
Tjaden Genome Biology (2015) 16:1
DOI 10.1186/s13059-014-0572-2
SOFTWARE Open Access
De novo assembly of bacterial transcriptomes
from RNA-seq data
Brian Tjaden
Abstract

Transcriptome assays are increasingly being performed by high-throughput RNA sequencing (RNA-seq). For
organisms whose genomes have not been sequenced and annotated, transcriptomes must be assembled
de novo from the RNA-seq data. Here, we present novel algorithms, specific to bacterial gene structures and
transcriptomes, for analysis of bacterial RNA-seq data and de novo transcriptome assembly. The algorithms are
implemented in an open source software system called Rockhopper 2. We find that Rockhopper 2 outperforms
other de novo transcriptome assemblers and offers accurate and efficient analysis of bacterial RNA-seq data.
Rockhopper 2 is available at http://cs.wellesley.edu/~btjaden/Rockhopper.
Introduction
High-throughput RNA sequencing (RNA-seq) is being
used increasingly for transcriptome assays [1]. One of the
challenges for studies employing RNA-seq experiments is
efficient and reliable extraction of transcriptomic insights
from the wealth of RNA-seq data. Often, following RNA-
seq experiments, the large resulting data sets are subjected
to various stages of computational analysis, such as quality
control, normalization, transcriptome assembly, quantifi-
cation of transcript abundance, and testing for differential
gene expression under various conditions [2]. Analysis
of the data can be a bottleneck in RNA-seq studies
owing to the size of the data, the complexity of the ana-
lysis, and a lack of user-friendly software tools.
In particular, assembling transcripts is often a core

stage of RNA-seq data analysis, yet efficient and accurate
transcriptome assembly remains a challenging problem
owing to a variety of factors, including artifacts from li-
brary construction, errors in sequencing, variable intra-
read and inter-read error rates, repeat sequences, and
transcript expression ranges that span several orders of
magnitude [3]. Most approaches for assembling tran-
scripts from short read sequences relate to one of two
families: reference-based assembly and de novo assembly
[4]. Reference-based assembly involves aligning sequen-
cing reads to a sequenced reference genome. Reference-
based assembly is generally preferable when a high-quality
Correspondence: btjaden@wellesley.edu
Computer Science Department, Wellesley College, Wellesley, MA 02481, USA

© 2015 Tjaden; licensee BioMed Central. This
Attribution License (http://creativecommons.o
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
genome sequence is available since reference-based ap-
proaches are fast and relatively precise. De novo assem-
bly involves assembling transcripts from sequencing
reads by combining overlapping reads. De novo assem-
bly is necessary when a high-quality reference genome
is unavailable, such as for many non-model organisms,
when analyzing complex microbial communities, in meta-
transcriptome studies, and when investigating uncultur-
able microorganisms.
A number of mature computational tools exist for

both reference-based transcriptome assembly [5-7] and
de novo transcriptome assembly [8-11]. However, most of
the aforementioned tools were designed primarily for
eukaryotic transcriptomes. Bacterial transcriptome assem-
bly faces different challenges than eukaryotic transcriptome
assembly. For example, bacterial genomes are generally
denser than eukaryotic genomes and neighboring bacterial
transcripts frequently overlap, making it challenging to
distinguish the boundaries of neighboring bacterial tran-
scripts. Polycistronic messages further complicate bacter-
ial transcriptome assembly, particularly when different
promoters of an operon are employed under different
conditions. Also, models for noncoding RNAs in eukary-
otes are generally inappropriate for the small regulatory
RNAs common in bacteria.
In an attempt to address the paucity of computational

methods for assembling bacterial transcriptomes from
RNA-seq data, we previously developed Rockhopper
[12], a system that supports reference-based assembly of
bacterial transcriptomes. In the current study, we have
is an Open Access article distributed under the terms of the Creative Commons
rg/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

http://cs.wellesley.edu/~btjaden/Rockhopper
mailto:btjaden@wellesley.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Tjaden Genome Biology (2015) 16:1 Page 2 of 10
developed novel algorithms for de novo assembly of bac-
terial transcriptomes, which we have implemented in the
system Rockhopper 2. We show that our algorithms for
de novo assembly of bacterial transcriptomes outperform
other leading approaches, in terms of both sensitivity
and specificity. Further, our algorithms offer dramatic
improvements in efficiency, so that our de novo assem-
bly is comparable to reference-based assembly in terms
of execution time. While many de novo assemblers require
high-performance computing platforms, Rockhopper 2
has been designed with limited resource requirements so
that it performs effectively on common laptop machines.
In addition to de novo transcriptome assembly, Rockhopper
2 is a comprehensive system that supports the various
stages of RNA-seq data analysis, including normalizing
data from different experiments, quantifying transcript
abundance, and testing for differential transcript expres-
sion. Details of the Rockhopper 2 workflow are illustrated
in Figure 1. Finally, we developed Rockhopper 2 with
user-friendliness in mind, so that it would be accessible to
a broad range of scientists that use bacterial RNA-seq ex-
periments in their investigations. Rockhopper 2 is open-
source software implemented in Java, released under the
GNU GPL license, and is available for all major platforms
at [13,14].

