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Cooperation of neurotrophin receptor TrkB
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Abstract

Background: Patients with primary breast cancer that is positive for human epidermal growth factor receptor 2
(Her2+) have a high risk of developing metastases in the brain. Despite gains with systemic control of Her2+
disease using molecular therapies, brain metastases remain recalcitrant to therapeutic discovery. The clinical
predilection of Her2+ breast cancer cells to colonize the brain likely relies on paracrine mechanisms. The neural
niche poses unique selection pressures, and neoplastic cells that utilize the brain microenvironment may have a
survival advantage.

Methods: Tropomyosin-related kinase B (TrkB), Her2, and downstream targets were analyzed in primary breast cancer,
breast-to-brain metastasis (BBM) tissues, and tumor-derived cell lines using quantitative real-time PCR, western blot, and
immunohistochemical assessment. TrkB function on BBM was confirmed with intracranial, intracardiac, or mammary fat
pad xenografts in non-obese diabetic/severe combined immunodeficiency mice. The function of brain-derived
neurotrophic factor (BDNF) on cell proliferation and TrkB/Her2 signaling and interactions were confirmed using
selective shRNA knockdown and selective inhibitors. The physical interaction of Her2-TrkB was analyzed using
electron microscopy, co-immunoprecipitation, and in silico analysis. Dual targeting of Her2 and TrkB was analyzed
using clinically utilized treatments.

Results: We observed that patient tissues and cell lines derived from Her2+ human BBM displayed increased activation
of TrkB, a neurotrophin receptor. BDNF, an extracellular neurotrophin, with roles in neuronal maturation and homeostasis,
specifically binds to TrkB. TrkB knockdown in breast cancer cells led to decreased frequency and growth of brain
metastasis in animal models, suggesting that circulating breast cancer cells entering the brain may take advantage of
paracrine BDNF-TrkB signaling for colonization. In addition, we investigated a possible interaction between TrkB and
Her2 receptors on brain metastatic breast cancer cells, and found that BDNF phosphorylated both its cognate TrkB
receptor and the Her2 receptor in brain metastatic breast cancer cells.

Conclusion: Collectively, our findings suggest that heterodimerization of Her2 and TrkB receptors gives breast cancer
cells a survival advantage in the brain and that dual inhibition of these receptors may hold therapeutic potential.
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Background
Metastasis, the spread of tumors from one organ to
another, is responsible for the majority of cancer-
related deaths [1]. The brain is unlike any other
metastatic site due to its unique microenvironment
[2, 3]. Within the brain, astrocytic glial cells normally
function to support and maintain a balanced microenvir-
onment for neuronal signaling and respond with reactive
gliosis upon brain injury [4]. But when a neoplastic cell
penetrates the brain’s barriers, astrocytes provide early
and robust cellular responses by producing and releasing
neurotrophins, such as brain-derived neurotrophic factor
(BDNF) [5].
BDNF is a specific ligand for tropomyosin-related

kinase B (TrkB), a tyrosine kinase receptor, which
upon binding BDNF activates several pathways, in-
cluding the phosphoinositide-3 kinase (PI3K) pathway
[6, 7]. BDNF-TrkB signaling has been suggested to
mediate cancer cell resistance to chemotherapy and
promote growth of neoplastic cells. One way this has
been suggested to occur is through autocrine signaling
in primary tumor cells [8, 9]. Consistent with this,
autocrine BDNF-TrkB signal transduction is associ-
ated with cell proliferation, differentiation, survival,
and invasion [9–11]. However, the possible paracrine
role of TrkB activation by BDNF in the brain micro-
environment in metastatic Her2+ breast cancer needs
to be further elucidated.
Although all breast cancer subtypes can metastasize

