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Abstract

Technical variation in feature measurements, such as gene expression and locus accessibility, is a key challenge of
large-scale single-cell genomic datasets. We show that this technical variation in both scRNA-seq and scATAC-seq
datasets can be mitigated by analyzing feature detection patterns alone and ignoring feature quantification
measurements. This result holds when datasets have low detection noise relative to quantification noise. We
demonstrate state-of-the-art performance of detection pattern models using our new framework, scBFA, for both
cell type identification and trajectory inference. Performance gains can also be realized in one line of R code in
existing pipelines.
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Background
Single-cell genomics technologies have become a widely
used technique for investigating diverse problems related
to gene regulation, including the identification of novel
cell types and their regulatory signatures, trajectory in-
ference for the analysis of continuous processes such as
differentiation, high-resolution analysis of transcriptional
dynamics, and characterization of transcriptional hetero-
geneity within populations of cells [1]. Of the different
modalities that can be profiled, single-cell RNA sequen-
cing (scRNA-seq) is currently the most mature; diverse
scRNA-seq technologies are now available to cater to-
wards specific applications. For instance, droplet-based
methods, such as Drop-seq, currently have some of the
highest throughput capture of cells and are suitable for
rare cell type identification and characterization of tissue
heterogeneity. The so-called full-length transcript
methods are able to measure alternative splicing and se-
quence individual cells more deeply, with the limitation
of typically sequencing fewer cells.

scRNA-seq technologies are still rapidly evolving [2],
and one of the most pressing challenges today is to ad-
dress a large amount of technical noise that can drive
approximately 50% of the cell-cell variation in expression
measurements [3–5]. Two such expression measure-
ments of interest are gene detection (the identification
of the set of all genes truly expressed in a given cell) and
gene quantification (the estimation of the relative num-
ber of transcripts per gene and cell, also referred to as
counts); the fidelity of these measurements for a given
technology is termed its sensitivity and accuracy, re-
spectively. Both sensitivity and accuracy vary widely be-
tween scRNA-seq technologies [6], which is the result of
the small quantities of RNA sequenced per cell, reverse
transcriptase inefficiency, and amplification bias [5],
among other features of the scRNA-seq protocols.
Independent of technology choice, scRNA-seq experi-

mental design necessitates a cost trade-off between dee-
per sequencing of individual cells and sequencing more
cells overall. We have observed that as the number of
cells sequenced increases, the average gene detection
rate decreases, as does the average number of molecules
sequenced per cell (Additional file 1: Figure S1), due to
both choice of technology and cost trade-off. We rea-
soned that when the number of unique molecules drops
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too low, the signal-noise ratio of the data may be too
low to make gene quantification informative [7], and
therefore, downstream analyses should be adapted to
primarily consider only gene detection patterns.
In this paper, we make the key observation that on

scRNA-seq datasets exhibiting high technical noise, di-
mensionality reduction using only the gene detection
measurements is superior to the existing state-of-the-art
methods that use both detection and quantification mea-
surements [8, 9]. We show that our new detection-based
model, single-cell binary factor analysis (scBFA), leads to
better cell type identification and trajectory inference,
more accurate recovery of cell type-specific markers, and
is much faster to perform compared to several
quantification-based methods. Through simulation ex-
periments, we demonstrate that our gene detection
model is superior precisely when quantification noise ex-
ceeds detection noise, providing a principled explanation
for when and why discarding quantification estimates is
advantageous. Finally, we demonstrate the superiority of
our detection model in the analysis of single-cell chro-
matin accessibility data, suggesting detection models
may improve downstream analysis of other single-cell
genomic modalities in high-throughput datasets.

Results
scBFA achieves superior performance in cell type
identification across diverse benchmarks
We first hypothesized that the performance of scRNA-seq
analysis tools that model gene counts (quantification)
could be improved by instead modeling only the gene de-
tection patterns when analyzing datasets that have a high
degree of technical noise. Our intuition is that it is well
established that poorly expressed genes are hard to accur-
ately quantify using single-cell genomics technologies due
to technical noise [10, 11]. Extrapolating to an entire data-
set, we then reasoned that for datasets in which technical
noise leads to low gene detection and noisy quantification,
modeling differences in small gene counts is challenging
and prone to error, and therefore, focusing only on gene
detection would be more robust.
To test our hypothesis, we developed single-cell binary

factor analysis (scBFA), a method for dimensionality re-
duction that only uses gene detection patterns. We com-
pared scBFA against seven other approaches that model
gene counts and represent the spectrum of approaches to
identifying cell types within scRNA-seq datasets (see the
“Methods” section): scVI [12], SAVER [13], sctransform
[14], scrna2019 [15], PCA, ZINB-WaVE [8], and scImpute
[9]. scBFA is designed as a gene detection-based analog of
ZINB-WaVE, and so, comparison of scBFA versus ZINB-
WaVE is the most direct comparison of gene detection
versus quantification-based approaches. In this study, we
focus on the task of dimensionality reduction, as it is a

nearly ubiquitous first step both for data visualization and
analysis [16–18] and many analysis tools have been
developed to address it [8, 9, 12, 19, 20]. Furthermore, pre-
vious work has shown that cell type identification and di-
mensionality reduction are still possible in scRNA-seq
experimental designs favoring high cell counts, with low
coverage per cell [4, 21–23].
We evaluated the methods using 14 benchmark datasets

for which experimentally defined cell type labels were
available (Additional file 1: Table S1) by first learning low
dimensional embeddings, then using the embeddings to
predict cell type labels in a supervised setting. When using
highly variable genes (HVGs) as a gene selection criterion
during data preprocessing, we found scBFA was the best,
or tied for best, in 13 out of 14 benchmarks (Figs. 1 and 2,
Additional file 1: Figures S2-S3). This result was robust to
the selection of the hyperparameters of scBFA (Additional
file 1: Figure S4). Surprisingly, we found that the choice of
gene selection had a significant impact on our results.
Under an alternative gene selection procedure that biases
towards highly expressed genes (HEGs) and yields min-
imal overlap with HVG (Additional file 1: Table S2),
scBFA was a top performer in only 9 of 14 of the bench-
marks (Additional file 1: Figure S5).

Gene selection shapes cell type identification
performance by modulating detection rate and dispersion
We hypothesized the stark difference in performance be-
tween the HVG and HEG selection criteria was due to
the differences in the overall technical noise in the
resulting selected gene sets. For both the HVG and HEG
versions of each benchmark, we computed two indirect
measures of technical noise, the gene detection rate
(GDR) and gene-wise dispersion. Existing approaches to
directly estimating technical noise require spike-in stan-
dards [24, 25], and not all datasets we analyzed had in-
corporated spike-in standards in their protocol. GDR is
the average fraction of genes that are detected as
expressed in a given cell. Gene-wise dispersion is intui-
tively the excess variation in the gene expression ob-
served beyond what is expected based on a Poisson
model of sampling noise and is driven by both technical
noise and biological factors of interest.
When considering individual benchmarks in isolation,

