correlate quite well with the real 4C-seq interactions (Fig.

6f, g, Additional file 1: Fig. S9l-9o, threshold = 0.016).

One question we asked was whether there is patient heterogeneity in Hi-C data. We

first tried to associate the real and predicted Hi-C interactions with differentially

expressed genes identified from RNA-seq data. The results showed that although the

Fig. 6 (See legend on next page.)
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trend of different IFC scores (the fold change of the average number of open chromatin

interactions observed at the gene promoter in uCLL samples over that in mCLL sam-

ples) could be observed, these differences were not significant (Additional file 1: Fig.

S9p-9q). We also observed that the Hi-C interactions and ATAC-seq peaks in the new

CLL samples showed high patient heterogeneity (Additional file 1: Fig. S9r). These

patient heterogeneities may be a reason for the limited sample size in the IFC score

analysis after we collapsed all six samples into mutated and unmutated categories

(Additional file 1: Fig. S9p-9q).

Taken together, our results demonstrate across-sample prediction capability for the

ChINN model. In addition, we observed high patient heterogeneity in the new CLL

samples from the predicted open chromatin interactions as well as the Hi-C identified

chromatin interactions.

Exploring open chromatin interactions in a cohort of patient samples

Next, we used our machine learning method to predict open chromatin interactions in

a cohort of patient samples and then analyzed the data. We applied the above models

to 84 chronic lymphocytic leukemia (CLL) samples whose open chromatin profiles

were available by ATAC-seq [28]. Among 84 CLL samples, 34 of them are uCLL type

and 50 of them are mCLL type.

A total of 48,443 CTCF-associated open chromatin interactions and 23,633 RNA

Pol II-associated open chromatin interactions were predicted based on the pooled

open chromatin regions of all samples (Fig. 7a). RNA Pol II-associated chromatin

interactions were better conserved across the CLL samples than CTCF-associated

chromatin interactions (Fig. 7b), which could be attributed to that open chromatin

regions in the CLL samples that overlapped with GM12878 RNA Pol II peaks were

better conserved than those overlapping with GM12878 CTCF peaks (Fig. 7c).

Using this set of ATAC-seq data in CLL samples, it was reported that regions with

higher open chromatin signals in uCLL samples showed strong enrichment of

binding sites of CTCF, RAD21 and SMC3 [28], which could also contribute to the

high variability of CTCF chromatin interactions. Moreover, we again observed ex-

tensive patient heterogeneity of CTCF and RNA Pol II-associated predicted open

chromatin interactions in these clinical samples.

(See figure on previous page.)
Fig. 6 Performances of the sequence-based models in new CLL samples. a Venn diagram of chromatin
interactions identified by Juicer in unmutated and mutated CLL samples. b Uniqueness analysis of real Hi-C
and predicted Hi-C chromatin interactions in new CLL samples. Hi-C, real Hi-C interactions; predicted,
predicted chromatin interactions using CLL 401 model. c Precision-recall curves of the sequence-based
models on distance-matched Hi-C datasets using only sequence features. d Across-sample performances as
measured by area-under precision-recall curve (auPRC) of the models on distance-matched Hi-C datasets
using only sequence features. e The importance scores of sequence features extracted from both directions
(F, forward; RC, reverse complement) of the two anchors (left and right) by models trained on CLL 401
sample. The orange horizontal lines indicate average importance scores of the features from the strand of
the anchor. Pearson correlations between feature importance scores of the two anchors are given in the
table. f Validations of predicted chromatin interactions by 4C-seq at GREB1 gene region in MCF-7 cells. In
the predicted Hi-C interaction panel, only those interactions connected to GREB1 promoter were shown. g
Validations of predicted chromatin interactions by 4C-seq at SIAH2 gene region in MCF-7 cells. In the
predicted Hi-C interaction panel, only those interactions connected to SIAH2 promoter were shown
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When applying the GM12878 Hi-C model to the CLL samples, a total of 758,407 Hi-

C-associated open chromatin interactions were predicted (Fig. 8a). The phenomenon

observed from the CTCF model also can be observed from the Hi-C model, for ex-

ample, the chromatin interactions across the CLL samples and the overlapping peaks

between CLL samples and GM12878 Hi-C peaks were not well conserved as that of

RNA Pol II (Fig. 8b, c). The predicted open chromatin interactions by Hi-C model were

able to separate mCLL and uCLL samples (Additional file 1: Fig. S10a). Most differential

chromatin interactions were associated with changes in the occurrence of one anchor