to the brain, patients with Her2+ and TN primary
breast tumors have a higher risk of developing brain
metastasis [12–14]. Her2 is a transmembrane tyrosine
kinase receptor that is enriched in more than 20% of
breast cancers, and about 35% of Her2+ patients will
develop brain metastases [15]. Furthermore, unlike patients
withTN breast cancer, Her2+ patients develop brain metas-
tases even while their systemic disease is well-controlled
[16–18]. However, the molecular characteristics of Her2+
breast cancer cells that allow them to exploit the brain
microenvironment for successful colonization remain
largely unknown.
We hypothesized that neoplastic cells, including meta-

static Her2+ breast cancer cells, in the brain microenviron-
ment use BDNF produced and released by surrounding
astrocytes. We found that astrocyte-derived BDNF in the
neural niche is important for initial tumor cell colonization
and proliferation of breast-to-brain metastasis (BBM) cells.
In addition, microenvironmental BDNF-mediated activa-
tion of TrkB resulted in increased metastatic potential of
Her2+ cells and formation of Her2-TrkB heterodimers on
breast cancer cells. These results further support the idea
that metastatic cells with adaptations that support growth
in a foreign microenvironment have an advantage for
colonizing the brain.

Methods
Breast cancer brain metastasis cell cultures and treatments
Fresh Her2+ and TN human tumor samples were ac-
quired from patients undergoing resection of breast to
brain metastases, in accordance with a City of Hope
Institutional Review Board (IRB)-approved protocol
(IRB #05091). A portion of each specimen was cultured in
DMEM-F12 (Life Technologies) supplemented with 10%
fetal bovine serum (FBS), 1% glutamax, and 1% Anti-Anti
(Life Technologies) in collagen-coated (Life Technologies)
T75 flasks to derive low-passage primary cell lines
(COH-BBM1 (BBM1), and COH-BBM2 (BBM2) and
COH-BBM3 (BBM3)) [19]. Established breast cancer
cell lines MDA-MB-361 (361), BT474 and SkBr3 cells
were also cultured in the aforementioned DMEM-F12
in T75 flasks. All cells were maintained at 37 °C and
5% CO2.
To obtain conditioned medium from astrocytes and

fibroblasts, cells were grown in serum-free DMEM for
24 h before collecting and purifying the medium by
centrifugation (4000 × g, 15 minutes). For growth in
conditioned medium, BBM cells were first grown for
24 h in serum-free DMEM. The growth medium was
removed and the cells were washed once with fresh
DMEM before adding the conditioned medium. Cells
were grown for differing amounts of time in the condi-
tioned medium, as indicated for specific experiments.
For treatment with BDNF, lapatinib, cyclotraxin B, XL
147 or GDC0941, cells were grown overnight in serum-
free mediuma before treatment with BDNF, lapatinib
and cyclotraxin B for various time periods. For details
on materials and methods please see Additional file 1.

Real-time PCR and western blot analysis
Total RNA was extracted using Trizol (Invitrogen) and
treated with RNase-free DNase (Qiagen) according to
manufacturer instructions. To analyze expression of TrkB
and Her2, cDNA was synthesized using the iScript reverse
transcription kit (Bio-Rad). Real-time quantification
was done using specific primers and SYBR select mas-
ter mix for CFX (Applied Biosystems). Control PCR
reactions were done using glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) and/or actin-specific Taq-
Man probe.
For western blot analysis, total cell lysates were pre-

pared in protein lysis buffer (50 mM TrisHCl, pH 7.5;
100 mM NaCl; 1% Triton X-100; 1 mM EDTA;
1 mM EGTA, 50 mM β- glycerophosphoran, 1 mM
dithiothreitol, 1 mM phenylmethanesulfonyl fluoride;
2 mM sodium orthovanadate, 10 μg/mL aprotinin;
10 μg/mL leupeptin and 10 μg/mL pepstatin A) by
incubating cells (20 minutes, 4 °C) followed by centri-
fugation (15000 × g, 15 minutes, 4 °C). The protein ex-
tracts were analyzed by western blot using antibodies
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specific to TrkB and p-TrkB (Abcam); Her2 and phosphor-
ylated (p)-Her2 (Millipore); phosphorylated protein kinase
B (p-AKT), phosphorylated mitogen-activated protein
kinase (p-MAPK), and phosphorylated phosphoinosi-
tide-specific phospholipase y (p-PLCy; Cell Signaling).
Actin and α-tubulin were used as loading controls.

