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Tumour heterogeneity revealed by
unsupervised decomposition of dynamic
contrast-enhanced magnetic resonance
imaging is associated with underlying gene
expression patterns and poor survival in
breast cancer patients
Ming Fan1, Pingping Xia1, Bin Liu1, Lin Zhang1, Yue Wang2, Xin Gao3 and Lihua Li1*

Abstract

Background: Heterogeneity is a common finding within tumours. We evaluated the imaging features of tumours
based on the decomposition of tumoural dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data
to identify their prognostic value for breast cancer survival and to explore their biological importance.

Methods: Imaging features (n = 14), such as texture, histogram distribution and morphological features, were
extracted to determine their associations with recurrence-free survival (RFS) in patients in the training cohort (n =
61) from The Cancer Imaging Archive (TCIA). The prognostic value of the features was evaluated in an independent
dataset of 173 patients (i.e. the reproducibility cohort) from the TCIA I-SPY 1 TRIAL dataset. Radiogenomic analysis
was performed in an additional cohort, the radiogenomic cohort (n = 87), using DCE-MRI from TCGA-BRCA and
corresponding gene expression data from The Cancer Genome Atlas (TCGA). The MRI tumour area was
decomposed by convex analysis of mixtures (CAM), resulting in 3 components that represent plasma input, fast-
flow kinetics and slow-flow kinetics. The prognostic MRI features were associated with the gene expression module
in which the pathway was analysed. Furthermore, a multigene signature for each prognostic imaging feature was
built, and the prognostic value for RFS and overall survival (OS) was confirmed in an additional cohort from TCGA.

Results: Three image features (i.e. the maximum probability from the precontrast MR series, the median value from
the second postcontrast series and the overall tumour volume) were independently correlated with RFS (p values of
0.0018, 0.0036 and 0.0032, respectively). The maximum probability feature from the fast-flow kinetics subregion was
also significantly associated with RFS and OS in the reproducibility cohort. Additionally, this feature had a high
correlation with the gene expression module (r = 0.59), and the pathway analysis showed that Ras signalling, a
breast cancer-related pathway, was significantly enriched (corrected p value = 0.0044). Gene signatures (n = 43)
associated with the maximum probability feature were assessed for associations with RFS (p = 0.035) and OS (p =
0.027) in an independent dataset containing 1010 gene expression samples. Among the 43 gene signatures, Ras
signalling was also significantly enriched.
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Conclusions: Dynamic pattern deconvolution revealed that tumour heterogeneity was associated with poor
survival and cancer-related pathways in breast cancer.

Keywords: Convex analysis of mixtures, Dynamic magnetic resonance imaging, Recurrence-free survival, Gene
pathway analysis, Breast cancer

Background
Breast cancer is the most common malignancy in women.
Neoadjuvant chemotherapy (NAC) is commonly used to
treat patients with large and locally advanced breast tumours
with the aim of decreasing tumour size, thereby minimizing
micro-metastatic disease. In patients who achieved a patho-
logic complete response (pCR) after NAC, both the overall
survival (OS) and recurrence-free survival (RFS) rates were
favourable [1]. However, not all patients who receive NAC
can benefit from this treatment; some patients have a poor
pathological response and suffer from the toxicity and side
effects associated with chemotherapy. Therefore, it is crucial
to identify the prognostic factors that can be used to deter-
mine an optimal chemotherapy regimen to maximize the
clinical outcome.
Dynamic contrast-enhanced magnetic resonance im-

aging (DCE-MRI) is a technology that has the ability to
monitor tumour morphological and physiological charac-
teristics by measuring the enhancement velocity of the
contrast material in a noninvasive way. Various studies
have been performed to quantitatively evaluate DCE-MRI
phenotypes through radiomic/radiogenomic analyses for
their association with genomic features [2–4], breast can-
cer subtypes [5], treatment response [6–8] and patient
RFS [9]. Yamamoto et al. identified DCE-MRI features as-
sociated with early metastasis-related lncRNA radioge-
nomic biomarkers, which helped to elucidate genetic/
molecular disease mechanisms [10]. Mazurowski et al. ex-
tracted MRI phenotypes from 48 patients and discovered
their associations with luminal B subtypes of breast can-
cer, providing a potential noninvasive technology for de-
termining clinical diagnostic indicators [11]. Although
progress has been made, obstacles remain that impede the
clinical utility of this technology.
Tumour heterogeneity not only among different tumours

but also within individual tumours is common in breast
cancer. A study has revealed that spatially separated regions
within a single tumour exhibit distinct gene expression sig-
natures of good and poor prognoses [12]. Regarding
tumour imaging, different areas within a tumour may have
varying dynamic enhancement patterns on MRI. Studies
have attempted to identify tumour subregions by clustering
the dynamic signals of pixels and further examining the
specific dynamic patterns of imaging features to identify an
association with prognosis or response to NAC [7, 13, 14]

in breast cancer patients. However, due to the limited im-
aging resolution of DCE-MRI, each of the observed pixels
may be a reflection of the pixel-wise spatially mixed partial
volume effect (PVE), which is composed of multiple distinct
dynamic patterns in those breast tumour areas on MRI
[15]. An accurate representation of this effect on DCE-MRI
is vitally important to better reveal tumour heterogeneity.
To this end, previous studies have proposed identifying tu-
mours that exhibit a unique kinetic pattern with an un-
supervised method for deconvoluting a dynamic imaging
series [16, 17] of tumours with heterogeneous signals using
a convex analysis of mixtures (CAM) method. However,
not enough literature is available to demonstrate whether
the imaging phenotype inside a tumour, rather than that of
the entire tumour, can augment the performance of sur-
vival prognosis in breast cancer.
The purpose of this study is to evaluate intratumoural

heterogeneity based on decomposed DCE-MR images
and to evaluate imaging features inside these heteroge-
neous regions for the determination of breast cancer
prognosis. The gene signatures that are associated with
the prognostic imaging features are also identified. These
gene expression signatures are further examined on an
independent dataset to identify their association with
RFS or OS.