(Fig. 8d). Genes that were upregulated in uCLL were associated with uCLL-specific chro-

matin interactions (Fig. 8e). In the set of differential chromatin interactions whose an-

chors did not have the same level of changes as the chromatin interactions themselves

between the two subtypes, the rate of co-occurrences of the two anchors within the same

Fig. 7 Predicted chromatin interactions in CLL samples. The “Pol2” in the figure represents “RNA Pol II”. a
Summary of the predicted chromatin interactions in the 84 CLL samples and the differential chromatin
interactions between uCLL and mCLL samples. b Conservation analysis of predicted chromatin interactions
in the CLL samples. All pairs, all possible pairs used for prediction. c Uniqueness analysis of open chromatin
regions that overlap with CTCF or RNA Pol II peaks from GM12878 cells in the CLL samples. All, all open
chromatin regions. d Distribution of differential CTCF and RNA Pol II chromatin interactions based on
whether both anchors (both), one anchor (one-side), or neither anchors (neither) showed the same level of
differences between uCLL and mCLL samples as the associated chromatin interaction. e Association of
differences in chromatin interactions between uCLL and mCLL samples with differentially expressed genes
identified from a set of microarray samples. IFC, the fold change of the average number of chromatin
interactions observed at the gene promoter in uCLL samples over that in mCLL samples. p-values were
calculated using the Kruskal-Wallis test. f, g Examples of genes, ZBTB20 and LPL, whose different
connectivity are associated with differences in distal regions. The red bars and curves indicate significantly
different open chromatin regions and chromatin interactions based on Fisher’s exact test
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sample and the levels in chromatin interactions could change (Additional file 1: Fig.

S10b). Examples of predicted open chromatin interactions are shown in Fig. 8f and g and

Additional file 1: Fig. S10e-h. Thus, we observed extensive patient heterogeneity of Hi-C

predicted open chromatin interactions in these clinical samples.

Using the predicted open chromatin interactions, it was possible to separate mCLL

and uCLL samples (Additional file 1: Fig. S11a). Variations in occurrences of open

chromatin interactions between the two subtypes of CLL were associated with varia-

tions in occurrences of anchor regions. Most differential ChIA-PET chromatin interac-

tions were associated with changes in the occurrence of one anchor (Fig. 7d). There

was a small portion of differential chromatin interactions whose anchors did not have

the same level of changes as the chromatin interactions themselves between the two

subtypes. In this set of differential chromatin interactions, the rate of co-occurrences of

the two anchors within the same sample could change, contributing to the levels of

changes in predicted open chromatin interactions (Additional file 1: Fig. S11b). With

the GM12878 Hi-C model, we were also able to see differences in connectivity at

Fig. 8 Predicted chromatin interactions in CLL samples using GM12878 Hi-C model. a Summary of the
predicted chromatin interactions in the 84 CLL samples and the differential chromatin interactions between
uCLL and mCLL samples. b Conservation analysis of predicted chromatin interactions in the CLL samples.
All pairs, all possible pairs used for prediction; y-axis, the proportion of total chromatin interactions that can
be found in a particular number of samples. c Uniqueness analysis of open chromatin regions that overlap
with Hi-C peaks from GM12878 cells in the CLL samples. All, all open chromatin regions; y-axis, the
proportion of total chromatin interactions that can be found in a particular number of samples. d
Distribution of differential Hi-C chromatin interactions based on whether both anchors (both), one anchor
(one-side), or neither anchors (neither) showed the same level of differences between uCLL and mCLL
samples as the associated chromatin interaction. e Association of differences in chromatin interactions
between uCLL and mCLL samples with differentially expressed genes identified from a set of microarray
samples. IFC, the fold change of the average number of chromatin interactions observed at the gene
promoter in uCLL samples over that in mCLL samples. p-values were calculated using the Kruskal-Wallis test.
f, g Examples of genes, ZBTB20 and LPL, whose different connectivity are associated with differences in
distal regions. The red bars and curves indicate significantly different open chromatin regions and
chromatin interactions based on Fisher’s exact test
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transcription start sites associated with differences in the occurrences of the open chro-

matin regions at the transcription start sites (Additional file 1: Fig. S10d).