Electron microscopy
Control BBM1 cells or BBM1 cells treated with
25 ng/mL BDNF were collected and cryo-fixed in a
high-pressure freezer. Sections (~70 nm thick) were
cut using a Leica Ultra cut UCT ultramicrotome with
a diamond knife and placed on mesh nickel electron
microscope grids. The grids were stained with 2% ur-
anyl acetate in 70% ethanol for 1 minute followed by
Reynold’s lead citrate staining for 1 minute. For post-
embedding immuno-labeling, antigens were detected
with 10 nm (for TrkB) or 20 nm (for Her2) colloidal
gold conjugated secondary antibody. For pre-
embedding immuno-labeling, cells were incubated with
TrkB antibody overnight and then incubated with sec-
ondary antibody conjugated with 1.4 nm nanogold at
room temperature. Cells were fixed (0.2% glutaralde-
hyde in PBS, room temperature, 10 minutes) and devel-
oped for 5 minutes with an HG silver enhancement kit
(Nanoprobes). After the cell pellet was sectioned, post-
embedding labeling was performed with the Her2 anti-
body overnight. Labeled sections were incubated with
colloidal gold conjugated secondary antibody (15 nm)
for 1 h. Images were acquired at × 11000 magnification.
Cells were imaged and receptors were quantified by
analyzing 200 images per receptor (100 images from
the pre-embedding method and 100 images analyzed
from the post-embedding method).

Co-immunoprecipitation
Cells were homogenized with lysis buffer in the pres-
ence of protease and phosphatase inhibitors for 15 mi-
nutes on ice as described [20]. Protein was harvested
by centrifugation (13000 × g, 10 minutes, 4 °C). The
protein extract (750 μg) was incubated overnight at
4 °C with Protein G agarose beads (Invitrogen) pre-
conjugated with primary antibody (4 μg). Agarose
beads conjugated with IgG were used as a control.
Beads were washed five times with high salt, low salt,
LiCl, and TE buffers containing 0.04% NP4, by incu-
bating for 5 minutes at 4 °C followed by centrifuga-
tion (750 × g, 3 minutes). Beads were then
resuspended in loading buffer (95% Laemmli Buffer,
5% β-mercaptoethanol).
The protein extracts (input) and the immunoprecipitates

were analyzed by western blot using p-Her2 (Life
Technologies) and p-TrkB (Abcam) primary and horse-
radish peroxidase (HRP)-conjugated secondary antibodies.

Actin antibody was used as a quantitative control for the
inputs. Membranes were developed using Supersignal
West Pico Chemiluminescent Substrate and analyzed
under Li-Cor scanning (Li-Cor).

In vivo xenografts
All mouse studies were conducted in accordance with
a City of Hope Institutional Animal Care And Use
Committee-approved protocol (COH IACUC #10044).
For evaluating tumor growth and survival, BBM1 or
BBM1-KD and BBM2 and BBM2-KD cells were transduced
with a firefly luciferase lentivirus (firefly luciferase-Zs-
Green; Addgene) and selected based on green-fluorescent
protein (GFP) expression for injection into non-obese dia-
betic (NOD)-severe combined immunodeficiency (SCID)
mice. Firefly luciferase-labeled BBM1 or BBM1-KD cells
and BBM2-BBM2-KD (200,000 cells) in 2 μL medium for
cranial or 20 μL medium for mammary fat pad (MFP) were
injected into the respective sites. Tumor growth was moni-
tored weekly by BLI on a Xenogen Imaging System with
Living Image Software for data acquisition (Xenogen Corp).
For treatment with PI3k inhibitor, the MFP-implanted
animals were observed by BLI for tumor appearance.
At 10 days post implantation of BBM1 cells, the
tumor-bearing animals were orally dosed with GDC-
0941(150 mg/kg), formulated in 0.5% methylcellulose
and 0.2% Tween-80 (MCT) at a 3-day interval. At the
conclusion of the experiments, mice were euthanized
and the injection and metastasis sites were dissected
and placed in formalin (Fisher Scientific).
For in vivo studies for competitive xenografts, BBM1