Methods
Data cohorts
The imaging dataset was collected from a publicly avail-
able dataset at The Cancer Imaging Archive (TCIA)
[18], whereas the corresponding gene expression data
were obtained from The Cancer Genome Atlas (TCGA)
[19]. Inspired by previous work [20] showing that paren-
chymal features surrounding tumours were associated
with breast cancer prognosis, we utilized four datasets to
establish and validate the relationships between imaging
phenotypes and survival data on RFS and OS. No
patients overlapped among the four datasets. The demo-
graphic and clinical data for all four cohorts are pre-
sented in Table 1.
The first dataset (i.e. breast MRI-NACT pilot in the

TCIA), which was termed the training cohort, initially
included the preoperative DCE-MRI and RFS data of 64
breast cancer patients; however, no gene expression data
were available for these patients. Among them, 3
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patients with incomplete dynamic series were removed,
resulting in 61 patients for inclusion in the training
cohort.

We included an additional cohort, the reproducibility
cohort, which initially included 222 breast cancer pa-
tients (from the I-SPY 1 TRIAL in the TCIA database)

Table 1 Demographics of the study cohorts

Parameter Training cohort (n = 61) Reproducibility cohort (n = 173) Radiogenomic cohort (n = 87) TCGA cohort (n = 1010)

Age (years)

Median 48 (29.7–72.4) 47.8 (26.7–68.8) 52 (29–82) 59 (26–90)

Mean ± SD 48.1 ± 9.8 47.7 ± 8.8 53.3 ± 11.3 58.9 ± 13.2

Race

Asian 3 (5) 7 (4) 0 61 (6)

Black or African-American 3 (5) 30 (17) 4 (5) 180 (18)

White 47 (77) 135 (78) 82 (94) 675 (67)

Unknown or others 8 (13) 1 (1) 1 (1) 94 (9)

Oestrogen receptor status

Positive 28 (46) 97 (56) 75 (86) 733 (73)

Negative 20 (33) 74 (43) 12 (14) 226 (22)

Indeterminate 0 0 0 2 (0)

Unknown 13 (21) 2 (1) 0 49 (5)

Progesterone receptor status

Positive 22 (36) 81 (47) 69 (79) 630 (63)

Negative 26 (43) 90 (52) 18 (21) 326 (32)

Indeterminate 0 0 0 4 (0)

Unknown 13 (21) 2 (1) 0 50 (5)

Human epidermal growth
factor receptor 2 status

Positive 14 (23) 102 (59) 15 (17) 149 (15)

Negative 31 (51) 69 (40) 46 (53) 518 (51)

Equivocal 0 0 19 (22) 172 (17)

Unknown 16 (26) 2 (1) 7 (8) 171 (17)

Histological type

Infiltrating ductal 37 (60) N/A 75 (86) 709 (70)

Infiltrating lobular 12 (20) N/A 10 (12) 193 (19)

Others 12 (20) N/A 2 (2) 107 (11)

Unknown 0 N/A 0 1 (0)

Follow-up (years)

Median 5.39 (0.28–9.84) 3.91 (0.51–6.76) 3.48 (0.37–9.40) 1.15 (0.03–19.36)

Mean ± SD 4.77 ± 2.749 3.85 ± 1.46 3.93 ± 2.22 2.37 ± 2.94

Recurrence

Event 23 (38) 49 (28) 5 (6) 97 (10)

No event 38 (62) 124 (72) 67 (77) 674 (67)

Unknown 0 0 15 (17) 239 (23)

Death

Event N/A 32 (18) 1 (1) 104 (10)

No event N/A 138 (80) 86 (99) 906 (90)

Unknown N/A 3 (2) 0 0

Numbers in parentheses are percentages
ER oestrogen receptor, PR progesterone receptor, HER2 human epidermal growth factor receptor 2
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with available DCE-MRI and corresponding RFS and OS
data [21]. We excluded 26 patients with incomplete im-
aging sequences, 10 with no visible tumour and 13 with
low-quality images. The final dataset included samples
from 173 breast cancer patients in the reproducibility
cohort for analysis.
An independent dataset, termed the Radiogenomic co-

hort, initially included 137 patients with available DCE-
MRI data from TCGA-BRCA and the corresponding
gene expression data from the TCGA dataset. To reduce
variation among the imaging protocols, we retained 101
patients who were evaluated with a GE 1.5-T Medical
Systems imaging unit (Milwaukee, WI). After that, we
excluded 1 patient who had no available gene expression
data, 7 patients who had no available clinical informa-
tion and 6 who had incomplete imaging data. Thereafter,
the final dataset included 87 patients for analysis.
The fourth dataset, termed the TCGA cohort, included

the data of 1010 patients collected from the TCGA data-
base, all of whom had RNA sequencing data available
for tumour samples along with RFS and OS data but
without imaging data.