HVG selection leads to a systematically lower GDR and
higher gene-wise dispersion compared to HEG selection
(Fig. 3). Furthermore, HEG selection consistently leads
to higher performance in cell type identification for all
methods tested (Fig. 3c), suggesting that HEG selection
may be more sensible for cell type identification. This
result is intuitive, as the HVG selection procedure iden-
tifies genes whose variance is in excess of that predicted
by sampling noise, and therefore is likely to be enriched
in poorly expressed genes that exhibit significant
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dropout noise. For scBFA, specifically, the three bench-
marks for which HVG outperformed HEG correspond to
the benchmarks for which HEG selection led to the high-
est GDR and HVG selection led to low GDR (Fig. 3c, d).
The poor performance of scBFA combined with HEG se-
lection can therefore be explained by the high GDR.
Across all benchmarks and gene selection criteria, we

found that scBFA outperforms count-based methods for
benchmarks with low GDR and high gene-wise disper-
sion (Figs. 1 and 3; Additional file 1: Figure S5, group I
benchmarks). This is likely because higher dispersion in-
creases the noise within the gene counts, forcing count-
based models and their low-dimensional embeddings to
explain more outliers and noise in the data; this is par-
ticularly true for count models that share variance pa-
rameters across genes [8, 26]. The gene detection
pattern is more robust to noise than counts because
moderately to highly expressed genes are likely to be
equally well detected even in the presence of technical
noise. Interestingly, low GDR of a dataset in particular is
associated with more sequenced cells regardless of the
experimental protocol used (Additional file 1: Figure S1)
and is likely a result of investigators trading off

sequencing many cells at the cost of sequencing fewer
reads per cell. These results together suggest that scBFA
is more appropriate for large-scale dataset analysis than
quantification-based methods.
Inversely, high GDR is more typical of smaller datasets

(Additional file 1: Figure S1) and yields poor perform-
ance of scBFA. This is because when the GDR reaches
close to 100%, every gene is detected in nearly every cell,
so there is a limited variation for scBFA to capture in its
embedding space. Consistent with these results, we
found that the performance of scBFA decreases after im-
putation (SAVER-scBFA, scImpute-scBFA) relative to
before imputation (scBFA) (Additional file 1: Figure S6),
in part because imputation increases GDR by imputing
false-positive zero expression. On average, SAVER in-
creased the GDR by 9.6% and scImpute increases GDR
by 232.6%.

Balance of detection and quantification noise determines
the relative performance of detection and count models
We next sought to identify precisely which types of
technical noise were responsible for the relative per-
formance of scBFA versus the gene count models.

Fig. 1 Single-cell binary factor analysis (scBFA) outperforms quantification models. Performance is measured via cross-validation of cell type classifiers
trained on scRNA-seq benchmark data in the respective embedding spaces of each method, as a function of the number of latent dimensions
specified. scBFA is a top performer in 13 out of 14 datasets. Datasets from left to right, top to bottom: Dendritic, Pancreatic, DC, mESCs, HSPCs, MGE,
Intestinal, MEM-T, H7-ESC, LSK, Myeloid, HSCs, PBMC, and LPS (see Additional file 1: Table S1 for a detailed description of benchmarks)
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Previous studies found that sensitivity and accuracy
(gene detection and quantification) can be affected
differently by sequencing depth and other features of
the protocols [7, 27]. We hypothesized that differ-
ences in detection and quantification noise might ex-
plain the performance difference between scBFA and
quantification-based methods. Because technical noise
is difficult to estimate in real datasets without the
spike-in standards, we instead generated thousands of
simulated scRNA-seq datasets that systematically vary
in the relative amount of noise in gene detection and
gene counts (quantification).

Our simulation framework extends the ZINB-WaVE
statistical model [8] to include the parameters that sep-
arately influence the noise added to either the gene de-
tection pattern ðσ2πÞ or the gene counts ( σ2μÞ in the

simulated datasets. We also tuned the global level of
gene dispersion that drives variation in gene counts
via the parameter r, which adds noise specifically to
the UMI counts in the dataset and is a key parameter
of many dimensionality reduction models [8, 12, 28].
Finally, we also tuned the global level of gene dropout
observed in the dataset via the parameter δ, to

Fig. 2 scBFA improves visualization of cell identity in the MEM-T benchmark of Patil et al. 2D t-SNE visualization of 10-dimensional embeddings
generated by the eight methods on the MEM-T benchmark. Cells are colored according to their corresponding cell types and states.
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simulate global differences in gene detection typically
observed between different protocols and technologies [6].
We first confirmed that our simulation framework gener-

ates datasets with similar characteristics to real datasets.
For each of the LSK, HSPC, and LPS benchmarks, we first
applied the HVG selection procedure and fit the ZINB-
WaVE model. Using the ZINB-WaVE-learned parameters

and after setting our additional framework parameters
ðσ2μ ¼ 0:5; σ2π ¼ 0:5; r ¼ 1; δ ¼ −0:5Þ , we then simu-
lated the exact same number of cells as was in the
original dataset. Upon performing dimensionality re-
duction and visualization of both simulated and mea-
sured cells simultaneously, we found cells clustered
by cell type regardless of whether they were from the

Fig. 3 Relative scBFA performance is positively correlated with dataset size and high technical noise. a Gene detection rate as a function of the
number of cells for the 14 benchmarks, when processed using either HVG or HEG selection. Group I benchmarks refers to those datasets in which
scBFA is a top performer, and group II benchmarks refers to datasets in which scBFA is a poor performer. Note that each of the 14 benchmarks
are represented twice (once under each of HEG and HVG selection). Additional file 1: Table S6 indicates the membership of each benchmark
within group I and group II. b Same as a, except mean-dispersion trends are estimated and visualized for each of the datasets from group I and
group II, under HVG and HEG selection criteria. c Difference in performance (MCC) of cell type classifiers trained on individual benchmarks and for
each method, either using HVG or HEG selection. Performance is assessed through cross-validation of cell type classifiers trained on scRNA-seq
data in the respective embedding spaces of each method. Performance is averaged across all number of latent dimensions tested. d The
corresponding gene detection rate under the two gene selection criteria. Note HEG yields systematically higher GDR compared to HVG.
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real or simulated dataset (Additional file 1: Figures S7-S9),
confirming our simulation framework generates realistic
datasets.
scBFA consistently outperforms the count-based

methods in classifying cell types precisely when the gene
detection noise is less than the gene count noise
ðσ2π < σ2μÞ (Fig. 4). This observation is robust to the choice

of gene dispersion parameter r (Additional file 1: Figures
S10-S11) and gene selection procedure (Fig. 4, Additional
file 1: Figures S12-S14). On real datasets, we found that
scBFA performance increases as the gene detection rate
decreases (Fig. 3a), suggesting that in the real datasets for
which GDR is low, the count noise may exceed the detec-
tion noise.

scBFA mitigates technical and biological noise in noisy
scRNA-seq data
We next tested each method’s ability to reduce the effect
of technical variation on the learned low-dimensional
embeddings by training them on an ERCC-based dataset
[29] with no variation due to biological factors. In this
dataset, ERCC synthetic spike-in RNAs were diluted to a

single concentration (1:10) and loaded into the 10×
platform in place of biological cells during the gener-
ation of the GEMs. This dataset therefore consists of a
single “cell type,” with only technical variation present
(since the spike-in RNAs were diluted to the same con-
centration). Additional file 1: Figure S15 illustrates that
both scBFA and Binary PCA yield a low-dimensional
embedding with minimal variation between “cells” com-
pared to the other methods, suggesting that gene detec-
tion models are systematically more robust to technical
noise compared to count models.
We also found that modeling gene detection patterns

helps to mitigate the effect of biological confounding
factors in the scRNA-seq data. For example, a common
data normalization step is to remove low-quality cells
for which many reads map to mitochondrial genes, as
these cells are suspected of undergoing apoptosis [30].
However, finding a clear threshold for discarding cells
based on mitochondrial RNA content is challenging
(Additional file 1: Figure S16). We found that low di-
mensional embeddings learned by count-based methods
are clearly influenced by mitochondrial RNA content,
but this is not true for scBFA (Additional file 1: Figures