cells were transduced with firefly luciferase-tagged with
red-fluorescent protein (RFP) (BBM1-FF-RFP) and BBM1-
KD cells were transduced with Renilla tagged with GFP
(BBM1-KD-Ren-GFP). GFP+ or RFP+ populations were
collected by fluorescence-activated cell sorting (FACS).
Cells were injected intracardially (50,000 cells) or into the
MFP (100,000 cells) of NOD-SCID mice in a BBM1:
BBM1-KD ratio of 1:1 or 1:4. Tumor growth was moni-
tored weekly by BLI. At the conclusion of experiments,
mice were euthanized and the primary and metastasis
sites were dissected and placed in formalin (Fisher
Scientific).

Statistical analyses
Data represented in the figures are the mean values ±
standard error. Statistical significance was assessed with
one-way or two-way analysis of variance (ANOVA) and
the Bonferroni multiple comparison test (GraphPad
Prism). Results were considered statistically significant
for p values <0.05, denoted as *p < 0.05, **p < 0.01, ***p <
0.001 and ****p < 0.0001.
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Results
Her2+ BBMs express high levels of phosphorylated TrkB
Reactive astrocytes in central nervous system (CNS)
malignancies release neurotrophins and bone morpho-
genic proteins. We recently found that bone morphogenic
protein-2 (BMP-2), a ligand that promotes astrocytic dif-
ferentiation, enhances the ability of BBM tumors to
engraft and colonize the brain [21]. Neurotrophins are
growth factors that promote neuronal differentiation and
survival [22, 23]. To investigate the importance of neuro-
trophin receptors in BBM, we first compared p-TrkB in
tumor tissues derived from Her2+ versus TN patient pri-
mary tumors (12 Her2+ and 12 TN) and from BBM (6
Her2+ and 3 TN). Although primary Her2+ breast tumors
expressed significantly higher levels of Her2 as compared
to TN tumors (p < 0.05), levels of p-TrkB were low, re-
gardless of tumor subtype. In BBM tissue, however,
levels of both p-Her2 and p-TrkB were significantly
higher (p < 0.05) in Her2+ as compared to TN tumors
(Fig. 1a). Quantitative real-time (qRT)-PCR analysis
showed subtle differences in TrkB transcript levels between
Her2+ and TN primary breast cancer and BBM cells
(Additional file 2: Figure S1). Immunofluorescence stain-
ing confirmed greater p-TrkB expression in Her2+ BBM
tumor tissue samples relative to Her2+ primary breast
tumor samples (Fig. 1b). In addition, p-TrkB co-localized
with Her2 in patient-derived BBM cells (Fig. 1c and Add-
itional file 2: Figure S1b). More p-TrkB was also observed
in cultured brain metastasis cells (BBM1 and BBM2) as
compared to TN brain metastasis (MDA-MB-231Br ((231
Br)) and Her2+ primary breast cancer cell lines (SkBr3)
(Fig. 1c and Additional file 2: Figure S1b). Immunoblotting
experiments confirmed the higher levels of p-TrkB in
BBM cells versus primary Her2+ breast cancer cells
(Fig. 1d). To clarify whether the high TrkB expression
in BBM cells is influenced by the brain microenviron-
ment, BBM1 cells transduced with firefly luciferase-Zs-
Green were xenografted into the MFP of NOD-SCID
mice, and tumor growth was monitored by biolumines-
cence imaging (BLI). These tumors subsequently metasta-
sized to the brain, bone, liver, and lung, but the brain
metastases had significantly (p < 0.05) greater TrkB mRNA
levels relative to metastases in other regions (Add-
itional file 2: Figure S1c). This suggests the brain
microenvironment uniquely promotes TrkB expression
in colonizing Her2+ breast cancer cells.