Framework overview
As shown in Fig. 1, the framework of this study included
three modules: (i) prognostic imaging biomarker identifi-
cation and validation (red); (ii) radiogenomic analysis of
the association between the prognostic imaging features
and gene expression for biological function analysis,
followed by prognostic gene signature identification (blue);
and (iii) the independent dataset for evaluating the prog-
nostic implication of the gene signatures (green).
The prognostic features from the training cohort were

first established and validated in the reproducibility cohort
by associating tumour MRI features and the survival of
breast cancer patients. In the Radiogenomic cohort, im-
aging features from the entire tumour and CAM-based
tumour subregions were extracted from both the entire
tumour and CAM-based tumour subregions to evaluate
the association with gene expression modules. Pathway
analysis was performed in the gene modules that had a
high correlation with prognostic imaging features that
were explored in the training cohort. A linear regression
model was established to identify gene signatures that
were related to prognostic imaging features. These signa-
tures were further assessed in an independent dataset (the
TCGA cohort) with available gene expression and survival
data (i.e. OS and RFS). Details of these cohorts have been
published elsewhere [15, 22].

Imaging protocol
DCE-MR images collected for the training cohort were ac-
quired using a 1.5-T scanning system (GE Healthcare, Mil-
waukee, WI). Breast MRI examinations were performed

with patients placed in the prone position. T1-weighted, fat-
suppressed MR images were acquired using the following
parameters: repetition time (TR) = 8ms, echo time (TE) =
4.2ms, matrix = 256 × 192 × 60, flip angle = 20°, field of
view = 180–220mm, in-plane resolution = 0.7–0.9mm and
slice thickness = 2–2.4mm. A bolus of 0.1mmol/kg gadobu-
trol was intravenously injected using an MRI-compatible
power injector. The early and late postcontrast images were
obtained 2.5min and 7.5min after the contrast material in-
jection, respectively, using standard k-space sampling.
For the reproducibility cohort, MRI was performed on a

1.5-T scanner using a dedicated breast radiofrequency
coil. A contrast-enhanced, T1-weighted series was ac-
quired in the sagittal orientation. A three-dimensional,
fat-suppressed, gradient echo sequence was acquired with
TR ≤ 20ms, TE = 4.5ms, flip angle ≤ 45°, field of view =
160–180mm, minimum matrix 256 × 192, 64 slices, slice
thickness ≤ 2.5 mm and in-plane spatial resolution ≤ 1
mm. The precontrast sequence was acquired, followed by
early-phase and delayed-phase sequences at 2.5 min and
7.5 min after the contrast material injection, respectively.
For the Radiogenomic cohort, DCE-MRI data were

collected from the TCGA-BRCA dataset, which includes
data contributed by four institutions, including the Me-
morial Sloan Kettering Cancer Center, the Mayo Clinic,
the University of Pittsburgh Medical Center and Roswell
Park Cancer Institute. The imaging protocols included
one precontrast image and three to five postcontrast im-
ages obtained using a T1-weighted, 3-dimensional (3D)
spoiled gradient echo sequence with a gadolinium-based
contrast agent. The typical in-plane resolution was from
0.53 to 0.85 mm, the typical spacing between slices was
from 2 to 3 mm and the flip angle was 10°.

DCE-MRI decomposition by CAM
After the manual annotation of the centre location of the
suspicious breast tumour, image segmentation was per-
formed on each series using a fuzzy C-means (FCM) algo-
rithm [23]. After that, CAM was performed to decompose
dynamic signals for each pixel. We defined the scan series
of tumour dynamic enhancement signals for each pixel i
as x(i), and the time-series curve in a heterogeneous
tumour tissue can be modelled as the linear combination
of the time-series curves aj(t) from each type of tissue,
weighted by the tissue type proportions Kj(i) at that pixel.
Assuming that every tissue type has a similar dynamic en-
hancement pattern, the signal decomposition problem can
be addressed using the following equation:

x ið Þ ¼
XJ

j¼1

K j ið ÞajjK j ið Þ≥0;
XJ

j¼1

K j ið Þ ¼ 1; i ¼ 1;⋯;N

( )
;

where aj is a nonnegative vector of the time-series dy-
namic signal aj(t) over time, and J is the number of
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mixed tissue types reflecting distinct kinetic patterns.
This method first applies affinity propagation clus-
tering [24] of voxels into an optimal number of rep-
resentative clusters, i.e. {xm}, and the mixture model
was fitted by an expectation-maximization method.
More specifically, CAM was performed to identify
the tissue-specific pixel clusters spatially located at
the corners of the clustered pixel time-series scatter

simplex via a minimum error margin convex hull for
data fitting:

δm; 1;⋯ Jf gϵCM
J
¼ min xm−

X J

j¼1
ajx j

���
���
2
; aj≥0;

X J

j¼1
aj ¼ 1:

Thereafter, the time-series dynamic signal for each
pixel was decomposed into several tissue types with cer-
tain proportions. An image pixel i is determined to

Fig. 1 Overall framework of this study. The three modules are shown in boxes: the prognostic imaging biomarker identification and validation
(red), the radiogenomic map for the gene signature (blue) and the assessment of prognostic value of gene signatures (green)
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belong to a specific tissue type if its value of proportions
Kj(i) is nontrivial (i.e. larger than 1e− 2). Therefore, a
pixel was referred to as a mixture of several different tis-
sue types if there were various nontrivial values of the
tissue type proportions for this pixel. The number of
underlying vascular compartments was detected using
the minimum description length (MDL) of the model. In
our previous studies, we performed convex analysis of
mixtures (CAM) on tumour images to decompose the
tumours into three compartments corresponding to
plasma input, fast-flow kinetics and slow-flow kinetics.
Using these criteria, most of the cases showed an opti-
mal number of three subregions [15, 17]. To make a fair
comparison, we set the number of tumour subregions to
three in the current study.