Genes with higher expression in uCLL showed higher connectivity at the transcrip-

tion start sites (Fig. 7e, Additional file 1: Fig. S11c, Fig. 6e, Additional file 1: Fig. S10c).

The differences in connectivity at transcription start sites were associated with differ-

ences in the occurrences of the open chromatin regions at the transcription start sites

between CLL subtypes (Additional file 1: Fig. S10d and Additional file 1: Fig. S11d),

and also, differences in connectivity were sometimes associated with differences in dis-

tal interacting regions (Additional file 1: Fig. S11e, Fig. 7f). Examples of predicted open

chromatin interactions are shown at important CLL prognostic markers, such as LPL

(Fig. 7g), ZAP70 (Additional file 1: Fig. S11f), ZNF667 (Additional file 1: Fig. S11g), and

CD38 (Additional file 1: Fig. S11h) [45–48]. Taken together, our results indicate that

different subtypes show different profiles of predicted open chromatin interactions. Dif-

ferent subtypes may be a source of patient heterogeneity in clinical samples.

Discussion
In this manuscript, we described two methods of predicting chromatin interactions,

first, a functional genomics approach which uses local epigenomics data to accurately

predict chromatin interactions, and second, a convolutional neural network, ChINN,

which can extract sequence features and be coupled to classifiers to predict chromatin

interactions between open chromatin regions using DNA sequences and distance.

We showed that at resolutions limited by the experimental techniques, chromatin in-

teractions between open chromatin regions could be predicted from 1-dimensional

functional genomics data through the fact that the cross-sample model can capture the

chromatin interactions. ChINN only requires the use of open chromatin data and

showed good generalizability on the same type of chromatin interactions across differ-

ent cell types. Thus, it has the potential to be applied to large sets of clinical samples

with limited biological materials. In addition, ChINN can discover sequence features

that are important for predicting chromatin interactions, including shared features such

as the CTCF motif and cell-type specific features such as GATA3 binding motif in

MCF-7, which is frequently mutated in breast cancer [49]. Also, we could validate

ChINN-identified chromatin interactions by 4C.

In distance-controlled experiments, our prediction method using functional genomics

data performed better on RNA Pol II chromatin interactions but worse on CTCF

chromatin interactions compared to sequence-based ChINN. Such differences could be

attributed to the lower functional genomic complexity at CTCF binding sites and

functional genomic data might fail to capture the convergent CTCF binding motifs

often observed at CTCF-mediated chromatin interactions.

We also noticed that the models trained using sequence features of CTCF ChIA-PET

data perform better than the models trained using functional genomics data from

CTCF ChIA-PET in the cross-sample prediction. We reason that the difference of the

performance may be explained by the different resolution of the data. ChIP-seq data

can yield ChIP-seq peaks of over several hundred bp long (and they are further general-

ized into count data when preparing the input features), while the CTCF motif is only

less than 20 bp (CTCF motif MA0139.1 from JASPAR database). In addition, the ChIP-

seq peaks cannot tell the orientation of the CTCF binding, while sequence can tell the
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direction of CTCF motif. As CTCF orientation is found to be important in chromatin

interactions [41], the sequence feature can give more information of the binding site as

well as the binding orientation. Therefore, the information of CTCF in these two cross-

sample prediction results is different.

On the other hand, RNA Pol II binding sites do not have such distinctive DNA mo-

tifs, making it harder to predict RNA Pol II binding sites [13, 14] and consequently

harder to predict RNA Pol II-associated chromatin interactions from DNA sequences.

However, RNA Pol II binding sites are usually occupied by many other transcription

factors, making it easier to predict RNA Pol II-associated chromatin interactions using

functional genomic data.

The application of ChINN models with gradient boosted tree classifiers to a set of

CLL ATAC-seq samples showed that several of the predicted open chromatin interac-

tions could be validated by Hi-C. However, we note that the auPRC scores of ChINN

reported, particularly the GM12878 and K562 models applied to explore chromatin

interactions in patient samples, was around 0.26–0.6, which is consistent with cross-

sample testing of other epigenomics machine learning prediction methods such as

DeepHistone [50]. However, these auPRC scores are not very high, which could be due

to several reasons.