BDNF increases proliferation of Her2+ BBM cells
To test whether BDNF-TrkB signaling promotes brain
metastasis, we established lentiviral short hairpin (sh)RNA-
mediated knockdown of TrkB in BBM1 (BBM1-KD and
BBM1-KD2) and MDA-MB-361(361-KD and 361-KD2)
cells. Knockdown was confirmed by qRT-PCR and western
blot analysis (Fig. 2a, Additional file 2: Figure S2a).

Culturing these cells in medium containing BDNF (25
ηM) for 12 days led to increased cell proliferation in
BBM1 and 361 TrkB-expressing cells (p < 0.05), but
not in TrkB-knockdown cells (Fig. 2b, Additional file 2:
Figure S2b). Culturing BBM1 and 361 cell lines (regardless
of TrkB expression status), in the BDNF-containing
medium for 24 h increased expression of p-TrkB, p-PI3K,
and p-AKT (Fig. 2c, Additional file 2: Figures S2c, S3) as
expected [6]. In contrast, BDNF stimulation failed to signifi-
cantly activate PI3K/AKT signaling in TrkB-knockdown
cells (Fig. 2c, Additional file 2: Figure S2c, Figure S3). This
led us to conclude that activation of the PI3K/AKT signal-
ing pathway after stimulation with BDNF increased prolif-
eration of BBMs.

Astrocyte-derived BDNF increases proliferation of Her2+
BBM cells
Previous research suggests that autocrine signaling in breast
cancer cells is responsible for BDNF-TrkB-induced metas-
tasis [9]. Interestingly, our previous studies using in vivo
MFP xenograft models showed low BDNF gene expression
in brain metastases (Additional file 2: Figure S4), despite
high TrkB expression (Additional file 2: Figure S1). This
suggested BBM cells can also use the brain’s endogenous
microenvironmental BDNF instead of generating their own.
Because the brain microenvironment contains high concen-
trations of BDNF, we proposed that paracrine signaling
between astrocyte-derived BDNF and TrkB on breast can-
cer cells supports successful initial brain colonization.
Previously, we reported the importance of cross-talk

between breast cancer cells and adjacent astrocytes in the
brain microenvironment [24]. Consistent with this, our
patient-derived tumor specimens showed BDNF expression
in astrocytes in the peritumoral region (Fig. 2d), whereas
we saw similar levels of intracellular BDNF in all examined
tumor-derived and non-tumor cell lines (BBM1, 361, astro-
cytes, and fibroblasts) (Additional file 2: Figure S5a). How-
ever, cultured astrocytes released approximately 20-fold
more (p < 0.05) BDNF into the conditioned media as
compared to the other cell types (Fig. 2e, Additional file 2:
Figure S5b). To clarify the proliferative role of paracrine
BDNF-TrkB interactions, we cultured BBM1 or 361 cells in
astrocyte or fibroblast-conditioned medium (CM) and
counted cells every two days. BBM1 and 361 cells showed
increased proliferation when cultured in astrocyte CM rela-
tive to control media or fibroblast CM (Fig. 2f, Additional
file 2: Figure S5c). The modest increase in proliferation for
cells cultured with fibroblast CM may be due to growth fac-
tors in the fibroblast CM. Moreover, TrkB-knockdown cells
cultured in astrocyte CM did not show increased prolifera-
tion, suggesting that paracrine TrkB-BDNF signaling in the
brain microenvironment is advantageous for BBM prolifer-
ation. TrkB phosphorylation increased when BBM1 cells
were cultured in astrocyte CM; this is an effect that was
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abrogated in the TrkB-knockdown cell lines (Fig. 2g,
Additional file 2: Figure S5d). Indeed, treatment of the
cells with XL147 and GDC0941 inhibitors of PIK3 a
TrkB downstream kinase also suppressed astrocyte-CM-
induced cell proliferation (Additional file 2: Figure S5e-f).
These results indicate that release of astrocyte-derived
BDNF facilitates effective brain colonization by breast
cancer cells.