Fig. 4 scBFA outperforms quantification models when the gene detection noise is less than gene quantification noise. Rows represent different
settings of (gene) detection noise (σ2π), and columns represent different settings of (gene) quantification noise (σ2μ). The diagonal represents simulations

where the detection noise is equal to the quantification noise (σ2μ ¼ σ2π), and the plots above the diagonal represent simulations where the detection

noise is less than the quantification noise. Each y-axis indicates the cross-validation performance (MCC) of cell type predictors trained on embeddings
learned from the simulated data, while each x-axis represents the gene detection rate that is manipulated by the parameter δ. Here, the ground truth
embedding matrix is obtained by fitting ZINB-WaVE to the LPS benchmark under HVG selection. The dispersion parameter r is set to be 1 in
these simulations.
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S17-S18), suggesting that scBFA analysis of data will
make the downstream analysis more robust to the inclu-
sion of lower-quality cells.

scBFA embedding space captures cell type-specific markers
We further hypothesized that scBFA performs well at
cell type classification in high-quantification noise data
because detection pattern embeddings are purely driven
by genes only detected in subsets of cells such as marker
genes, while this is less true for count models. Marker
genes should always be turned off in unrelated cell types
and always be expressed at some measurable level in the
relevant cells.
To test our hypothesis, we measured the extent to

which learned factor loadings capture established cell type
markers on the PBMC, HSCs, and Pancreatic benchmarks,
for which clear markers could be identified. For these 3
datasets, we identified 41, 43, and 73 markers, respectively,
from the literature (Additional file 1: Tables S3-S5). Gene
selection reduced the marker sets further to 30, 24, and 43
markers for HVG and 20, 28, and 47 for HEG, respect-
ively. Figure 5 demonstrates that for these 3 datasets, the
embeddings of scBFA are driven by cell type markers
more than the quantification-based methods, despite the
fact that the cell type markers are not used when learning
the embeddings. These results also hold when HEG selec-
tion is used instead of HVG (Additional file 1: Figure S19).
An important conceptual difference between scBFA

and quantification-based methods, such as ZINB-WaVE,
is that scBFA treats all zero-count measurements as true
observations in which a specific gene is truly not
expressed in a given cell. In contrast, ZINB-WaVE and
others try to statistically distinguish dropout events from
true zero-count measurements. As a result, the ZINB-
WaVE model has a gene detection-specific feature
matrix and gene count-specific feature matrix compo-
nent, and we compared the performance of each compo-
nent individually with respect to the cell type marker
identification. Figure 5 illustrates that scBFA factor load-
ing matrix outperforms both components of ZINB-
WaVE, suggesting the proportion of false-positive (un-
detected) zero-count measurements is relatively small
and hard to infer statistically.

Trajectory inference improves with detection modeling
One of the most tantalizing applications of scRNA-seq is
trajectory inference for identifying changes in the gene ex-
pression during continuous processes such as differenti-
ation [31]. There are on the order of at least 45 methods
for trajectory inference [32]. The first step to many trajec-
tory inference methods is dimensionality reduction, of
which PCA is a commonly used method [31]. Using a re-
cent benchmark of trajectory inference methods, we iden-
tified Slingshot, a top-performing method that uses

dimensionality reduction [33]. We evaluated Slingshot’s
performance on a set of 18 “gold standard” trajectory in-
ference benchmarks after we replaced its PCA step with
one of the dimensionality reduction methods we have
benchmarked [32]. We found that substituting scBFA in
place of PCA led to a systematically higher performance
compared to the other methods (ZINB-WaVE, PCA,
scImpute, SAVER, scrna2019, sctransform, scVI) (Fig. 6).
These results are robust to the performance metric (Fig. 6,
Additional file 1: Figure S20).

Detection pattern models are also superior for scATAC-seq
data analysis
Several of the features of scRNA-seq protocols thought to
drive technical noise are also shared among other single-
cell genomic technologies, such as small starting material
and amplification bias. We therefore reasoned that
detection-based approaches, such as scBFA, are applicable
to other types of single-cell genomic data. We measured
the ability of scBFA to cluster cells into cell types using
scATAC-seq datasets, which also typically produce highly
sparse datasets. scATAC-seq datasets are not typically
suitable for input into scRNA-seq analysis tools, because
the largest values observed in scATAC-seq data corres-
pond to the ploidy of the genome (e.g., two for humans).
However, such sparse, small count data means that trans-
formation into a detection pattern matrix suitable for in-
put into a method such as scBFA will not significantly
alter the input data, making scBFA potentially more
generalizable than other scRNA-seq analysis tools.
We performed dimensionality reduction and cell

type classification experiments on several scATAC-seq
datasets, analogous to our scRNA-seq analyses above.
We benchmarked scBFA against PCA, Binary PCA,
Scasat [34], Destin [35], scABC [36], chromVAR [37],
and SCRAT [38]. scBFA systematically outperformed
all other methods in our benchmark datasets (Fig. 7,
Additional file 1: Figures S21-S24). An important ad-
vantage of scBFA over the other scATAC-seq
methods is that only scBFA can systematically adjust
for the cell-level covariates such as QC measurements
(e.g., cell cycle stage) and batch effects. In contrast,
other methods, such as Scasat, are unable to remove
batch effect in all features since Scasat removes batch
effects through removing batch-specific loci, which
can be confounded with cell type-specific loci de-
pending on the experimental design. Methods such as
Binary PCA cannot directly regress out continuous
covariates.

Detection pattern models can be trained efficiently
The size of scRNA-seq datasets is regularly climbing to
new scales each year [2], as newer technologies increase
the throughput of cells. With current datasets
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occasionally exceeding one million cells, computational
efficiency of scRNA-seq analyses becomes challenging
as ideally these tools could be run on local machines.
We therefore benchmarked methods in terms of their
speed of computation. In our comparisons, we also in-
cluded a fast approximation of scBFA, which we term
Binary PCA. Binary PCA is easy to implement in one
line of R code (we simply transform the gene counts
into the gene detection patterns as a preprocessing step
before use of PCA) and provides immediate benefits
over standard PCA and other methods with respect to
cell type identification (Additional file 1: Figures S25-

S26). We found that Binary PCA is tied for the fastest of
all methods, while scBFA is still faster than several com-
peting count-based methods (Additional file 1: Figure
S27). More specifically, scBFA is a median of ten times
faster than ZINB-WaVE. The difference in the execution
time between scBFA and ZINB-WaVE is due primarily to
the additional burden of modeling gene quantification be-
cause the scBFA model structure and parameter learning
algorithm were designed to match the gene detection pat-
tern component of ZINB-WaVE as closely as possible.
This suggests that gene detection models may help ana-
lysis tools scale to larger datasets in the future.

Fig. 5 scBFA is better informed by cell type markers than quantification models. Each latent factor learned from each method was evaluated
based on how much influence established cell type markers exerted on its embeddings, as measured by the area under the curve (AUROC)
metric. Each boxplot represents the AUROC of all latent factors for a given method and benchmark. ZINB-WaVE is represented twice, once for the
latent dimensions inferred by their gene detection pattern (ZINB-WaVEdropout) and once for the latent dimensions inferred from the gene counts
(ZINB-WaVEexpr). a PBMC benchmark. b HSCs benchmark. c Pancreatic benchmark.
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Discussion
Our primary result is that when the count (quantifi-
cation) noise is relatively high in a dataset as is typ-
ical in larger datasets, the effects of this noise on the
downstream analysis can be mitigated by modeling
detection patterns instead of counts. The improve-
ment in the performance of scBFA over ZINB-WaVE
in this regime (Figs. 1 and 3) is particularly inform-
ative because the ZINB-WaVE model has two compo-
nents: one that models gene detection and the other
that models gene counts (quantification). The model
structure and parameter learning algorithm of scBFA
are designed to match the gene detection component

of ZINB-WaVE as closely as possible, making the dif-
ference in their performance primarily due to whether
gene quantification (ZINB-WaVE) or gene detection
(scBFA) is modeled.
We show that as the number of cells sequenced in-

creases within a dataset, the technical noise in the data
(as measured indirectly by the gene detection rate and
gene-wise dispersion) and the relative performance of
scBFA generally increase as well. Because many scRNA-
seq applications benefit from higher numbers of se-
quenced cells, there is a steep upward trend of scRNA-
seq dataset sizes, with some recent datasets containing
nearly a million cells [2]. Our results therefore suggest