Materials and methods
Assembly algorithm
As input, Rockhopper 2 requires one or more files of se-
quencing reads. Sequencing read files may be in fastq,
qseq, fasta, sam, or bam format [15]. Files in fastq, qseq,
or fasta format optionally may be gzipped. Rockhopper 2
works with single-end reads as well as paired-end reads,
and reads may be strand-specific or strand-ambiguous.
De novo transcriptome assembly in Rockhopper 2 pro-

ceeds in two stages (Figure 1). In the first stage, candi-
date transcripts are assembled from k-mers found in the
sequencing reads (k = 25 by default). After the first stage,
every k-mer in an assembled candidate transcript will
correspond to at least one k-mer from a sequencing
read. However, candidate transcripts may not be sup-
ported by full-length reads. Thus, in a second stage, se-
quencing reads are mapped to candidate transcripts in
order to filter candidate transcripts into a set of high
quality final transcripts that are well supported by full-
length sequencing reads. Algorithmic details of each
stage are provided below.
In the first stage of de novo transcriptome assembly,

Rockhopper 2 maintains two data structures, a de Bruijn
graph [16,17] and a Burrows-Wheeler index [18,19].
While de Bruijn graphs are common among de novo
assemblers [4,17], Burrows-Wheeler indices are not.
Instead, Burrows-Wheeler indices are common in
reference-based assemblers [2]. But it is precisely the
integration of the two structures, working in concert,
that enables Rockhopper 2’s speed and minimal mem-
ory usage, distinguishing it from other de novo assem-
blers. Both data structures are initially empty and are
populated as sequencing reads are processed in the
first stage. The de Bruijn graph is implemented with a
hash table, where k-mer graph edges are stored as keys
in the table and k-mer edge occurrences are stored as
values in the table. Graph nodes are stored implicitly.
The Burrows-Wheeler index keeps track of assembled
candidate transcripts. For each sequencing read, its set
of k-mers is determined. If a k-mer already occurs in
the Burrows-Wheeler index, that is, is already part of
an assembled candidate transcript, then the k-mer is
not considered further. If the k-mer is not part of an
assembled candidate transcript, then the de Bruijn
graph is updated with the k-mer.
As k-mers are added to the de Bruijn graph, it grows

in size. As more memory is consumed and the amount
of available memory approaches zero, Rockhopper 2 re-
duces the size of the de Bruijn graph by assembling can-
didate transcripts. Paths through the graph are traversed,
beginning with the most frequently occurring edges. For
each edge with frequency at least α, a path is started and
greedily extended if a neighboring edge can be found
with frequency at least β (default values α = 50 and β = 5
were determined empirically). When an edge is traversed,
it is removed from the graph. A path corresponds to an
assembled candidate transcript. When a path is extended
as far as possible, the corresponding assembled candidate
transcript is added to the Burrows-Wheeler index.
A de Bruijn graph has 4k potential edges, which requires

more memory to store than is available on most personal
computers. As RNA-seq experiments continue to generate
increasing amounts of sequencing data, this limit will be
approached in de Bruijn graph-based assemblers, unless
sequencing error rates drop dramatically. Thus, most as-
semblers require high-performance computing hardware
with enhanced memory resources. Rockhopper 2 takes a
different approach and limits the size of de Bruijn graphs.
Rockhopper 2’s approach has two main advantages: it en-
ables the system to run on common personal computers
and it quickly channels resources away from low fre-
quency k-mers that are likely to correspond to sequencing
errors or other artifacts.
In the first stage, we assemble candidate transcripts and

store them in a Burrows-Wheeler index. In the second
phase, we make a second pass through the sequencing
reads, aligning each read to the index. Importantly, the
Burrows-Wheeler index allows for rapid alignment in that
a read of length m can be aligned to the set of candidate
transcripts with total length N in O(m) time with small
constants. In the case of paired-end reads, we require that
the paired-ends for each read form a scaffold consistent

Figure 1 Rockhopper 2 workflow depicting the various phases of Rockhopper 2’s analyses. As input, Rockhopper 2 requires one or more
files of sequencing reads from RNA-seq experiments. In the first analysis stage, Rockhopper 2 determines k-mers from the sequencing reads and
builds a de Bruijn graph from the k-mers. The de Bruijn graph is used to assemble candidate transcripts, which are stored in a Burrows-Wheeler
index. In the second analysis stage, Rockhopper 2 aligns the sequencing reads to the assembled candidate transcripts to determine a final set of
high-quality assembled transcripts. After the second stage, transcriptome assembly is complete and Rockhopper 2 performs several downstream
analyses, including normalizing data from different experiments, quantifying transcript abundance, and testing for differential gene expression
across multiple conditions.