DCE-MRI feature extraction
Based on the tumour subregions generated by CAM, we
extracted features inside these regions on the precon-
trast series, on the image subtractions between the post-
contrast image series (i.e. the early postcontrast
(approximately 2.5 min) and the late postcontrast (ap-
proximately 7.5 min)) and on the precontrast series,
which were termed S-0, S-1 and S-2, respectively. The
histogram-based features included the skewness, kurtosis
and median value of the tumour images. Haralick fea-
tures that measure the textural heterogeneity based on
the grey-level co-occurrence matrix (GLCM) were calcu-
lated, including the energy, maximum probability and
correlation. Both the histogram features and Haralick
features were obtained on the image series of S-0 and S-
1. The morphological features of volume and compact-
ness were also evaluated on S-0. We omitted performing
CAM on imaging data from the training cohort because
most of the imaging series of these patients only had
two postcontrast series, which would have resulted in in-
accurately decomposed subregions. All image processing
and feature extraction processes were performed in
MATLAB (MathWorks, Natick, MA).

Identification and validation of image biomarkers in
breast cancer survival analysis
We evaluated the prognostic value of image features
in the training cohort by individually establishing
their associations with the patients’ RFS. Further-
more, a multivariate Cox regression model using all
of these features was established to evaluate which
features were independently associated with RFS.
The prognostic value of the image features was con-
firmed using an additional, independent dataset
using available DCE-MRI data and survival data of
RFS and OS.

Image feature function analysis by association with gene
pathways
To establish relationships between the tumour image
phenotype and the corresponding gene expression, we
extracted the identical image features from the Radioge-
nomic cohort to those in the training cohort from the
entire tumour and from the tumour subregions. Based
on the corresponding gene expression data, gene module
analysis was performed to identify a small number of
representative genes that were associated with image fea-
tures. We used a weighted gene co-expression network
with block-wise module function to identify the gene ex-
pression modules [25]. An eigengene in each module
was measured by the first principal component of the
module expression profiles, which explains the max-
imum amount of variation in the module expression
levels. Pearson correlation analysis was computed to as-
sess the association between modules (i.e. eigengenes)
and the image features. For the gene modules that
showed high correlations with image features, pathway
analysis was performed using Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis to iden-
tify the significantly enriched molecular pathways and to
explore the biological importance of the imaging
features.

Radiogenomic analysis for associating gene signatures
with prognostic imaging features
Inspired by the idea from previous studies that the prog-
nostic value of the image features is evaluated by leveraging
survival data in gene expression datasets [20, 26, 27], we
established a radiogenomic map by identifying gene signa-
tures associated with the prognostic imaging phenotype. To
this end, gene signatures from the whole genome were
identified to determine their associations with the prognos-
tic imaging phenotype from MRI data. An elastic net was
established for the association analysis, which was a regular-
ized regression method that linearly combined the L1 and
L2 penalties of the LASSO and ridge methods. Model pa-
rameters (i.e. α and λ) were selected by applying a tenfold
cross-validation to reduce potential model overfitting. The
tumour genes that constituted the signature were investi-
gated using the KEGG pathway enrichment analysis to con-
firm the previously identified pathways that were enriched
in the entire tumour or tumour subregions.

Assessment of the prognostic value of gene signatures
for image features
Gene signatures were identified by the radiogenomic link
between the prognostic image features and gene expres-
sion data from the Radiogenomic cohort. We used
tumour gene expression-based signatures for the image
features, testing their prognostic value by assessing the
associations with RFS and OS in independent cohorts
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from the TCGA cohort. Based on these gene signatures
and the estimated parameters in the Radiogenomic co-
hort, a regression model was established, and the same
threshold as that of the survival model in the training
cohort was applied to stratify patients with different
prognoses.

Statistical analysis
The univariate and multivariate Cox proportional haz-
ards models were both used to build survival models as-
sociated with OS and RFS. Kaplan-Meier analysis was
used to estimate survival probability. We determined the
optimal threshold value as the cutoff point with the
smallest log-rank p value in the training cohort to iden-
tify prognostic imaging features. The Harrell's concord-
ance index (c-index) and the log-rank test were used to
assess the prognostic performance. The hazard ratios
(HRs) with 95% confidence intervals (CIs) were
assessed to compare the OS and RFS rates between the
stratified groups on Kaplan-Meier plots.
To control the false discovery rate (FDR) in multiple

statistical testing, the Benjamini-Hochberg method was
used in the univariate survival analysis. FDR-corrected p
values of less than 0.1 were considered to be statistically
significant. The hypergeometric test was used to assess
whether genes within a particular pathway were signifi-
cantly overexpressed. All statistical analyses were per-
formed in R (R Foundation for Statistical Computing,
Vienna, Austria).