Fig. 6 scBFA leads to the most improvement in trajectory inference performance of Slingshot. a–c Slingshot was modified by replacing the PCA
step of the original Slingshot method with each of the dimensionality reduction methods tested. The y-axis shows the distribution of the overall
ranks (higher rank is better) of the modified versions of Slingshot. Methods were evaluated across 18 “gold standard” benchmarks and using 3
different performance metrics, F1milestone, NMSElm, and F1branch, that measure how well the inferred trajectory matches the ground truth trajectory.
F1milestone and F1branch are based on the quality of clustering of cells in the trajectory, while NMSElm assesses how well the position of a cell in the
inferred trajectory predicts the position of the cell in the ground truth trajectory. Across the three evaluation metrics and 18 benchmarks, scBFA yields
better overall performance (rank). d A 2D scatter plot of scBFA’s first two components, visualizing the inferred trajectory corresponding to the embryo
development time in the H-embryos dataset.
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that it is increasingly important that next-generation
scRNA-seq analysis tools exploit the advantages of gene
detection-only modeling in order to mitigate the effects
of technical noise within the data. Also, given the influ-
ence of technology and protocol choice on technical
noise in scRNA-seq data [6], our results imply that fu-
ture scRNA-seq tools could be designed to take advan-
tage of the specific noise structure implied by different
scRNA-seq protocols, as opposed to being relatively
protocol-agnostic as they are today.
While it is challenging to measure technical noise in

real datasets, we show that the gene detection rate and

gene-wise dispersion are easily calculated and serve as
good proxies for measuring technical noise. In our re-
sults, we found that the performance of scBFA exceeds
that of gene count analysis tools in cell type classifica-
tion when the gene detection rate falls below 90% and
dispersion estimates are high, therefore providing the
community with a general guideline for when detection-
based tools, such as scBFA, should be used instead of
quantification-based tools. Our R package also has imple-
mented a function, diagnose, to assist users in determining
whether scBFA is appropriate for their data. Our results
are also consistent with previous work that shows tasks,

Fig. 7 scBFA more accurately recovers cell type identity in scATAC-seq datasets. Clustering accuracy (NMI) of each scATAC-seq method trained
on a given benchmark, as a function of the number of latent dimensions specified. a GSE96769. b GSE74310. c GSE107816.
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such as dimensionality reduction, cell type identification,
and abundance estimation, can be performed successfully
when individual cells are sequenced to shallow depth [4,
21–23] and further provide a complementary analysis ap-
proach suitable for these datasets with low per-cell se-
quencing depth.
There is a plethora of data normalization methods that

have been, and continue to be, designed to decrease tech-
nical noise within and across cells, in order to better per-
form both gene detection and quantification, and to make
these quantities comparable across cells (see [5, 39, 40] for
an overview). The challenge we address here is not miti-
gated by data normalization methods; however, as we
argue that when the number of UMIs sequenced per cell
decreases drastically, gene quantification information spe-
cifically is not present (or useable) in the data, which is a
problem that data normalization cannot mitigate. Data
normalization works complementarily to gene detection
pattern analysis however, as illustrated by our use of data
normalization before gene detection modeling in this work.
Our results also imply that models that statistically dis-

tinguish dropout events from genes truly not expressed in
a cell may be less fruitful for large datasets. Many gene
count-based methods [9, 24, 41] model zero counts as a
mixture of genes truly turned off (biological signal) and
genes that are truly expressed but not detected due to
technical artifacts from the experimental protocol (tech-
nical noise) [41]. On the contrary, gene detection pattern
methods, such as scBFA, treat all zeroes as a biological sig-
nal, a key feature motivated by the observation that zero
measurements driven by technical noise tend to occur for
genes that are poorly expressed [10, 11]. The superior per-
formance of scBFA when the gene detection rate is low
suggests that for these datasets, there is not enough infor-
mation in the gene counts to reliably detect technical
dropout events, and therefore, traditional mixture model-
ing can be unhelpful for high-throughput datasets where
gene detection rates are low overall.
The success of modeling gene detection patterns in

scRNA-seq is not tied to a specific model structure.
The performance improvement of scBFA over ZINB-
WaVE, and Binary PCA over PCA, demonstrates our
results hold across multiple model structures and loss
functions. In both cases, not only do we observe per-
formance gains for large scRNA-seq datasets, but
there is also a substantial speed improvement because
detection modeling avoids complex parametric model-
ing of gene counts, making detection models scalable
to larger datasets. Within the class of gene detection-
based models, Binary PCA provides a moderately ac-
curate but much faster and simpler implementation
scheme that can be achieved in one line of code,
making our results readily achievable by the current
analysis pipelines.

A surprising finding was that HEG gene selection led
to a systematically better cell type identification for every
tested method in almost all datasets, compared to HVG
selection (Fig. 3c). HVG selection anecdotally is the
standard criterion upon which variable genes are typic-
ally selected during preprocessing [42], suggesting at
least for cell type identification, HEG selection may lead
to improved performance regardless of the method used.
While single-cell genomic data from different modal-

ities, such as scATAC-seq, have similar data structure as
scRNA-seq data, the analysis tools and pipelines devel-
oped to date for those two technologies are largely mu-
tually exclusive. Here, we show that scBFA generalizes
to other single-cell genomic modalities and outperforms
the existing methods for cell type identification for
scATAC-seq datasets as well, even those that take ad-
vantage of auxiliary data such as transcription factor mo-
tifs and distance to transcription start sites [35]. We
expect our results to generalize to other single-cell gen-
omic modalities such as single-cell methylation or his-
tone modification data.

Methods
Single-cell binary factor analysis (scBFA) model
scBFA is available as an R package on Bioconductor at
https://bioconductor.org/packages/devel/bioc/html/scBFA
.html, as well as on GitHub (https://github.com/quon-tita
tive-biology/scBFA). The main function to run scBFA is
scBFA().
In our notation below, matrices are represented by

upper case bold letters, vectors by lower case bold let-
ters, and numeric constants as upper case non-bold let-
ters. Square brackets also indicate a matrix, though
represented as a series of column vectors. A matrix sub-
script with round brackets indicates the index of the cor-
responding column vector.
The schematic of our single-cell binary factor analysis

(scBFA) model is shown in Additional file 1: Figure S28.
The input data to scBFA consists of two matrices, O and
X. O is a matrix of counts, consisting of G features (genes
in the case of scRNA-seq data, or loci in the case of
scATAC-seq data) measured in each of N samples (cells).
From the input data O, we compute a matrix B, where Bij
represents the detection pattern observed for cell i (i = 1,
…,N) and feature j (j = 1,…,G). For scRNA-seq inputs,
Bij = 1 when Oij ≥ 1, otherwise Bij = 0. Therefore, Bij = 1 in-
dicates that at least one read (or UMI) maps to gene j in
cell i and therefore suggests gene expression. Similarly, for
scATAC-seq input data, Bij = 1 when Oij ≥ 1, in other
words, when at least one read maps to locus j in cell i (and
therefore suggests locus accessibility), otherwise Bij = 0.
scBFA is adapted from a generalized linear model frame-
work and is therefore capable of adjusting for batch effects
and other nuisance cell-level covariates. Input X = [x1, x2,
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…, xN]
T is a N × C cell-level covariate matrix that enables

correction for C observed nuisance factors such as batch
effects or other cell-specific quality control measurements.
If there are no such cell-level covariates that need to be ad-
justed for, X is the null matrix by default.
The intuition behind scBFA is that it performs

dimensionality reduction to explain the high-
dimensional detection pattern matrix B by estimating
two lower-dimensional matrices: a N × K embedding
matrix Z = [ z1, z2, … , zN]