Tjaden Genome Biology (2015) 16:1 Page 3 of 10
with the transcript. We keep track of how many full-
length reads align to each candidate transcript and at
what loci. Sufficiently long regions of candidate tran-
scripts are retained as high quality finalized transcripts
if at least ε reads align throughout the length of the re-
gion (ε = 20 by default).
Following de novo assembly of high quality transcripts,
Rockhopper 2 proceeds with several post-assembly phases
of analysis. To enable comparison between different
samples and experiments, Rockhopper 2 normalizes
each RNA-seq data set using upper quartile normalization
[20]. Transcript abundance levels are estimated using a

Tjaden Genome Biology (2015) 16:1 Page 4 of 10
measure similar to RPKM (reads per kilobase per million),
which sums the number of reads for a transcript and
divides by the transcript’s length and a normalization
factor [7]. While the total number of reads in the sam-
ple is often used to determine the RPKM normalization
factor, Rockhopper 2 uses the more robust normalizer
of upper quartile transcript expression [20]. Finally,
Rockhopper 2 tests for differential transcript expression
in pairs of conditions using the algorithm of DESeq
[21]. In summary, Rockhopper 2 estimates the variance
of a transcript’s expression, uses local regression to
obtain a smooth estimate of the variance, and then per-
forms a statistical test to determine whether a transcript
shows differential expression in data from two or more
conditions. The negative binomial distribution is used
as the statistical model in order to compute a P-value
indicating the probability of observing the transcript’s
expression levels in the different conditions by chance.
To correct for multiple tests across the set of transcripts,
P-values are corrected and q-values are reported that con-
trol the false discovery rate using the Benjamini-Hochberg
procedure [22].

High-throughput sequencing data
Escherichia coli strain MG1655 was used in three biological
replicate DNA-seq experiments (Cari Vanderpool, personal
communication). Library construction and sequencing on
an Illumina HiSeq 2500 were performed at the WM Keck
Center for Comparative and Functional Genomics at the
University of Illinois at Urbana-Champaign. The DNA li-
braries were prepared with the KAPA Library Preparation
Table 1 Sequencing data sets

Organism Type Domain Class

Escherichia coli DNA-seq Bacteria Gammaproteobacteria

Escherichia coli RNA-seq Bacteria Gammaproteobacteria

Acinetobacter oleivorans RNA-seq Bacteria Gammaproteobacteria

Deinococcus gobiensis RNA-seq Bacteria Deinococci

Mycobacterium tuberculosis RNA-seq Bacteria Actinobacteria

Streptococcus pyogenes RNA-seq Bacteria Bacilli

Bacillus subtilis RNA-seq Bacteria Bacilli

Staphylococcus aureus RNA-seq Bacteria Bacilli

Propionibacterium acnes RNA-seq Bacteria Actinobacteria

Clostridium acetobutylicum RNA-seq Bacteria Clostridia

Pyrococcus abyssi RNA-seq Archaea Thermococci

Methanobrevibacter smithii RNA-seq Archaea Methanobacteria

Schizosaccharomyces pombe RNA-seq Eukarya Schizosaccharomycetes

The table summarizes the DNA-seq data set and the 12 RNA-seq data sets used in t
reads in each data set. NA, not available.
Kits (KAPA Biosystems (Wilmington, MA, USA)). The li-
braries were quantified by quantitative PCR , pooled in
equimolar concentration, and sequenced on one lane for
101 cycles from one end of the fragments using a TruSeq
SBS version 3 sequencing kit (Illumina (San Diego, CA,
USA)). The fastq files were generated with Casava 1.8.2
(Illumina).
RNA-seq data from E. coli, Streptococcus pyogenes,

Mycobacterium tuberculosis, Bacillus subtilis, Staphylococ-
cus aureus, Pyrococcus abyssi, Acinetobacter oleivorans,
Propionibacterium acnes, Methanobrevibacter smithii,
Clostridium acetobutylicum, and Deinococcus gobiensis
were downloaded from the Sequence Read Archive
(SRA) [23]. Details on each RNA-seq data set, including
accession number in the SRA, length of the reads,
whether the reads are single-end or paired-end, and the
number of reads, is provided in Table 1. The Schizosac-
charomyces pombe RNA-seq data [24] were downloaded
from the Trinity tutorial [25].