TrkB-knockdown in Her2+ BBMs disrupts colonization and
metastatic efficiency in the brain
To examine the importance of TrkB on tumor cell
colonization in vivo, firefly luciferase-labeled BBM1 or
BBM1-knockdown (BBMI-KD) and BBM2 or BBM2-KD
cells were injected intracranially into NOD-SCID mice.
BLI analysis of the brain indicated that tumors arising
from both BBM1-KD and BBM2-KD cells had slower

Fig. 1 Human epidermal growth factor receptor 2 (Her2)-positive (Her2+) breast cancer brain metastasis (BBM) cells express high levels of phosphorylated
neurotrophin receptor tropomyosin-related kinase B (p-TrkB). a Quantification of Her2 and TrkB in resected Her2+ (n= 8) and triple negative (TN) (n= 4)
primary breast cancer tissue (left) and Her2+ (n = 3) and TN (n = 3) breast-to-brain metastases (*p < 0.05, **p < 0.01, ***p < 0.001; bars indicate
SEM). b Representative immunofluorescence staining of primary breast cancer (left, n = 4) and breast-to-brain metastasis tissue (right, n = 4)
from four patients (Pt). Tissue was stained for Her2 (green) and p-TrkB (red). Nuclear counter staining was done with 4',6-diamidino-2-phenylindole
(DAPI, blue). c Immunofluorescence staining of p-TrkB in BBM1 and 231Br brain metastasis breast cancer cell lines. d Western blot analysis of p-TrkB and
total TrkB in BBM1, BBM2, 361, and SkBr3 cells
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growth kinetics compared to control cells (Fig. 3a, c, d
and Additional file 2: Figure S6a) and their growth
reached a plateau around days 28 (BBM1) and 33
(BBM2) after injection. In addition, mice bearing BBM1-

KD or BBM2-KD tumors had approximately twofold in-
crease in overall survival as compared to mice injected
with TrkB-expressing BBM1 or BBM2 cells (Fig. 3b and
Additional file 2: Figure S6b).

Fig. 2 Exogenous and astrocyte-released brain-derived neurotrophic factor (BDNF) binds Tropomyosin-related kinase B (TrkB) leading to increased
tumor cell proliferation. a Real-time PCR and western blot analysis of TrkB knockdown with two different short hairpin (sh)RNAs in BBM1 cells.
Control was non-transduced BBM1 cells. b Effect of exogenous BDNF (25 ng/mL) on BBM1 (BDNF) and TrkB knockdown BBM1 (shTrkB) cell proliferation
over 12 days in vitro. Control was non-treated cells (n = 3; ****p < 0.0001; bars indicate SEM). c Western blot analysis of PI3K pathway activation
by exogenous BDNF (25 ng/mL) over 24 h in BBM1 and TrkB knockdown BBM1 (BBM1-KD) cells. d Immunohistochemical staining of glial fibrillary acidic
proteins (GFAP) and BDNF in the peritumoral region in a human breast cancer brain metastasis (BBM) specimen. GFAP (green), BDNF (red), DAPI (blue). e
ELISA quantification of BDNF released from BBM1 cells, astrocytes, and fibroblasts (nc medium only; ****p< 0.0001). f Proliferation of BBM1 (left) and TrkB
knockdown BBM1 (BBM1-KD) (right) cultured with control DMEM (Control), astrocyte-conditioned medium (Astrocyte CM), or fibroblast-conditioned medium
(Fibroblast CM) for 12 days in vitro (n= 3; **p< 0.01, ****p< 0.0001; bars indicate SEM). g Phosphorylation of TrkB in BBM1 and TrkB knockdown BBM1
(BBM1-KD) cells grown in astrocyte-conditioned medium (CM)
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We then explored in Her2+ BBM cells the potential
advantage TrkB expression may give for metastatic effi-
ciency and brain colonization by co-injecting BBM1 cells
(BBM1-FF-RFP) with BBM1-KD cells (BBM1-KD-Ren-
GFP) via intracardiac or MFP delivery. Following intra-
cardiac co-injection of BBM1 and BBM1-KD cells, the