T,and a K × G loading matrix
A = [a1, a2, … , aG]. Here, K is the number of latent di-
mensions used to approximate Bij, where where K ≪ G.
ui and vi and represent the ith cell-level intercept and
jth feature-specific intercept, respectively. u is therefore
a vector of length N, and v is a vector of length G. For
scRNA-seq, for example, we expect u and v will impli-
citly model the variation of gene expression caused by li-
brary size. µij is the mean of the Bernoulli distribution
governing whether feature j is detected in cell i or not.
Formally, scBFA is defined by the following model:

logitðμi jÞ ¼ xTi β j þ zTi a j þ ui þ v j

P B;A;Z; β;X;u; vð Þ ¼
Y
i; j

Bernoulli Bijjμij;A;Z; β;X;u; v
� �

We train the scBFA model by optimizing the following
penalized likelihood function:

f B;A;Z; β;X;u; vð Þ ¼
X

i; j
ln P Bij;A;Z; β;X;u; v

� �h i
−ϵ1 Ak k22−ϵ2 Zk k22−ϵ3 βk k22

Here, ϵ1, ϵ2, and ϵ3 are the tunable parameters that
control the regularization of the model parameters,
where by default ϵ1 ¼ ϵ0

G ; ϵ2 ¼ ϵ0
N , ϵ3 ¼ ϵ0

G , and ϵ0 = max {
N,G}. The optimization is carried out using the L-
BFGS-B optimization routine available in the R optim()
function. After completing the optimization, we orthog-
onalize Z and A using the orthogonalizeTraceNorm()
function available in the ZINB-WaVE [8] package.

Binary PCA model and calculation of the gene detection
pattern matrix
Binary PCA describes our fast approximation to
scBFA by simply running PCA, with the exception
of converting the input count matrix into a detec-
tion matrix by converting non-zero values to one.
We implemented Binary PCA through the addition
of a single line of R code. Suppose that countMatrix
is the name of the matrix in R that stores, for ex-
ample, the UMI counts for each gene in each cell.
To run Binary PCA, we first convert the countMa-
trix into the gene detection pattern matrix before

running PCA via the R command:

countMatrix[which(countMatrix>0)] <- 1

We then call PCA using the following command in R:

PCA_results <- prcomp(countMatrix, center=TRUE,
scale.=FALSE);

Note that typically, scale is set to TRUE when calling
PCA. For Binary PCA, we set it to FALSE because the
variance in gene detection is potentially associated with
cell types (e.g., genes with higher detection variance are
more likely to be marker genes, and therefore should
contribute more to the embedding).

Execution of scRNA-seq analysis methods
We compared scBFA against scVI [12], SAVER [13],
sctransform [14], scrna2019 [15], PCA, ZINB-WaVE [8],
and scImpute [9]. These seven methods were selected to
represent diverse classes of approaches to scRNA-seq data
analysis, including dimensionality reduction methods
(PCA, ZINB-WaVE, scVI), preprocessing approaches that
can be applied before dimensionality reduction (sctrans-
form, scrna2019), and imputation methods that can be ap-
plied before dimensionality reduction (SAVER, scImpute).
Of the dimensionality reduction methods, PCA was
chosen because of its implementation in popular packages
such as Seurat [42], and scVI [12] is a leading deep
learning-based dimensionality reduction method. ZINB-
WaVE was chosen specifically because it is a recently de-
veloped method, and scBFA is designed as a gene
detection-based analog of ZINB-WaVE; therefore, com-
paring scBFA with ZINB-WaVE is the fairest comparison
of gene detection versus quantification-based approaches.
We ran most of the scRNA-seq analysis methods with

their default parameter settings, with the exception of
scVI and scrna2019.
scVI requires specification of a learning rate and the

number of iterations before convergence. During train-
ing, we found that scVI performance was heavily influ-
enced by these two parameters. We therefore performed
an unbiased grid search by setting the number of itera-
tions to be either 2000 or 4000 and setting the learning
rate to be either 1e−2, 1e−3, or 1e−4. We then trained
the model with all 6 possible combinations of learning
rate and number of iterations, and selected the combin-
ation of parameters that gave the lowest loss on the
hold-out set. The loss value is provided by scVI during
training. During training, the size of the training set is
fixed to be 75% of the entire dataset, and the remaining
parameters are fixed at their default values. We repeated
the above parameter search for the same number of fac-
tors as the other methods for all scRNA-seq datasets.
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For the simulated datasets, given the large number of
scenarios tested, we fixed the learning rate to be 0.001
and number of iterations to be 2000.
scrna2019 is a method developed to perform feature

selection and GLM-based factor analysis on scRNA-seq
[15]. The scrna2019 R package (obtained on May 6,
2019, from https://github.com/willtownes/scrna2019) of-
fers both a GLM factor analysis model and a corre-
sponding deviance score approximation. We used the
deviance score approximation instead of the GLM
framework for our experiments because several bench-
marks required batch effect correction, which should be
addressed using the deviance score approximation as per
scrna2019’s authors’ recommendations [15]. Also, at the
time of the writing of this paper, the GLM implementa-
tion produced errors for three of our datasets that pre-
vented us from completing our experiments.

Execution of scATAC-seq analysis methods
We compared scBFA against PCA, Binary PCA, Scasat
[34], Destin [35], scABC [36], chromVAR [37], and SCRAT
[38]. Scasat and Destin are scATAC-seq analysis tools
primarily designed to identify cell types and differential ac-
cessibility analysis. Both methods treat dimensionality re-
duction as a prior step before further clustering distinct
cell types. Scasat’s embedding space is learned by perform-
ing multidimensional scaling (MDS) on a cell-cell Jaccard
similarity matrix computed from a binarized chromatin ac-
cessibility matrix. Destin developed a weighted principal
component analysis approach using distance to transcrip-
tion start sites and reference regulomic data. scABC is an
unsupervised clustering tool of single-cell epigenetic data
and performs multi-stage clustering based on the input
chromatin accessibility matrix directly. chromVAR aggre-
gates motif position weight matrices (PWM) and chroma-
tin accessibility to uncover cell populations and identify
motifs associated with cell type-specific variation. SCRAT
summarizes several distinct regulatory genomic data (in-
cluding prior established gene sets and transcription factor
binding motif sites, among others) to identify distinct cell
populations from single-cell genomic data.
For SCRAT, we used the regulatory activity feature list

provided by SCRATsummary() as the default input fea-
tures. In addition, we also input the BED files correspond-
ing to the scATAC-seq data as a custom feature as
suggested by the SCRAT authors [38], which we found to
improve the performance.

Quantifying the effect of imputation on scBFA
We compared the performance of scBFA before and after
imputation on our 14 benchmark datasets under HVG se-
lection. We tested two state-of-the-art imputation
methods, SAVER [13] and scImpute [9]. SAVER estimates

library size-normalized posterior means of gene expres-

sion levels ( λ̂ij ), which are inappropriate for input into
scBFA because they are not sparse. We therefore sampled
counts from SAVER’s generative model as follows:

Oij∼Poisson siλ̂ij
� �

where λ̂ij is SAVER’s imputed expression level and si is the
library size for cell i divided by the mean library size
across cells [13]. We generated five separate count matri-

ces Oij based on the SAVER estimates λ̂ij . For scImpute,
we used its imputed gene counts matrix directly as input
for scBFA.