Performance evaluation
In order to evaluate Rockhopper 2’s performance, we
compared it with two leading de novo transcriptome as-
semblers: Trinity version trinityrnaseq_r20140413p1
[8,25] and SOAPdenovo2 version 2.04 [10,26]. Default
parameters were used for Trinity (Trinity –seqType fq -JM
10G -CPU 8) and SOAPdenovo2 (SOAPdenovo-63mer
all -p 8 -d 49). All three assemblers were executed on the
same hardware with the number of processors set to 8.
The three software systems were used to assemble tran-
scriptomes using sequencing data from 12 microorganisms
SRA accession
number

Read type Length of
reads (bp)

Number
of reads

Number of
reference
genes

SRP049375 Single 100 67,713,365 -

SRX254784 Single 100 34,085,732 4,190

SRX560107 Paired 101 19,140,537 2,934

SRX061110 Paired 75 18,676,333 610

SRX380298 Paired 51 2,364,009 752

SRX252449 Single 72 7,049,947 372

SRX533166 Single 51 14,010,827 1,917

SRX172891 Paired 101 9,067,797 1,720

SRX278003 Single 75 195,541,304 1,777

SRX316281 Single 50 13,256,052 202

SRX556571 Single 40 51,342,770 133

SRX031877 Single 36 32,744,832 211

NA Paired 68 4,000,000 3,591

his study. Information in the table includes the length and number of sequencing

Tjaden Genome Biology (2015) 16:1 Page 5 of 10
with sequenced and annotated genomes, though the
genomes and their annotations were not used by any of
the software systems during assembly. The genome se-
quences and annotations were used only to evaluate
the de novo assembled transcriptomes.
A variety of measures was used to evaluate the perform-

ance of the different assemblers [4,27]. In some cases, the
correspondence between assembled transcripts and anno-
tated genes is assessed. Since not all genes are likely to be
expressed in a given experiment, the de novo assembled
transcripts are compared not against all annotated genes
but against a subset of annotated genes, which we call ref-
erence genes. A reference gene is defined as a gene where
every k-mer in the gene sequence (k = 25) occurs in at
least one sequencing read. Reference genes can possibly
be reconstructed by the de novo assemblers whereas non-
reference genes cannot. The set of reference genes is
analogous to the Oracle Set used to evaluate the Trinity
system [8].
Specificity is a measure that represents the percentage

of assembled transcripts that align to the genome. Specifi-
city can be expressed as (1.0 - False positive rate), where a
false positive is an assembled transcript that does not align
to the genome. Specificity is calculated as:

X
t∈T

I
atGj j
tj j ≥ δ

� �

Tj j

where T is the set of assembled transcripts and G is a
genome. atG is the alignment of the sequence of t to
the sequence of G, and atG

�� �� is the length of the align-
ment. I is an indicator function with parameter δ set
to 1.0.
Sensitivity represents the percentage of sequence

from reference genes covered by assembled transcripts.
Sensitivity in this context is sometimes referred to as
the coverage or completeness of an assembler. Sensitivity
is given by:

X
g∈R

gT
�� ��X

g∈R
gj j

where R is the set of reference genes. Following align-
ment of assembled transcripts in T to the set of refer-
ence genes R, |gT| is the number of nucleotides in the
sequence of reference gene g that are covered via align-
ment by one or more transcripts from T. In the special
case of assessing the quality of assemblies from DNA-
seq data rather than RNA-seq data, sensitivity represents
the percentage of sequence from the entire genome,
rather than from reference genes, covered by assembled
transcripts:

GT
�� ��= Gj j

Contiguity represents the percentage of reference genes
that are at least δ = 80% covered by a single longest assem-
bled transcript [4]. Contiguity is defined as:

X
g∈R

I
gT

0�� ��
gj j ≥ δ

� �

Rj j

where gT
0��� ��� is the number of nucleotides in the sequence of

reference gene g that are covered via alignment by the
transcript from T that has the longest alignment to g. I is
an indicator function with parameter δ set to 0.8.
RMBT (reads mapping back to transcripts) represents

the percentage of sequencing reads that align to an as-
sembled transcript. RMBT is given by:

X
s∈S

I
asTj j
sj j ≥ δ

� �

Sj j
where S is the set of sequencing reads, asT is the align-
ment of the read s to the set of assembled transcripts T,
and asT

�� �� is the length of the alignment. I is an indicator
function with parameter δ set to 1.0.
Accuracy represents the percentage of correctly as-

sembled bases; that is, for those transcripts that align to
the genome, the accuracy is the percentage of perfect
matches in the alignments (as opposed to mismatches or
gaps). Accuracy is calculated as:

X
t∈T

PM atG
� �

X
t∈T

atG
�� ��

where PM atG
� �

is the number of perfect matches in the
alignment of the sequence t to the sequence of G, and
atG
�� �� is the length of the alignment. Efficiency represents
the execution time of an assembler, as measured in mi-
nutes. Resourcefulness represents the amount of memory
(RAM) required during an assembly.