TrkB+ tumor cells established systemic metastasis, including
within the brain (Fig. 3e, Additional file 2: Figure S7a-d).
The TrkB-negative (TrkB-) cells also formed metastases in
various organs, but they did not produce significant brain
metastases in NOD-SCID mice. Further analysis showed
that inhibition of PI3K a downstream kinase of TrkB

a b

c d

e f

Fig. 3 Tropomyosin-related kinase B (TrkB) knockdown disrupts colonization and metastatic efficiency of breast cancer brain metastasis (BBM)
xenografts. a Representative bioluminescence imaging (BLI) of intracranially injected BBM1 or BBM1-knockdown (BBM1-KD) cells in NOD-SCID
mice. b Survival curve of mice injected intracranially with BBM1 or BBM1-KD cells (****p < 0.0001). c Tumor growth over 35 days (n = 6; *p < 0.05;
bars indicate SEM). d Hematoxylin and eosin stained brain sections from mice euthanized 28 days after intracranial injection of BBM1 or BBM1-KD
cells: tiled images (×5 magnification). White perforated lines indicate locations of the tumor. e The schema for BBM1 and BBM1-KD co-injection
study (top). Representative BLI images of mice that received cardiac injections (bottom). f BLI of brain metastases arising from BBM1 cells in mice
that received cardiac injections shown in e (n = 6; ****p < 0.0001; bars indicate SEM). Ren renilla, RFP red fluorescent protein, GFP green
fluorescent protein
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signaling, with GDC0941, also suppressed overall me-
tastasis of intracardially injected BBM1 cells. However,
GDC0941 does not affect brain tropic metastasis effi-
ciency (Additional file 2: Figure S7e-f ). These results
suggest that expression of TrkB is necessary for breast
cancer cells to successfully form metastatic colonies in
a BDNF-enriched brain microenvironment.

Her2 and TrkB co-localize upon BDNF administration in
BBM cells
The Her2 receptors in breast cancer heterodimerize typic-
ally with epidermal growth factor receptor (EGFR) family
members upon activation [24]. Therefore, we investigated
the potential interactions between Her2 and other tyrosine
kinase receptors in BBM cells. Flow cytometry experiments
using antibodies that recognize the extracellular domains of
the Her2 and TrkB receptors showed that approximately
half of BBM1 and SkBr3 cells co-expressed both receptors
(Additional file 2: Figure S8). Electron microscopy further
revealed subcellular co-localization of Her2 and TrkB on
BBM1 and SkBr3 cell membranes. We found that stimulat-
ing the cells with BDNF resulted in fourfold and sixfold
increased co-localization of Her2 and TrkB, respectively,
compared to cells cultured without BDNF (Fig. 4a,
Additional file 2: Figure S9). We used immunofluores-
cence to confirm increased co-localization of TrkB and
Her2 following BDNF stimulation (Additional file 2:
Figure S9). Thus, BDNF stimulation promotes physical
interaction between Her2 and TrkB receptors in BBMs.