Results
Prognostic image feature identification and validation
The prognostic significance of the 14 MRI features was
assessed, and the results showed that features including
volume, median value, compactness, maximum probabil-
ity in the precontrast series and the median value in the
postcontrast series were significantly (corrected p values
< 0.05) associated with RFS (Table 2). Among them, the
feature maximum probability stratified patients with sig-
nificant differences (p = 0.0009) in RFS, and the optimal
threshold was 0.096 (Fig. 2).
After removing features with high similarity to each

other (i.e. Pearson correlation coefficient between two
image features greater than 0.7), a multivariate Cox re-
gression analysis was performed using seven features.
More specifically, the image features of skewness, correl-
ation and maximum probability in S-0, and kurtosis,
skewness, median value and maximum probability in the
postcontrast series were used and included in the multi-
variate Cox regression model. The results showed that
the maximum probability obtained in the S-0 was the
most significant feature that was independently corre-
lated with RFS (p = 0.0018). In addition, the image fea-
tures of the median value of S-1 and tumour volume
were independently associated with RFS with p values of
0.0036 and 0.0032, respectively.
We performed a survival analysis using the same 14

MRI features in the reproducibility cohort to analyse any
associations with RFS and OS (Table 3). Image features
of volume, maximum probability and compactness were

Table 2 Image features for survival analysis

Feature Beta HR (95% CI) Wald test p value Corrected p

Volume† 0.47 1.6 (1.2–2.2) 8.4 0.004 0.024

Maximum probability† 0.46 1.6 (1.1–2.2) 7.9 0.005 0.024

Median‡ 0.44 1.6 (1.1–2.1) 7.6 0.006 0.024

Median† 0.44 1.6 (1.1–2.1) 7.3 0.007 0.024

Compactness† 0.43 1.5 (1.1–2.2) 6.4 0.011 0.031

Energy† 0.34 1.4 (1.0–1.9) 5.2 0.023 0.054

Skewness† − 0.56 0.57 (0.3–1.1) 2.9 0.087 0.170

Correlation† 0.25 1.3 (0.85–1.9) 1.4 0.230 0.400

Correlation‡ 0.24 1.3 (0.79–2.0) 1.0 0.320 0.500

Maximum probability‡ − 0.11 0.9 (0.57–1.4) 0.20 0.650 0.820

Kurtosis‡ 0.086 1.1 (0.72–1.7) 0.16 0.690 0.820

Energy‡ 0.073 1.1 (0.75–1.6) 0.15 0.700 0.820

Kurtosis† 0.047 1.0 (0.76–1.4) 0.08 0.770 0.830

Skewness‡ − 0.014 0.99 (0.67–1.4) 0 0.940 0.940

p values were adjusted by the Benjamini-Hochberg method
HR hazard ratio, CI confidence intervals
†Precontrast series (S-0)
‡Subtraction between the early postcontrast and precontrast series (S-1)
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significantly associated with both RFS and OS
(corrected p values < 0.05), which were also tested
for significant association with RFS in the training
cohort. Additionally, the feature of energy showed a
significant association with RFS and OS with
corrected p values of 0.042 and 0.09, respectively. As
a comparison, this feature was significantly corre-
lated with RFS, with a p value of 0.023, but was not

significant after FDR correction (p = 0.054) in the
training set of 61 patients.

Association between gene modules and prognostic image
features in tumours and tumour subregions
Features that were identified to have prognostic implica-
tions were further examined by evaluating the associa-
tions with the gene modules in the Radiogenomic cohort

Fig. 2 The image features of a maximum probability and b volume are used to stratify patients with different prognoses

Table 3 Image features for survival analysis in the reproducibility cohort

Feature Recurrence-free survival Overall survival

HR (95% CI) p FDR HR (95% CI) p FDR

Volume† 1.5 (1.2–1.8) < 10−3 0.003 1.6 (1.3–2) < 10−4 < 10−3

Maximum probability† 1.3 (1.1–1.6) 0.012 0.042 1.4 (1.1–1.7) 0.001 0.006

Median‡ 0.98 (0.73–1.3) 0.890 0.890 0.89 (0.56–1.4) 0.630 0.969

Median† 1 (0.78–1.4) 0.840 0.890 0.97 (0.67–1.4) 0.890 0.969

Compactness† 1.5 (1.2–1.9) 0.002 0.011 1.7 (1.3–2.2) < 10−4 < 10−3

Energy† 1.3 (1.1–1.5) 0.012 0.042 1.3 (1.1–1.6) 0.003 0.009

Skewness† 1.1 (0.81–1.4) 0.580 0.677 1.3 (0.92–1.8) 0.150 0.300

Correlation† 1.2 (0.87–1.6) 0.290 0.543 1.1 (0.75–1.5) 0.690 0.969

Correlation‡ 1.2 (0.89–1.7) 0.210 0.490 1.4 (0.91–2) 0.130 0.300

Maximum probability‡ 0.9 (0.65–1.2) 0.520 0.662 1 (0.71–1.4) 0.980 0.980

Kurtosis‡ 0.87 (0.59–1.3) 0.490 0.662 0.98 (0.67–1.4) 0.900 0.969

Energy‡ 0.84 (0.57–1.2) 0.380 0.591 0.95 (0.65–1.4) 0.780 0.969

Kurtosis† 1.2 (1–1.5) 0.031 0.087 1.3 (1.1–1.5) 0.010 0.028

Skewness‡ 0.84 (0.6–1.2) 0.310 0.543 1 (0.73–1.4) 0.890 0.969

p values were adjusted by the Benjamini-Hochberg method
The image features that are significantly associated with RFS and OS are shown in italics
HR hazard ratio, CI confidence intervals
†Precontrast series (S-0)
‡Subtraction between the early postcontrast and precontrast series (S-1)
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(n = 87) with the corresponding DCE-MRI and gene
expression data. We removed genes expressed in only
20% of the patients and those with no expression values
(n = 3759). We then deleted genes with low variance of
expression across patients, and ultimately, the top 5000
genes with the largest variance were retained in the data-
set. For the network construction, a pairwise correlation
matrix was computed, and then an adjacency matrix was
calculated by raising the correlation matrix to the power
of five [25]. To obtain meaningful and distinct modules,
we set the minimum module size to 60 genes and the
minimum height for merging modules to 0.25. After that,
we obtained 16 gene modulates. Detailed information of
the top 5 significantly enriched molecular pathways in the
16 gene modules is shown in Additional file 1: Table S1.
We first examined the correlation between image