Results
In order to assess Rockhopper 2’s ability to assemble
transcriptomes de novo, we executed Rockhopper 2 on
high-throughput sequencing data from a variety of or-
ganisms whose genomes have been sequenced and anno-
tated. The genome sequences and annotations were not
used by Rockhopper 2, rather they allow us to evaluate
Rockhopper 2 by investigating the correspondence be-
tween the de novo assembled transcriptomes it produces

Tjaden Genome Biology (2015) 16:1 Page 6 of 10
and the genome sequences and annotations. To provide
points of comparison, two leading de novo transcriptome
assemblers, Trinity [8,25] and SOAPdenovo2 [10,26],
were executed on the same data, and their results are
compared with those of Rockhopper 2.

Genomic DNA-seq data
We used three biological replicates of genomic DNA-seq
data from E. coli (see Materials and methods) for pre-
liminary assessment of Rockhopper 2’s performance.
Genome assembly based on DNA-seq data is generally
more straightforward than transcriptome assembly
based on RNA-seq data since RNA-seq data correspond
to transcripts with highly variable expression levels and
lengths, whereas DNA-seq data do not. Thus, the perform-
ance of an assembler using DNA-seq data can suggest an
upper bound on the quality of the assembly that we can ex-
pect from the assembler using RNA-seq data.
Figure 2 and Additional file 1 provide statistics on as-

semblies based on the DNA-seq data. Rockhopper 2 and
Figure 2 Performance assembling E. coli genome from DNA-seq data
SOAPdenovo2 and Trinity, on three biological replicate DNA-seq experimen
contigs that align to the E. coli genome. (B) Sensitivity is the percentage of th
to the genome. (C) Execution time is the number of minutes that an assemb
SOAPdenovo2 both had close to 100% specificity, indicat-
ing that the vast majority of their assembled contigs could
be aligned to the E. coli genome (Figure 2A). In contrast,
just over half of the contigs assembled by Trinity were
considered false positives in that they did not align to the
E. coli genome (Figure 2A). Further, Rockhopper 2’s as-
sembly had a sensitivity of approximately 90%, indicating
that 90% of the genome was covered by Rockhopper 2’s
assembled contigs (Figure 2B). While Rockhopper 2 was
not designed as a genome assembler, these results suggest
that it does a plausible job of reconstructing most of the
E. coli genome. For comparison, the contigs assembled
by SOAPdenovo2 and Trinity covered just under half
the E. coli genome (Figure 2B). Regions of the genome
that were not covered by contigs from any of the as-
semblers generally correspond to some combination of
repeat regions, errors in sequencing reads, and biases
during library construction and high-throughput sequen-
cing. Finally, we found that Rockhopper 2 required about
32 minutes to generate its assembly, a rate comparable to
. The performance of Rockhopper 2 as well as two other assemblers,
ts from E. coli is illustrated. (A) Specificity is the percentage of assembled
e E. coli genome sequence that is covered by assembled contigs aligning
ler requires to execute on the DNA-seq data.

Tjaden Genome Biology (2015) 16:1 Page 7 of 10
that of SOAPdenovo2 and substantially faster than that of
Trinity (Figure 2C).

RNA-seq data
While DNA-seq data provide a starting point for under-
standing the quality of assemblies, the performance of
an assembler using RNA-seq data is more meaningful.
Thus, we gathered data from RNA-seq experiments con-
ducted by 12 different labs for 12 different microorganisms
(see Materials and methods). The organisms included nine
bacteria, two archaea, and one fungus. While Rockhopper
2 was not designed for eukaryotic transcriptome assembly,
we evaluated its performance on data from the fungus S.
pombe primarily because this same data set was used by
the authors of the Trinity assembler to assess Trinity’s per-
formance [8,25]. The 12 organisms represented in our ana-
lysis were chosen to reflect a wide range of phylogenetic
diversity in order to help us understand the robustness
of our assemblies. The 12 RNA-seq data sets range in
size from approximately 2 million reads to 200 million
reads and include 7 sets of single-end sequencing reads
and 5 sets of paired-end sequencing reads (Table 1).
A variety of statistics (see Materials and methods) was