Selection of representative datasets to measure gene
detection rates
We obtained a total of 36 scRNA-seq datasets from which
we calculated gene detection rates as a function of the num-
ber of cells in each dataset (Additional file 1: Figure S1). We
obtained these datasets from two sources, the conquer
database [43] and the Gene Expression Omnibus (GEO)
[44]. For GEO, we used the search term “((‘single cell rna-
seq’ OR ‘single cell transcriptomic’ OR ‘10X’ OR ‘single
cell transcriptome’) AND Expression profiling by high
throughput sequencing[DataSet Type]) AND (Homo
sapiens[Organism] OR Mus musculus[Organism]),” sorted
all datasets by size, then selected a similar number of
datasets from both the top and bottom of the list
(Additional file 1: Table S7).

Computing mean and dispersion curves
We use the DESeq2 [28] package to obtain gene-specific
dispersion estimates for each dataset, where dispersion is
measured across all cells in a dataset. Within the
DESeq2 pipeline, gene-wise dispersions are first esti-
mated, a trend line is fit to the gene-wise dispersion esti-
mates, and finally, shrinkage is applied to the gene-wise
dispersion estimates (MAP estimates). In Fig. 3b, we ex-
tracted the fitted gene-wise dispersion estimates from
the trend line (second step), and we fit these dispersion
estimates by local linear regression (LOESS) using the
gene-wise mean of transcripts per million (TPM) across
all cells as the explanatory variable. To address the
border effect of LOESS, we removed the top and bottom
2.5% of genes as ranked by TPM. Note that using the
MAP dispersion estimates (final DESeq2 step) or the fit-
ted dispersion estimates from the trended fit (second
step) does not materially change our conclusion. The ex-
ception is for the dataset PBMC where there are 455
genes with its MAP dispersion estimates staying at their
initialized value of 1e−8 during optimization, while their
fitted dispersion estimates are substantially different. We
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therefore chose the fitted dispersion estimates to gener-
ate Fig. 3b.

Benchmarking dimensionality reduction methods for
scRNA-seq
We evaluated each dimensionality reduction method by
how well their low dimensional embeddings discriminate
experimentally defined cell types. For each dataset and
method tested, we first performed dimensionality reduc-
tion on the entire dataset to obtain an embedding matrix
representing each cell in K dimensions (the matrix Z de-
scribed in the scBFA methods section). We then per-
formed fivefold cross-validation in which we trained a
non-regularized multi-level logistic classifier on the
training embeddings from each method using the a
priori known cell type labels, then used the model to
predict cell type labels for the test embeddings. For every
prediction, using the known cell type labels, we com-
puted a confusion matrix and the corresponding Mat-
thews’ correlation coefficient (MCC) as a measure of
classification accuracy. MCC was calculated using the R
package mltools. We repeated the fivefold cross-
validation a total of 15 times and reported the mean
classification accuracy as the final accuracy.

MCC ¼ TP � TN−FP � FN
ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FP
p Þ � ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FN
p Þ � ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TN þ FP
p Þ � ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TN þ FN
p Þ

In our analysis of the ERCC dataset, we used a differ-
ent evaluation metric because each “cell” represents
technical replicates of the spiked-in RNA diluted at a
constant ratio (10:1). Under the assumption that the
only variation between “cells” is due to technical factors,
we therefore used averaged within-group sum of squares
(AWSS) to measure how the low-dimensional embed-
ding learned by each method captured such homogen-
eity. Given an N by K embedding matrix Z, AWSS was
calculated as follows:

W ¼ Z−Z
� �

AWSS ¼ trace WTW
� �
N−1

Here, Z is an N by K matrix for which every row is the
column mean of Z.

Benchmarking cell type identification methods for
scATAC-seq
We benchmarked scBFA against existing scATAC-seq
analysis tools by evaluating their ability to correctly clus-
ter cell types. We used a different evaluation scheme
from that used for the scRNA-seq experiments because
one of the existing methods (scABC) does not produce
low-dimensional embeddings and instead outputs cluster
labels. The methods Scasat and Destin both provide

cluster labels directly from their analysis pipeline. For
scBFA, PCA, Binary PCA, chromVAR, and SCRAT, we
clustered cells based on the learned embedding matrices
using R’s built-in hierarchical clustering function hclust()
with Wald’s distance. We compared the accuracy of the
clustering results from each method using the metrics
normalized mutual information (NMI) and Adjusted
Rand Index (ARI), computed using the R package
aricode.

Simulation of scRNA-seq data
A variation of the ZINB-WaVE model was used to
simulate scRNA-seq datasets and is defined as follows
(Additional file 1: Figure S29):

zμ ið Þ∼N ẑi; σ
2
μIK

� �
zπ ið Þ∼N ẑi; σ2πIK

� �
logit πij

� � ¼ zTπ ið Þâπ jð Þ þ ûπ ið Þ þ v̂π jð Þ−δ
� �

log μij
� �

¼ zTμ ið Þâμ jð Þ þ μ̂μ ið Þ þ v̂μ jð Þ
� �

Πij ∼ Bernoulli(πij)

Oij

¼ 0 if Πij ¼ 1

∼NB μij; r
� �

if Πij ¼ 0

(

To keep the consistency of the notation, the parameters

we used above fẐ; Âμ; Âπ; ûμ; ûπ; v̂μ; v̂πg respectively cor-

respond to the parameters fŴ ; α̂μ; α̂π; γ̂π; γ̂μ; β̂μ; β̂πg
used in the original ZINB-WaVE paper. In the first step of
our simulations, all parameters with a hat accent are set a
priori by fitting the ZINB-WaVE model using its R pack-
age [8] on a single scRNA-seq dataset in order to use real-
istic parameters for our simulation. The remaining
parameters fδ; σ2μ; σ2π; rg are then systematically varied in

our simulations to determine their effect on downstream
dimensionality reduction methods. Oij denotes the gene
counts for cell i and feature j. As is described in the ori-

ginal ZINB-WaVE paper, Ẑ ¼ ½ẑ1; ẑ2;…; ẑN �T is a N ×K

embedding matrix, while Âμ ¼ ½âμð1Þ; âμð2Þ;…; âμðGÞ� and

Âπ ¼ ½âπð1Þ; âπð2Þ;…; âπðGÞ� are the corresponding K ×G
regression coefficient matrices for the negative binomial
and Bernoulli distributions governing the gene count and
detection components, respectively. The output of the
Bernoulli distribution is the latent variable Πij, which de-
cides whether a gene is detected (in which case the ob-
served value Oij is sampled from a negative binomial
distribution), or not detected. ûμ and ûπ are N × 1 cell-
specific intercepts for the count matrix and detection
matrix, respectively. Similarly, v̂μ and v̂π are G × 1 gene-
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specific intercepts for the count matrix and detection
matrix, respectively. The number of latent dimensions
K used to generate the gene expression values was
fixed at 5, and we used a total of 2000 highly variable
genes as in the original dataset. The LPS dataset does
not provide any cell-level covariates, so in these simu-
lations, there are no cell- or gene-wise covariate
matrices. For quality control purposes, we filtered out
genes that are expressed in fewer than 1% of the cells
and then filtered out cells in which less than 1% of
genes are expressed.
The distinction between our simulation framework

and ZINB-WaVE is that ZINB-WaVE maintains the

same cell embedding space Ẑ across both the gene
detection and count spaces. In contrast, our frame-
work relaxes this constraint by introducing individual

embeddings Zπ and Zμ that are close to Ẑ . Formally,
Zπ and Zμ are N × K embedding matrices for the gene
detection and count spaces, respectively. Each row i
of Zπ and Zπ are sampled from respective K-multi-
variate Gaussian distributions with the same mean de-
fined by ẑi and spherical variance parameters σ2

π and
σ2μ, respectively.