features from the entire tumour and co-expressed
gene modulates, and the results showed that three
features had a high correlation with the gene modules
(Pearson correlation coefficient > 0.5). Among them,
only tumour volume, which was also identified to
have prognostic implications in the training cohort,
remained relatively high related to the gene modulates
(Table 4).
We also performed the same association analysis be-

tween gene expression modules and image phenotypes
using features from the tumour subregions (Table 4).
Based on the CAM analysis of breast MR images, tu-
mours were decomposed into three compartments
(Fig. 3a–c). Among all dynamic curves, regions repre-
senting plasma input showed a kinetic pattern of rapid
wash-in and fast wash-out (Fig. 3d). The kinetics of the
fast-flow subregion showed a slightly higher wash-in rate
than that of the whole tumour, while the kinetics of the
slow-flow subregion had the lowest wash-in rate and the
highest wash-out rate.

Specifically, the correlation between image features and
fast-flow kinetics-related tumour subregions is shown in
Fig. 4. Among them, the prognostic features of maximum
probability in the tumour subregions showed an association
with the gene module/eigengene (labelled tan, n = 158).
Additionally, the features in regions with fast-flow kinetics
had a higher correlation with the gene expression module
than that of the features from regions related to slow-flow
kinetics. The correlation between image features and the
other subregions, i.e. the plasma input and slow-flow kinet-
ics regions, is shown in Additional file 2: Figure S1 and
Additional file 3: Figure S2, respectively.
We examined the distributions of the image features

from the entire tumour and from the decomposed tumour
subregions. In low-risk patients, the maximum probability
features obtained from the tumour subregions showed a
lower level of variance and a lower interquartile range
than those of features based on the entire tumour, and
this trend of decreased variance in the subregions com-
pared with that in the entire tumour was more obvious
for high-risk patients (Fig. 5). In other words, features
from the tumour subregions had more concrete values,
which may be explained by the fact that the subregions
have homogeneous dynamic patterns alleviating noise in-
formation induced by tumour heterogeneity.

Biological annotation for the modules that were
associated with prognostic image features
A further KEGG enrichment analysis was performed on
the gene module that was associated with prognostic
image features (tan, n = 158) using KOBAS 3.0 (Table 5).
The complete list of 158 genes with biological annotations
[28] is shown in Additional file 1: Table S2. Ten pathways
were significantly enriched with corrected p values < 0.1.
Among these, the Ras signalling pathway, a tumour
growth-, proliferation- and cell survival-related pathway

Table 4 List of image features in the entire tumour and intratumoural subregions and the correlations with gene expression
modules

Type Module Feature

Entire tumour

Entire tumour Tan (n = 158) Kurtosis† (r = 0.67)

Magenta (n = 198) Volume† (r = 0.6), compactness† (r = 0.52)

Tumour subregions

Plasma input Tan (n = 158) Kurtosis† (r = 0.7); volume† (r = 0.76); energy† (r = 0.55)

Magenta (n = 198) Compactness† (r = 0.54)

Fast-flow kinetics Tan (n = 158) Kurtosis† (r = 0.68); energy† (r = 0.56); Maximum probability† (r = 0.59)

Green yellow (n = 166) Energy‡ (r = 0.58); maximum probability‡ (r = 0.52)

Slow-flow kinetics Tan (n = 158) Kurtosis† (r = 0.55); energy† (r = 0.6); Maximum probability† (r = 0.53)

Magenta (n = 198) Compactness† (r = 0.59)

Only image features that have a high correlation (r > 0.5) with the gene module are shown. The image features with prognostic implications are in bold
†Precontrast series (S-0)
‡Subtraction between the early postcontrast and precontrast series (S-1)
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[29, 30], was mostly enriched (p = 0.0044). Additionally,
two significantly enriched pathways of apoptosis (p =
0.0165) and microRNAs in cancer (p = 0.0343) have been
reported to be associated with breast cancer [31, 32].

Radiogenomic analysis identified gene signatures for
prognostic image features
In addition to the biological annotation for gene mod-
ules, we built a radiogenomic map to determine gene
signatures by associating gene modules with prognostic
image feature indicators. We selected 100 genes that
were mostly correlated with the image features and then
fed them into an elastic net regression model to regress
the maximum probability feature. The parameters were
selected through cross-validation with α and λ values of
0.2 and 0.0037, respectively. This model selected a sub-
set of 38 gene signatures to estimate the tumour volume
feature using elastic net (R2 = 0.8159) with parameters of
α and λ of 0.65 and 0.156, respectively. Additionally, we
identified 43 gene signatures for regressing the image
maximum probability feature from the fast-flow kinetics
subregion, using elastic net with an R2 of 0.8073. Finally,
the regression model (R2 = 0.8969, α = 0.800 and λ =
0.0005) with 57 gene signatures was built for predicting

the maximum probability feature in the slow-flow
kinetics-associated tumour subregion.
We further examined the biological functions of these

gene signatures related to the maximum probability fea-
ture, and the results of the KEGG pathway analyses are
shown in Table 6. After controlling for FDR, we obtained
10 enriched pathways (p < 0.1). The complete list of these
43 genes is shown in Additional file 1: Table S2. However,
the pathway analysis for the tumour gene signatures re-
lated to the tumour volume (Additional file 1: Table S3)
or maximum probability features from the slow-flow
kinetics-associated tumour subregion (Additional file 1:
S4) showed no significantly (corrected p values > 0.05)
enriched pathways.