used to evaluate the assemblies produced by Rockhopper
2, Trinity, and SOAPdenovo2 across the 12 RNA-seq data
sets and the results are provided in Figure 3 and Additional
file 1. Rockhopper 2 and SOAPdenovo2 generally had the
highest specificity, generating fewer false positive assem-
bled transcripts that did not align to the corresponding
genome (Figure 3A). Interestingly, Rockhopper 2’s specifi-
city was lowest among the three assemblers on the two ar-
chaea data sets, but otherwise was among the highest.
Assembly of additional RNA-seq data sets from prokary-
otes beyond the 11 used in this study will help illuminate
whether Rockhopper 2’s higher specificity on bacterial
data and lower specificity on archaeal data, relative to the
other two assemblers, is a broad trend resulting from
biases toward certain domains or if it is an artifact of a
small sample size. In terms of sensitivity, Rockhopper 2
demonstrated the highest sensitivity of the three assem-
blers across the 12 data sets, with its assembled transcripts
covering a significantly larger percentage of reference
genes than those of the other two assemblers (Figure 3B).
Contiguity reflects the percentage of reference genes cov-
ered by a single longest transcript and is a useful measure
for distinguishing whether an assembly contains tran-
scripts covering a gene with multiple short transcripts or a
single long transcript. Rockhopper 2’s assemblies demon-
strate greater contiguity than those of the other two as-
semblers for 11 of the 12 data sets, with Trinity’s assembly
demonstrating the greatest contiguity for the S. pyogenes
data set (Figure 3C). RMBT indicates the percentage of
sequencing reads that align to assembled transcripts; this
measure is often used to evaluate assemblers under the
assumption that higher RMBT corresponds to a greater
percentage of reads used in constructing an assembly,
which is desirable in that it is more likely to lead to a ro-
bust assembly than using a smaller percentage of reads
when generating an assembly. Trinity and Rockhopper 2
consistently had high RMBT, in contrast to SOAPde-
novo2, suggesting that these two assemblers generally
use the majority of sequencing reads to construct their
assemblies (Figure 3D). Finally, the execution time of
the assemblers was assessed. Both SOAPdenovo2 and
Rockhopper 2 demonstrated substantially greater efficiency
than Trinity across the 12 data sets (Figure 3E).
In order to investigate how Rockhopper 2’s assemblies

are affected by expression level, we evaluated Rockhopper
2’s sensitivity and contiguity across the 12 RNA-seq data
sets at different expression deciles (Figure 4). Each point
represents an average across the 12 data sets (Figure 4).
For example, the leftmost point corresponds to the aver-
age sensitivity (purple) or contiguity (yellow) of Rockhopper
2’s assemblies across the 12 data sets for the 10% least
highly expressed reference genes. The rightmost point
corresponds to the average sensitivity (purple) or con-
tiguity (yellow) of Rockhopper 2’s assemblies across the
12 data sets for the 10% most highly expressed reference
genes. For this analysis, rather than requiring assembled
transcripts to align exactly to reference genes, we used a
more permissive alignment criterion and allowed assem-
bled transcripts to align to reference genes with a small
number of gaps or mismatches (BLAST E-value <0.01).
Unsurprisingly, Rockhopper 2 is better able, in terms of
sensitivity and contiguity, to assemble transcripts with
higher expression than lower expression, as performance
generally improves as the expression decile increases
(Figure 4). However, there is a small decrease in perform-
ance at the very highest expression deciles (Figure 4). This
asymmetric rainbow-shaped curve is consistent with what
others have observed [27], namely that assembly perform-
ance generally improves rapidly from the lowest expres-
sion quantiles to mid-level expression quantiles, plateaus
across mid-level expression quantiles to higher-level ex-
pression quantiles, and decreases slightly at the highest
level expression quantiles. These results provide one indi-
cation as to how confident a user can be in Rockhopper
2’s assembled transcripts for transcripts expressed at dif-
ferent levels.
We also considered a couple of additional measures of

assembly performance. Accuracy is the percentage of cor-
rectly assembled bases and is computed by aligning as-
sembled transcripts to the corresponding genome and
calculating, for those transcripts that align, the percentage
of bases in the alignment that correspond to perfect
matches as opposed to mismatches or gaps [4]. All three
assemblers showed accuracies greater than 99% across all
12 RNA-seq data sets (Additional file 1). Resourcefulness

Figure 3 Performance assembling transcripts from RNA-seq data. The performance of each of three assemblers on 12 RNA-seq data sets is
illustrated. The 12 RNA-seq data sets correspond to nine bacteria, two archaea, and one fungus. (A) Specificity is the percentage of assembled
transcripts that align to the genome. (B) Sensitivity is the percentage of the reference gene sequences that is covered by assembled transcripts
aligning to the reference genes. (C) Contiguity is the percentage of reference genes that are at least δ = 80% covered by their single longest
aligning transcript. (D) RMBT is the percentage of sequencing reads to align to assembled transcripts. (E) Execution time is the number of minutes
that an assembler requires to execute on the RNA-seq data set.