In our simulations, we varied the simulation parame-
ters fδ; σ2

μ; σ
2
π; rg as follows. To influence the total num-

ber of gene counts detected (total detection rate), we set
δ ∈ {−2, −0.5, 1, 2.5, 4}. To influence the variance in the
gene detection and count embedding spaces, we set
σ2π; σ

2
μ∈f0:1; 0:5; 1; 2; 3g . Finally, we varied the common

gene dispersion parameter r ∈ {0.5,1, 5}. In total, the num-
ber of unique parameter settings we used to simulate
scRNA-seq data is 5 × 5 × 5 × 3 = 375. For each of those
scenarios, we simulated 3 replicates, resulted in 375 × 3 =
1125 datasets.

Quality control of scRNA-seq data
For each scRNA-seq dataset tested, we performed a
standardized quality control process. We first re-
moved cells for which mitochondrial genes accounted
for over 50% of the total observed counts. Then, we
filtered out genes that are expressed in fewer than 1%
of cells and removed cells whose library size (total
read or UMI count) was less than one-eighth quantile
of all cell library sizes. One exception is the MEM-T
cell dataset, where we removed an extra 361 cells
from the batch labeled “subject16” to remove batches
that were confounded with cell types.

Preprocessing of scATAC-seq data
We followed the scATAC-seq pipeline for processing
and aligning reads used by the Destin method [35],
obtained from GitHub at https://github.com/urrutiag/
destin on April 22, 2019. This preprocessing pipeline

yielded 2779, 576, and 960 BAM files for GSE96769
[45], GSE74310 [46], and GSE107816 [47], respect-
ively. These BAM files form the initial input of Des-
tin, scABC, and SCRAT. The input chromatin
accessibility matrix for chromVAR and Scasat was
then obtained from Destin’s preprocessing pipeline
directly.
For GSE96769, we only kept cells and genomic loci

that are used in the original paper’s analysis. The in-
dices for genome loci and cells that passed quality
control are supplied in the supplementary files of the
original paper. Beyond that, we selected a subset of
frozen cells from five patients, excluding patient
BM0106, and a subset of pDC cells from patient
BM1137 to keep as many samples as possible while
removing the part of the batches confounded with
cell types. This enabled us to construct a design
matrix to correct for patient-specific effects. We fur-
thermore excluded cells that are labeled as unknown
by the original author.
For each scATAC-seq dataset tested, we only kept

genomic loci that are accessible in at least 1% of cells
and then removed cells with a total number of ac-
cessible sites that deviates more than 3 standard er-
rors to the mean (in either direction) across all cells.
The number of retained cells used as input in our
downstream analysis was 1358 for GSE96769, 572 for
GSE74310, and 929 for GSE108716. We found that
SCRAT and chromVAR’s preprocessing pipeline gen-
erated NA values, and so for these tools, we filtered
out additional cells. For SCRAT, this yielded 1375
cells for GSE96769, 534 cells for GSE74310, and 815
cells for GSE108716. For chromVAR, this yielded
1358 cells for GSE96769, 529 cells for GSE74310, and
811 cells for GSE108716.

Defining cell type labels in benchmark datasets
Most benchmark datasets used in our analyses were se-
lected because the cell types were already defined in the
original study by either known experimental condition or
via cell surface markers. However, for the PBMC dataset,
Stoeckius et al. [48] collected single-cell antibody-derived
tag (ADT) data as well as scRNA-seq using CITE-seq [48].
ADTs can be viewed as a digital readout of cell surface
protein abundance. We defined the cell types within this
dataset by performing Louvain clustering on the Jaccard
similarity matrix constructed based on the normalized
ADT levels, similar to Stoeckius et al. [48]. Louvain clus-
tering was performed using the “cluster_louvain” function
implemented in the igraph R package. Clustering identi-
fied 10 cell types automatically. Note that the quality con-
trol standard for this dataset is different compared to the
other scRNA-seq datasets used in our analysis, as cells
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were required to pass both scRNA-seq-specific filters
(minimum of 800 reads) and ADT-specific filters (mini-
mum of 50 ADT counts).

Normalization of scRNA-seq data
For each method, we also normalized cells to control for
differences in library size. For PCA, we normalize the

counts by setting ~Oij ¼ logðOij

ci
þ 1Þ , where ~Oij is the

normalized gene count for cell i and gene j, Oij is the
original gene count for cell i and gene j, and ci ¼

P
jOij

is library size for cell i. ZINB-WaVE directly accounts
for library size via their cell-specific intercept. For scIm-
pute, we used the total number of imputed counts per
cell as their corresponding library size and normalized in
the same way as PCA. For scBFA, we estimated the
feature-specific intercepts and cell-specific intercepts to
implicitly model the effect of library size. SAVER uses
the library size divided by the median library size across
all cells to adjust for cell size. sctransform uses the log
of the library size in its model. scrna2019 outputs a
transformed deviance score matrix that does not depend
on library size as input.

Normalization of scATAC-seq data

For PCA, we performed a log transformation ~Oij ¼ logð
Oij þ 1Þ to adjust the counts within scATAC-seq, where
Oij is the original read count for cell i and locus j. For
scBFA, Scasat, Destin, scABC, Binary PCA, chromVAR,
and SCRAT, no extra normalization was applied.

Gene selection in scRNA-seq data
Highly variable genes (HVG) selection was performed to
identify the most overdispersed genes, that is, genes that
exhibit more variance than expected based on their mean.
The HVG selection was performed using the FindVaria-
bleFeatures command implemented in Seurat 3.0. By de-
fault, Seurat selected the top 2000 genes. Highly expressed
gene (HEG) selection was performed to identify the genes
that exhibit the highest variance across cells, regardless of
their mean, and is therefore expected to capture genes
with higher mean expression compared to HVGs. To
identify HEGs, we calculated the gene-specific variance in
the gene count space and select the top 2000 genes to
make the set size comparable to HVGs.
The gene detection rate (the average fraction of cells in

which a gene is detected as expressed) and gene-wise dis-
persion of each dataset calculated in Fig. 3b is based on
these 2000 most variant genes under both the HVG and
HEG selection criteria. For the timing experiment, we only
selected the top 1000 genes under the HVG criterion for
computational speed.

Batch effect correction
For both scRNA-seq and scATAC-seq datasets, we per-
formed two types of batch effect correction, depending on
how the cell types are distributed across the batches in the
dataset. For datasets where all cell types are represented in
all batches (e.g., replicates, patients), such as the HSC
dataset, we used those cell-level covariates to define the
N ×C design matrix X (see the scBFA model details
above). For ZINB-WaVE, scBFA, and scVI, we regressed
X out within the model structure. Since PCA does not
offer a framework to regress out nuisance factors, we first
regressed X directly from the normalized counts ~Oij using
a linear model. We then applied PCA on the residual
matrix and obtained the corresponding embeddings and
factor loading matrix. For Binary PCA, scImpute, SAVER,
sctransform, and scrna2019, we also regressed out X from
the binary entries and imputed values separately, then
used the residual matrix in the same way as for PCA.
For other datasets (MEM-T, Pancreatic, MGE in scRNA-

seq, and GSE96769 and GSE74310 in scATAC-seq), some
batches were missing a subset of cell types, resulting in a
design matrix X that cannot be directly used to estimate all
batch effects. In this scenario, our strategy for modifying
the dataset to address batch effects is as follows. Note that
we use the same parametrization used to define the
scBFA model earlier, except that we define a new ob-
servation matrix M as a N ×G matrix, where observa-
tions can either correspond to measured expressed
levels O, inferred binary detection pattern B, or im-
puted read counts. Except for minor differences in
parameterization, the GLM-based dimensionality re-
duction methods scBFA and ZINB-WaVE can be
summarized in the following framework, where g is
the link function, P is a probability measure, and μ is
the expectation over the probability measure. In the
case of ZINB-WaVE, P is a zero-inflated negative bi-
nomial distribution. In the case of scBFA, P is a Ber-
noulli distribution.

g μij
� �

¼ xTi β j þ zTi a j þ ui þ v j
� �

Mij∼P μij
� �

We first identify the largest subset of cell types that
are represented in all batches within a given dataset. De-
fine Msub as the submatrix of N′ observations (N′ <
N) corresponding to this subset of cell types and simi-
larly define the submatrices Xsub, Zsub, Asub and usub,
where i′ = 1, …, N′. We ran each dimensionality reduc-

tion method once to obtain an estimate of β̂ by optimiz-
ing the likelihood of the following model:
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Msub i
0
; jð Þ∼P g−1 xT

sub i
0ð Þβ j þ zT

sub i
0ð Þaj þ usub i

0ð Þ þ v j

� �� �

β̂ learns the variance induced by different batches only.