First, auPRC is a performance metric that is usually not very high, especially when

the number of negative samples hugely overwhelm the positive samples. Because the

number of chromatin interactions in the entire genome, relative to the number of gen-

omic regions with no reported chromatin interactions by Hi-C, is not very high; there-

fore, the number of negative samples in our data hugely overwhelm the positive

samples. As such, it is expected that the auPRC score will not be very high when apply-

ing GM12878 and K562 Hi-C models to other cell lines or patient samples.

Second, the ChINN method only takes as input the sequences of DNA at open chro-

matin regions of the genome for prediction. If more types of data are input into the

model, the performance of the model is likely to improve, but at the cost of requiring

more datatypes which are expensive and labor-intensive to acquire.

Third, while there were also chromatin interactions that were predicted but not vali-

dated by Hi-C, our results showing that 4C could validate predicted chromatin interac-

tions in MCF-7 cells that were not identified by Hi-C suggest that these so-called “false

positives” might potentially be real chromatin interactions that were simply not cap-

tured by Hi-C due to limited sequencing depth of Hi-C libraries.

In future work, further development of Hi-C and other chromatin interaction se-

quencing methods to comprehensively capture chromatin interactions will allow for a

better comparison with chromatin interaction predictions. Additionally, further devel-

opment and refinement of ChINN to improve the accuracy of chromatin interaction

prediction is warranted.

Application of ChINN models in CLL revealed that although there were open chro-

matin interactions that were ubiquitous in all samples, there were a large number of

patient-specific open chromatin interactions and also chromatin interactions that were

found in fewer than half the samples. We note that chromatin interactions predicted

using cross-sample models are likely to show less cell-type specificity, and the fact that

sample heterogeneity can be seen in these predicted open chromatin interactions in

spite of the lower likelihood of cell-type specificity due to the nature of the chromatin
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interaction prediction, suggests that chromatin interaction heterogeneity is widespread

throughout the genome. Moreover, the observation of predicted open chromatin inter-

action heterogeneity agrees with our observations that there exist both ubiquitous chro-

matin interactions and patient-specific chromatin interactions in the 6 Hi-C libraries

from the 6 CLL patient samples that we examined. While we previously observed

patient-specific chromatin interactions at particular loci [51], here, we show that this

phenomenon is widespread. To the best of our knowledge, this observation of

widespread nature of patient-specific chromatin interactions is novel and has not been

previously reported in the 3D genome organization field.

One potential reason for these different chromatin interactions could be due to

different patient subtypes. Importantly, we found systematic differences in chromatin

interactions involving important CLL prognostic genes, such as LPL and CD38,

between the IGHV-mutated and IGHV-unmutated subtypes. These results suggest that

differences in chromatin interaction landscapes between CLL subtypes could have

important functional implications in CLL biology. Moreover, differences in chromatin

interaction presence or absence may lead to different expression of oncogenes in

cancers.

Our observation of widespread patient heterogeneity in patient cancer samples high-

lights the need for precision medicine and the need to understand chromatin interac-

tions in individual patient samples. Machine learning offers one way for us to predict

chromatin interactions in a cost-effective manner. The ChINN method may be useful

in the future in understanding chromatin interactions in large cohorts of clinical

samples and identifying chromatin interaction-based biomarkers that can be used to

distinguish between different subtypes of cancer which may help in the development of

precise therapies for the different subtypes of cancer.

Conclusion
A functional genomics approach is able to predict chromatin interactions. The ChINN

framework is able to predict chromatin interactions from open chromatin regions in

the human genome, using DNA sequences and distances as features. This framework

can be applied in other cell lines or clinical samples given the knowledge of open

chromatin regions, making it a useful tool to interrogate chromatin interactions when

large-scale functional genomics acquisition is not applicable due to limited biological

materials.

Methods
We performed machine learning, Hi-C interaction analysis, ATAC-seq, RNA-seq, and

gene expression analyses as described in the following sections. The quality information

of generated Hi-C, ATAC-seq, and RNA-seq libraries can be found in Additional file 1:

Table S7, Additional file 1: Table S8, and Additional file 1: Fig. S12.