Tjaden Genome Biology (2015) 16:1 Page 8 of 10

Figure 4 Rockhopper 2 performance at different expression
deciles. For each of the 12 RNA-seq data sets, the set of reference
genes was divided into 10 groups based on their expression levels,
with the 10% of reference genes with lowest expression in the first
group and the 10% of reference genes with highest expression in
the last group. The sensitivity (purple) and contiguity (yellow) of
Rockhopper 2’s assemblies across all 12 RNA-seq data sets
are illustrated.

Tjaden Genome Biology (2015) 16:1 Page 9 of 10
reflects the amount of RAM consumed during an assem-
bly. A comparison of memory usage by SOAPdenovo2
and Trinity has been performed by others [27] and we did
not repeat the analysis here. With default parameters,
Rockhopper 2 uses at most 1.2 GB (gigabytes) of memory.
For the assemblies in this study, we allowed Rockhopper 2
to use up to 2.0 GB of memory, an amount generally avail-
able on any common laptop. In contrast, the authors of
the Trinity assembler recommend approximately 1 GB of
memory per million paired reads for Trinity [25]. The
RNA-seq data sets used in this study contained between 2
million and 195 million reads, with an average of 36 mil-
lion reads. Thus, Trinity’s memory consumption typically
requires high-performance computing hardware whereas
Rockhopper 2 has no such requirement. All three assem-
blers are fully parallelizable and their runtime performance
scales inversely with the number of processors available
for computation in the machine on which the assembler
is executed.

Conclusions
Transcriptome assembly is a common step in the analysis
of RNA-seq data. When a sequenced genome is available,
assembly approaches can leverage the reference genome
by aligning sequencing reads to the genome. When a
high-quality reference genome is not available, transcrip-
tomes must be assembled de novo. While a number of ma-
ture tools exist for de novo assembly of transcriptomes
from RNA-seq data, these tools were designed primarily
for eukaryotic data and their performance suffers when
applied to bacterial data. In this study, we propose novel al-
gorithms for de novo assembly of bacterial transcriptomes.
The algorithms have been implemented in an open-source
software system called Rockhopper 2.
We evaluated Rockhopper 2 using one set of DNA-seq

data and 12 sets of RNA-seq data corresponding to a range
of microorganisms. We found that Rockhopper 2 produced
high quality transcriptome assemblies and outperformed
other leading assemblers. Rockhopper 2 has several other
advantageous features, including a graphical interface and
the ability to run on common laptops rather than necessi-
tating a high-performance computing environment. In
addition to de novo transcriptome assembly, the Rockhopper
2 system integrates algorithms for normalization of
data across experiments, quantification of transcript
abundance, and testing for differential gene expression.
Thus, Rockhopper 2 reduces the initial stages of ana-
lysis of large bacterial RNA-seq data sets to a matter of
minutes, enabling investigators to spend more time on
downstream interpretation of results and extraction of
new biological insights.

Additional file

Additional file 1: For the DNA-seq data set and the 12 RNA-seq data
sets used in this study, the table provides details on the performance
statistics for each of three assemblers when generating assemblies
from each data set.

Abbreviations
bp: base pair; PCR: polymerase chain reaction; RAM: random-access memory;
RMBT: reads mapping back to transcripts; RPKM: reads per kilobase per
million; SRA: Sequence Read Archive.

Competing interests
The author declares that he has no competing interests.

Author’s contributions
BT designed the algorithms, implemented the software, and wrote the
manuscript.

Acknowledgements
This work was supported by the National Institutes of Health grant R15
GM102755 to BT. The author would like to thank Cari Vanderpool and Alisa
King for genomic DNA sample preparation and sequencing. The author
would also like to thank members of the Rockhopper and Rockhopper 2
user community for their valuable feedback on the software systems.

Received: 20 August 2014 Accepted: 15 December 2014

References
1. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomes.

Nat Rev Genet. 2009;10:57–63.
2. Garber M, Grabherr MG, Guttman M, Trapnell C. Computational methods for

transcriptome annotation and quantification using RNA-seq. Nat Methods.
2011;8:469–77.