Then, we use β̂ as a plug-in estimate of β, and per-
formed each dimensionality method on the full dataset
to obtain estimates of all other parameters. Note since
both ZINB-WaVE and scBFA regularize their coefficient
matrix β, Xsub and X are both standardized. For PCA,
scImpute, SAVER, sctransform, scrna2019, SCRAT, and

chromVAR, we used a similar strategy to obtain β̂ by
using linear regression to regress out Xsub from the ob-
servation matrix corresponding to the largest subset of
cell types represented in all batches. Then, we calculated

the residuals Rij =Mij −XβT on the full dataset with β ¼ β̂
fixed and performed PCA on the residual matrix R. For
scVI, we were unable to modify the model framework to
adjust for batch effects when they were confounded with
cell types, as was the case in MEM-T, Pancreatic, and
MGE. Therefore, we measured the scVI performance when
we did not correct for batch effect, as well as when we per-
formed naïve batch effect correction ignoring the con-
founding, and then reported the best performance for
scVI.
Scasat handles batch effects through the removal of

batch-specific loci. However, for datasets GSE96769 and
GSE74310, the batch effect is confounded with cell types.
Therefore, we ran Scasat without batch effect correction
because batch-specific loci would be indistinguishable
from cell type-specific loci. Destin and scABC cannot ad-
just batch effect on their own, and so we ran them without
batch effect correction on these two datasets.

Identification of marker genes
We evaluated the extent to which the inferred dimen-
sions for each method recover known marker genes (Fig.
5). For each method, we first obtained the K ×G factor
loading matrix indicating which genes are contributing
to each of the K factors. Then, for every loading matrix
and given number of factors, we ranked the absolute
value of each gene in each factor and calculated the area
under the receiver-operator curve (AUROC) to measure
the extent to which the known marker genes contribute
more to a factor than expected by chance.
Note that ZINB-WaVE has two loading matrices corre-

sponding to the gene detection and gene count compo-
nents, respectively, and therefore appears twice in Fig. 5. In
ZINB-WaVE, πij models whether a gene has been detected
or not, and μij models the mean for the read counts under
negative binomial distribution. As in the previous section,

we used the parameters fẐ; Âμ; Âπ; ûμ; ûπ; v̂μ; v̂πg to re-

place the parameters fŴ ; α̂μ; α̂π; γ̂π; γ̂μ; β̂μ; β̂πg used y:

logit πij
� � ¼ zTπ ið Þaπ jð Þ þ xTi βπ jð Þ þ uπ ið Þ þ vπ jð Þ

� �
log μij

� �
¼ zTμ ið Þaμ jð Þ þ xTi βμ jð Þ þ uμ ið Þ þ vμ jð Þ

� �
The loading matrix aπ that models the gene detection

component (π) is denoted as ZINB-WaVEdropout, and the
loading matrix aμ that models gene counts is denoted
ZINB-WaVEmean.

Trajectory inference
To evaluate the performance gains of scBFA in the con-
text of trajectory inference, we used a recently published
platform, dynverse, for which “gold standard” scRNA-
seq datasets were already obtained and preprocessed,
and scripts and performance metrics have already been
defined to evaluate trajectory inference [32]. Gold stand-
ard datasets refer to those datasets in which experimen-
tal (non-computational) methods were used to annotate
a dataset with trajectory information such as cell type
clusters (milestones) and connections between cell type
clusters (milestone networks). From the 27 datasets
available on June 12, 2019, that met this gold standard
status and were real (not synthetic), we filtered out data-
sets that had less than 170 cells, yielding a total of 20
benchmark datasets. As with our previous experiments,
we used the HVG selection criterion to identify the top
2000 varying genes for dimensionality reduction.
Our strategy for benchmarking trajectory inference

was to identify an existing, top-performing trajectory in-
ference method that also uses dimensionality reduction
in its pipeline then replace that dimensionality reduction
step with one of the methods we tested in our study.
The dynverse paper identified Slingshot as a top per-
former [32]. To evaluate scBFA and the other methods,
we substituted the PCA step of Slingshot with each di-
mensionality reduction method (scBFA, ZINB-WaVE,
PCA, scImpute, SAVER, scrna2019, sctransform, scVI)
and used dynverse to measure the performance of each
modified version of Slingshot. The number of input la-
tent dimensions was set to 10. Because the Slingshot im-
plementation throws NA in cases where it is uncertain
of the assignment of cells to a particular lineage, we re-
moved two datasets from further evaluation because the
number of NAs produced prevented calculation of the
performance metrics (germline-human-both_guo.rds,
mESC-differentiation_hayashi.rds). For each of the 18
benchmarks (Additional file 1: Table S8), we used dyn-
verse to compute three performance metrics with
respect to the experimentally gathered trajectory infor-
mation: F1milestones, F1branches, and NMSElm. F1milestones

measures the similarity between clustering membership
of two trajectories. F1branches compares the similarity be-
tween the assignment of two branches. NMSElm is a
measurement of how well the position of a cell in the
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inferred trajectory predicts the position of the cell in the
ground truth trajectory under linear regression. Larger
values of F1milestones, F1branches, and NMSElm correspond
to better performance. We obtained F1milestones,
F1branches, and NMSElm via dynverse’s calculate_mapping
and calculate_position_predict functions within the
dyneval package and converted raw values to ranks for
Fig. 6. The wrapper function to obtain the results from
Slingshot is adapted from the internal function https://
github.com/dynverse/ti_slingshot/blob/master/package/R/
ti_slingshot.R.

Visualization
After we obtain the embedding matrix from every
method, we use the t-distributed stochastic embedding
[49] method to project the embedding matrix onto two
dimensions for visualization as a scatterplot. In all visu-
alizations, the number of factors used as input to t-SNE
in each visualization is 10.

Timing experiments
In the timing experiment (Additional file 1: Figure S27),
we randomly subsampled 1k, 10k, 50k, and 100k cells
from the 1.3 million 10× brain cell dataset from E18
mice and recorded the single-core execution time (in
seconds) of all methods (PCA, ZINB-WaVE, scImpute,
SAVER, sctransform, scrna2019, and Binary PCA) on
the same machine. Due to the non-convex nature of
ZINB-WaVE’s objective function and different
optimization scheme, we cannot strictly match the con-
vergence criterion of ZINB-WaVE to scBFA. Therefore,
we use the same number of iterations for each method
that was used to generate the results in Fig. 1. Because
scImpute requires specification of the number of cell
clusters, we set the number of cell clusters to seven,
similar to a previous study [50] that used seven as an
underestimate of the true number of cell types.
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