Assessment of prognostic gene signatures in an
independent dataset
We included 906 patients who had available OS data
and 771 patients with available gene expression and sur-
vival data in the TCGA cohort. The identical gene signa-
tures and parameters included in the previous regression
model that was trained on the Radiogenomic cohort
were applied using the elastic net model to regress the
prognostic image features, for which both RFS and OS
were associated. We evaluated the prognostic value of

Fig. 3 Example of CAM applied to a a breast image. b Segmented tumour image. c The tumour is decomposed into three regions, and images
of the associated regions represent plasma input, fast-flow kinetics and slow-flow kinetics. d Image pixels are grouped into clusters using an
affinity propagation clustering method. The clusters represented by the vertices are identified by CAM. e Dynamic enhancement curves for the
tumour and the three tumour subregions representing tissue-specific compartments, in which the blue, red and green colours represent the
plasma input, fast-flow kinetics and slow-flow kinetics, respectively
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Fig. 4 Image features from the fast-flow kinetics subregion are correlated with the gene modules

Fig. 5 Distribution of the maximum probability feature in the entire tumour and tumour subregions in groups with a low and b high risk
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image features extracted from the entire tumour and
from the tumour subregions by stratifying patients with
different survival outcomes.
Regarding the image features derived from the en-

tire tumour, the tumour volume feature identified by
gene signatures did not show a significant association
with either RFS or OS, with p values of 0.190 and
0.200, respectively. The maximum probability feature
identified by gene signatures showed a significant as-
sociation with only OS (p = 0.033), whereas no signifi-
cant association was found with RFS (p = 0.130)
(Fig. 6a, b).
For image features extracted from tumour subregions,

the prognostic value of the maximum probability was
assessed, and significant results were observed for the
fast-flow kinetics-related subregion based on a regres-
sion model using 43 gene signatures, which significantly
stratified patients (threshold = 0.096) into 2 groups in
terms of RFS and OS, with p values of 0.027 and 0.035,

respectively (Fig. 6c, d). This feature from the slow-flow
kinetics-related region showed no significant association
(p = 0.055) with either RFS or OS (p = 0.210) (Fig. 6e, f).
The findings indicate that the tumour subregion-based
regression model exhibited better performance than that
of the model based on the entire tumour.

Discussion
This study explored the prognostic tumour features
from DCE-MRI to stratify patients into groups with dif-
ferent survival rates. Gene expression signatures were
identified by establishing their correlations with the
prognostic image features. The functional information of
these features, both based on the entire tumour and
CAM-generated subregions, was further investigated by
evaluating their associations with gene expression mod-
ules, in which breast cancer-related pathways were iden-
tified. The prognostic value of these gene signatures was
confirmed in an independent dataset, which indicated
significant associations between the gene signatures and
patient survival. The results demonstrated that imaging
features derived from tumour subregions had more
prognostic value than those derived from the entire
tumour did.
Previous studies [33] have associated image pheno-

types with gene expression, early metastasis and long
noncoding RNA expression [10]. Zhu et al. examined
the relationship between multilayer molecular data from
the TCGA dataset and paired DCE-MRI data from the
TCIA features, including transcriptional activities of
pathways, microRNA expression, protein expression,
somatic mutations and gene copy number variations of
all genetic pathways [34]. A related study identified
tumour DCE-MRI features in the parenchymal tissue
surrounding breast tumours to be associated with sur-
vival and gene pathways [20]. Our radiogenomic strategy
evaluated the prognostic value of the image features by
leveraging gene expression data from public gene ex-
pression datasets, which has been previously performed
by several studies on nonsmall cell lung cancer (NSCLC)
[26, 27] and breast cancer [20]. Our study builds upon
previous work and adds to the exploration of how im-
aging features derived from spatially distinct tumour
areas by using CAM can potentially provide useful infor-
mation for breast cancer prognosis. Different from the
other studies [14, 35] that used texture features to reflect
the extent of heterogeneity in the entire tumour, our fea-
ture analysis was conducted in tumour subregions that
exhibited specific dynamic patterns.
We identified that large tumour volume was associated

with poor RFS in the training and the reproducibility co-
horts, which is consistent with the findings of a previous
study [36]. However, this feature regressed by gene sig-
natures did not show a significant association with either