3. Flicek P, Birney E. Sense from sequence reads: methods for alignment and
assembly. Nat Methods. 2009;6:S6–12.

4. Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet.
2011;12:671–82.

5. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al.
Transcript assembly and quantification by RNA-Seq reveals unannotated
transcripts and isoform switching during cell differentiation. Nat Biotechnol.
2010;28:511–5.

http://genomebiology.com/content/supplementary/s13059-014-0572-2-s1.xlsx

Tjaden Genome Biology (2015) 16:1 Page 10 of 10
6. Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X, et al.
Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals
the conserved multi-exonic structure of lincRNAs. Nat Biotechnol.
2010;28:503–10.

7. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and
quantifying mammalian transcriptomes by RNA-Seq. Nat Methods.
2008;5:621–8.

8. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al.
Full-length transcriptome assembly from RNA-Seq data without a reference
genome. Nat Biotechnol. 2011;29:644–52.

9. Birol I, Jackman SD, Nielsen CB, Qian JQ, Varhol R, Stazyk G, et al. De novo
transcriptome assembly with ABySS. Bioinformatics. 2009;25:2872–7.

10. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, et al. De novo assembly of
human genomes with massively parallel short read sequencing. Genome
Res. 2010;20:265–72.

11. Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq
assembly across the dynamic range of expression levels. Bioinformatics.
2012;28:1086–92.

12. McClure R, Balasubramanian D, Sun Y, Bobrovskyy M, Sumby P, Genco CA,
et al. Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res.
2013;41:e140.

13. Rockhopper. http://cs.wellesley.edu/~btjaden/Rockhopper.
14. Rockhopper at GitHub. https://github.com/btjaden/Rockhopper.
15. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The

sequence alignment/map format and SAMtools. Bioinformatics.
2009;25:2078–9.

16. de Bruijn NG, Erdos P. A combinatorial problem. Koninklijke Nederlandse
Akademie v Wetenschappen. 1946;49:758–64.

17. Compeau PE, Pevzner PA, Tesler G. How to apply de Bruijn graphs to
genome assembly. Nat Biotechnol. 2011;29:987–91.

18. Burrows M, Wheeler DJ. A block sorting lossless data compression
algorithm. In: Technical report 124. Palo Alto, CA: Digital Equipment
Corporation; 1994.

19. Ferragina P, Manzini G. Opportunistic data structures with applications. In:
Proceedings of the 41st Annual Symposium on Foundations of Computer
Science. 2000. p. 390–8.

20. Bullard JH, Purdom E, Hansen KD, Dudoit S. Evaluation of statistical methods
for normalization and differential expression in mRNA-Seq experiments.
BMC Bioinformatics. 2010;11:94.

21. Anders S, Huber W. Differential expression analysis for sequence count data.
Genome Biol. 2010;11:R106.

22. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J R Stat Soc. 1995;57:289–300.

23. Kodama Y, Shumway M, Leinonen R. The sequence read archive: explosive
growth of sequencing data. Nucleic Acids Res. 2012;40:D54–6.

24. Rhind N, Chen Z, Yassour M, Thompson DA, Haas BJ, Habib N, et al.
Comparative functional genomics of the fission yeasts. Science.
2011;332:930–6.

25. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al.
De novo transcript sequence reconstruction from RNA-seq using the Trinity
platform for reference generation and analysis. Nat Protoc. 2013;8:1494–512.
http://sourceforge.net/projects/trinityrnaseq/files/misc/TrinityNatureProtocol
Tutorial.tgz/download.

26. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. SOAPdenovo2: an
empirically improved memory-efficient short-read de novo assembler.
Gigascience. 2012;1:18.

27. Zhao Q-Y, Wang Y, Kong Y-M, Luo D, Li X, Hao P. Optimizing de novo
transcriptome assembly from short-read RNA-Seq data: a comparative
study. BMC Bioinformatics. 2011;12:S2.
 Submit your next manuscript to BioMed Central

and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://cs.wellesley.edu/~btjaden/Rockhopper
https://github.com/btjaden/Rockhopper
http://sourceforge.net/projects/trinityrnaseq/files/misc/TrinityNatureProtocolTutorial.tgz/download
http://sourceforge.net/projects/trinityrnaseq/files/misc/TrinityNatureProtocolTutorial.tgz/download

	Abstract
	Introduction
	Materials and methods
	Assembly algorithm
	High-throughput sequencing data
	Performance evaluation

	Results
	Genomic DNA-seq data
	RNA-seq data

	Conclusions
	Additional file
	Abbreviations
	Competing interests
	Author’s contributions
	Acknowledgements
	References