Machine learning of ChIA-PET data

The development of the sequence models was divided into three stages. In the first

stage, the distance-matched datasets were used to train the models consist of convolu-

tional neural network (feature extractor) with fully connected layers as the classier, as
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shown in Fig. 2a. The first stage deep learning method works as a feature extractor to

convert the raw sequence feature to numerical representation that can be used as input

of the machine learning models. Stages 2 and 3 aim to train the different machine

learning models to make the prediction. In the second and third stage, the feature ex-

tractors trained in the first stage were frozen and gradient tree boosting classifiers were

used as classifiers. In the second stage, the gradient tree boosting classifiers were

trained using the extended datasets. In the third stage, the gradient tree boosting classi-

fiers were trained using all potential pairs of anchors generated from open chromatin

data and annotated by existing ChIA-PET data. Thus, the final result was a program

that took in a list of open chromatin regions and produced predictions of chromatin in-

teractions between the open chromatin regions.

The feature extractors took DNA sequences of both anchors of a potential interacting

pair as input. The classier then took the features generated by the feature extractor and

optionally the distance between anchors as input and produced a probability score of

interaction. This final model was defined as the “from open chromatin” model. More

details can be found from Additional file 1: Supplementary Methods [52–69].

Machine learning of Hi-C data from cell lines

We collected the Hi-C interactions from 8 cell lines, including GM12878, HeLaS3,

HMEC, HUVEC, IMR90, K562, KBM7, and NHEK. The construction of machine learn-

ing model using Hi-C data from cell lines follows the same procedures as described in

that of ChIA-PET data, where the positive data is annotated according to the Hi-C

interactions.

Machine learning of Hi-C data from clinical samples

We collected the Hi-C interactions from 6 CLL clinical samples, including CLL 102,

CLL 312, CLL 324, CLL 344, CLL 401, and CLL 484. The construction of machine

learning model using Hi-C data from cell lines follows the same procedures as de-

scribed in that of ChIA-PET data, where the positive data is annotated according to the

Hi-C interactions. The CLL 401 model was used in the across-sample prediction.

Preparation of clinical samples

Chronic lymphocytic leukemia patient samples (either peripheral blood or bone mar-

row isolates) were obtained from the Leukemia Cell Bank at the National University

Health System (NUHS) with patient consent, under Institute Review Board number H-

20-022E. The CLL samples were either bone marrow aspirates (312,324,344,484 and

102) or peripheral blood (401). The samples were immediately frozen after collection

and stored in liquid nitrogen until further use.

The samples were taken out of the liquid nitrogen and thawed by dipping in a beaker

containing water at 37 °C. Once the sample was thawed completely, the cells were im-

mediately transferred to the 15 ml falcon and resuspended in 10 ml PBS containing 2%

fetal bovine serum (FBS) and 2 mM EDTA. The cells were pelleted at 300×g for 5 min

at room temperature and resuspended in 5 ml PBS containing 2% FBS and 2 mM

EDTA. The cells were counted and checked for viability using Trypan Blue.
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RNA and genomic DNA were isolated from the CLL patient samples using AllPrep

DNA/RNA/miRNA universal kit (Qiagen) according to the manufacturer’s instructions.

Briefly, cells lysate were homogenized by a 21-G needle and syringe together with lysis buf-

fer and 1 M DTT. After that, the homogenized lysate were transferred into AllPrep DNA

mini spin column for genomic DNA extraction. The genomic DNA were then eluted by

water and proceeded for the IGHV mutation test. The flow through after the AllPrep DNA

mini spin column was then proceeded into RNease Mini spin column with on-column di-

gestion for RNA extraction. The RNA were eluted in water and further sent for RNA-seq.

IGHV mutation test was performed following the method in Agathangelidis et al.

[70]. Briefly, IGHV-IGHD-IGHJ gene rearrangements were amplified by 5′ IGHV

leader primers and 3′ IGHJ primers (primer sequences are provided in Additional file

1: Table S9) using genomic DNA (gDNA) from CLL patient samples. The PCR amplifi-

cation was performed by PCR core kit (Qiagen). Final PCR products were imaged by

agarose gel electrophoresis and purified by PCR purification kit (QIAGEN). Purified

PCR products were confirmed through Sanger sequencing by 3′ IGHJ primers. The

Sanger sequencing results were analyzed by IMGT/V-QUEST tools [71] to get the

IGHV identity scores. If the identity score was larger than 98%, the CLL sample was

considered an unmutated sample while if the score was lower than 98%, the CLL sam-

ple was considered a mutated sample.