Table 5 Pathway analysis for the tan module

Category p value Corrected p value

Ras signalling pathway < 10−4 0.0044

Hedgehog signalling pathway < 10−4 0.0044

Apoptosis 0.0003 0.0165

PI3K-Akt signalling pathway 0.0005 0.0215

Longevity regulating pathway 0.0006 0.0219

Notch signalling pathway 0.0011 0.0317

MicroRNAs in cancer 0.0014 0.0343

Spliceosome 0.0022 0.0487

Alzheimer’s disease 0.0049 0.0833

Fatty acid elongation 0.0051 0.0833

p values were adjusted by the Benjamini-Hochberg method

Table 6 Pathway analysis of 43 identified genes in the
regression model

Category p value Corrected p value

Systemic lupus
erythaematosus

0.0094 0.0779

Transcriptional
misregulation in cancer

0.0159 0.0779

Glycosaminoglycan
biosynthesis-keratan sulfate

0.0168 0.0779

Rap1 signalling pathway 0.0213 0.0779

Regulation of actin cytoskeleton 0.0221 0.0779

Ras signalling pathway 0.0246 0.0779

Bile secretion 0.0733 0.1740

Melanoma 0.0733 0.1740

Taste transduction 0.0850 0.1793

Ribosome 0.0137 0.2598

p values were adjusted by the Benjamini-Hochberg method
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Fig. 6 Kaplan-Meier curves of RFS and OS with maximum probability, respectively. a, b The entire tumour. c, d Fast-flow kinetics tumour
subregions. e, f Slow-flow kinetics tumour subregions
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RFS or OS in the TCGA cohort. We identified the
tumour morphological feature of compactness, and its
high value is associated with poor RFS. This finding is
partly consistent with that of a previous study, which
shows that a low value of compactness is also signifi-
cantly associated with the luminal A subtype of breast
cancer, which has a favourable rate of survival [5]. On
the other hand, we observed that a higher value of
prognostic-related maximum probability, which mea-
sures the most frequently appearing value of each pixel
relationship in the GLCM, was correlated with worse
survival than a lower value was. The prognostic value of
this feature was assessed in the pathway analysis, which
showed cancer-related biological functions. This feature,
which is derived from regions with fast-flow kinetics ra-
ther than from the entire tumour, showed significant as-
sociations with both RFS and OS. One of the main
causes of treatment failure (i.e. poor survival) is locore-
gional recurrence within a specific tumour region; this
conclusion may be explained by the fact that the CAM-
based decomposing method can separate spatially mixed
regions caused by tumour heterogeneity and hence en-
hance the prognostic performance of this feature.
Notably, this texture feature derived from the precon-

trast image series showed better prognostic performance
than that of the same feature derived from the postcon-
trast image series. Similar findings regarding imaging fea-
tures associated with clinical biomarkers on DCE-MRI
precontrast series are presented elsewhere [13, 37], find-
ings which are partly consistent with our results. Texture
features, which cannot be accurately or reliably evaluated
using a visual or subjective method, may be used as candi-
date biomarkers that are associated with the biological
characteristics of tumours.
We performed pathway analysis on both gene modules

and gene signatures that were related to prognostic image
features. For both analyses, we identified the same Ras sig-
nalling pathway as being significantly enriched (corrected
p < 0.1) in both of these gene sets. This pathway, which is
a key regulator of tumour growth, metastasis [38] and ma-
lignant transformation and is responsible for cell prolifera-
tion and survival [29, 30], is aberrant in most human
tumours. The proteins that Ras encodes have been consid-
ered drug targets exhibiting anti-oncogenic effects in
many cancer cell lines [39–41].
Despite some significant findings, several limitations

should be addressed. First, our patient sample size was rela-
tively small because only a limited number of breast MR
images were available in the TCGA and TCIA databases.
Further external studies should be performed to confirm
the prognostic value of image features in our study. Second,
DCE-MRI data were acquired from a multi-institution co-
hort with varied imaging parameters, introducing diversity
among the images. Third, although we observed the same

Ras signalling pathway that was significantly enriched (cor-
rected p < 0.1) in two gene sets, the agreement was low.
This result may be partly explained by the heterogeneity of
the gene signature data identified by the module analysis
versus that identified by the regression model. Fourth, de-
composition accuracy relies on the number of image series,
and this method is difficult to perform in DCE-MR image
series with little time-series data, i.e. less than three post-
contrast series (e.g. DCE-MRI data in the training cohort).
Therefore, we did not perform CAM in the training or the
reproducibility datasets, which only had one or two post-
contrast series.
We performed the radiogenomic study on the entire

tumour and intratumoural subregions based on the hy-
pothesis that some specific regions are biologically more
aggressive than the other regions, and subregion analysis
may be more useful compared with the entire tumour in
discriminating patients with different survival and in as-
sociating with aberrant gene expression. This may partly
explain why the imaging features from the entire tumour
shown to be prognostic did not show the same radioge-
nomic associations with gene expression modules as the
subregion-specific features on the Radiogenomic cohort.
On the other hand, although we have identified prognos-
tic image features on the entire tumour in the first ex-
periments, this may not directly hold for these features
within the CAM generated tumour subregions. Future
study is needed to confirm this study by directly validat-
ing the results on large breast cancer cohorts based on
sufficient temporal resolution of DCE-MRI and the cor-
responding survival data to verify whether subregion
analysis augment the prognostic value of radiomics in
tumour. Despite these limitations, the TCGA dataset
provided a unique opportunity to examine the radioge-
nomic associations between breast MRI and biological
function and survival in breast cancer.

Conclusion
In conclusion, intratumoural decomposition identified fast-
flow kinetics tumour subregions in which DCE-MR image
features were used as biomarkers for stratifying patients
based on different survival rates. The prognostic image fea-
tures were associated with a breast cancer-related pathway.
Further work is needed before these quantitative MRI pa-
rameters can be used to facilitate the noninvasive assess-
ment of breast cancer characteristics in clinical practice.
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