In situ Hi-C

Hi-C libraries were prepared using the Arima Genomics kit (Arima Genomics, San

Diego, CA) in conjunction with the Swift Biosciences Accel-NGS 2S Plus DNA Library

Kit (Cat # 21024) and Swift Biosciences Indexing Kit (Cat # 26148) following the

manufacturer’s recommendations. In brief, 1X 106 cells were fixed with formalde-

hyde in the nucleus. Fixed cells were permeabilized using a lysis buffer and then

digested with a restriction enzyme cocktail supplied in the Arima Hi-C kit. The

resulting overhangs were filled in with biotinylated nucleotides followed by ligation.

After ligation, crosslinks were reversed, and the DNA was purified from protein.

Purified DNA was treated to remove biotin that was not internal to ligated frag-

ments. Hi-C material was then sonicated using a Covaris Focused-Ultrasonicator

M220 instrument to achieve 300–500 bp fragment sizes. The sonicated DNA was

double-size selected using Ampure XP beads, and the sequencing libraries were

generated using low input Swift Biosciences Accel-NGS 2S Plus DNA Library Kit

(Cat # 21024) and Swift Biosciences Indexing Kit (Cat # 26148). The Hi-C libraries

were loaded on an Illumina flow cell for paired-end 150-nucleotide read length

sequencing on the Illumina HiSeq 4000 following the manufacturer’s protocols.

Cell culture

MCF-7, a breast cancer cell line, was cultured in DMEM/F12 (Gibco) supple-

mented with 10% FBS and 1% penicillin-streptomycin and maintained at 37 °C, 5%

CO2 humidified incubator. Before 4C-seq assays, MCF-7 cells were grown in

hormone-free media: they were washed with PBS twice to remove any residual FBS

or growth factors and incubated in phenol red-free medium (Invitrogen/Gibco)

supplemented with 10% charcoal-dextran stripped FBS (Hyclone) and 1% pencillin-
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streptomycin for a minimum of 72 h. Hormone-depleted MCF-7 cells were then

treated with estrogen (Sigma) to a final concentration of 100 nM for 45 min before

4C-seq assay. The control cells were treated with an equal volume and concentra-

tion of vehicle, ethanol (Sigma), for 45 min.

Circular chromosome conformation capture (4C)

4C-seq assays were performed according to Splinter et al [72] with slight modifica-

tions. Briefly, 4 × 107 cells were crosslinked with 1% formaldehyde. The nuclei pel-

lets were isolated by cell lysis with cold lysis buffer (10 mM Tris-HCl, 10 mM

NaCl, 5 mM EDTA, 0.5% NP 40) supplemented with protease inhibitors (Roche).

First step digestion was performed overnight at 37 °C with HindIII enzyme (NEB).

Digestion efficiency was measured by RT-qPCR with HindIII site-specific primers.

After confirmation of good digestion efficiency, DNA was ligated overnight at 16

°C by T4 DNA ligase (Thermo Scientific) and de-crosslinked. Following de-

crosslinking, DNA was extracted by phenol-chloroform and this is the 3C library.

The DNA was then processed for second digestion with DpnII enzyme (NEB) over-

night at 37 °C. After final ligation, 4C template DNA was obtained, and the con-

centration was determined using Qubit assays (Thermo Scientific). The 4C

template DNA was then amplified using specific primers with Illumina Nextera

adapters and sent for sequencing on the MiSeq system. All the 4C genome coordi-

nates are listed in Additional file 1: Table S9.

RNA-seq

Total RNA was extracted from the CLL samples using the All Prep DNA/RNA kit

(Qiagen). The RNA was quantified using the Qubit BR RNA Assay kit. RNA-seq librar-

ies (strand specific and ribo zero) were constructed using Illumina Total RNA Prep kit

(Illumina, San Diego, CA, USA) and sequenced 150 bases paired-end on the Illumina

HiSeq 4000 following the manufacturer’s instruction.

ATAC-seq

ATAC-seq library was prepared as described previously [73]. Briefly, 50,000 cells were

lysed for nuclei isolation using ATAC-Resuspention Buffer containing 0.1% NP40, 0.1%

Tween-20, and 0.01% Digitonin. Transposition reaction was performed for 30 min at 37 °C

using Nextera DNA library preparation kit (NEB). Transposed fragments were amplified by

eight PCR cycles for library preparation. Primer dimers and long DNA fragments were re-

moved by AMPure XP beads purification step. DNA concentration was measured by Qubit

fluorometric assay and library quality was determined by Bioanalyzer. The library was se-

quenced in Nextseq 500 76 bp paired-end configuration using Illumina platform.
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