Simultaneous inhibition of Her2 and TrkB reduces survival
of Her2+ BBM cells
To test whether co-localization of TrkB and Her2 regu-
lates activation of downstream effector pathways, we incu-
bated BBM1 cells with BDNF and quantified the temporal
activation of Her2 (p-Her2). We found that BDNF stimu-
lation resulted in acute activation of Her2 (Fig. 4b). Co-
immunoprecipitation experiments showed that TrkB and
Her2 receptors interact in BBM1 cells (Fig. 4c). To under-
stand the functional relevance of TrkB and Her2 phos-
phorylation in establishing interactions between the two
receptors, we used well-established inhibitors to inhibit
both TrkB and Her2 signaling. Incubation of BBM1
cells with cyclotraxin B (TrkB-specific inhibitor) and
lapatinib (Her2 inhibitor) alone, or in combination, at-
tenuated BDNF-mediated activation of Her2 and TrkB
and decreased the interaction between the two recep-
tors (Fig. 4c).
To clarify the functional relevance of interaction between

Her2 and TrkB, we measured the cytotoxicity of dual inhib-
ition of the receptors. Co-incubation of BBM1 cells with
cyclotraxin B and lapatinib for 48 h led to significantly
fewer viable cells (p < 0.05) as compared to incubation with
a single inhibitor or no inhibitor (Fig. 4d). Fewer viable cells

were also observed upon treatment with lapatinib (p <
0.05), and cyclotraxin B (p < 0.05) compared to un-
treated control.
In silico 3D analysis of Her2 and TrkB crystal struc-

tures supported our finding that these receptors can
physically interact (Fig. 4e). Protein molecular modeling
predicted five amino acids in the kinase region of TrkB
(Q807, K790, E797, E780, R787) with the potential to
interact with Her2 (N746, Q709, Y722, K716, D742)
through hydrogen bonding (Fig. 4e).

Discussion
Breast cancer patients often develop brain metastases
years, even decades, after their initial diagnosis [25, 26].
The presence of circulating tumor cells (CTCs) in patients
during early stages of breast cancer and the ability of only
a small population of CTCs to traverse the blood–brain
barrier suggest that colonization within the brain is a rate-
limiting step in the metastatic cascade [27]. We hypothe-
sized that expression and activation of the neurotrophic
receptor TrkB on metastatic breast cancer cells may pro-
vide a survival advantage to Her2+ breast cancer cells that
are exposed to the neural niche. We found that Her2+
breast cancer cells have increased TrkB protein levels in
response to astrocyte-derived BDNF stimulation, resulting
in the formation of TrkB and Her2 heterodimers and
brain metastases.
Increased levels of BDNF ligand have been reported in

primary breast tumors as compared to normal tissue
[28], and neurotrophin receptors are expressed in vari-
ous extracranial malignancies [29]. Autocrine mecha-
nisms involving neurotrophins have been suggested to
aid various extracranial malignancies due to decreased
expression of neurotrophins in the surrounding micro-
environment [9, 29–31]. Our in vivo data demonstrated
high BDNF mRNA expression in primary MFP tumors.
Because breast tissue lacks microenvironmental BDNF,
activation of neurotrophin receptors likely uses an auto-
crine mechanism. In addition, the fact that primary
breast cancer cells express non-phosphorylated TrkB
(Fig. 1), suggests some adaptations are inherent to pri-
mary tumor cells before metastasis. Whether these adap-
tations also steer metastatic organotropism is unclear,
but genes that may predict a primary cell’s future meta-
static site need to be explored further [32, 33].
Astrocytes uniquely release exosomes that make col-

onizing tumor cells lose the phosphatase and tensin
homolog (PTEN) gene [34], a negative regulator of the
PI3K/AKT signaling pathway. We found that release of
astrocyte-derived BDNF triggered activation of the PI3K/
AKT pathway in BBM cells, providing an explanation for
the increased survival advantage. Levels of astrocyte-
derived neurotrophins, including BDNF, are increased
after brain injury and brain metastases, including breast
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cancer brain metastases [29, 30, 35–37]. Our work pro-
vides further evidence that astrocytes represent a key fac-
tor in brain colonization by metastasizing tumor cells.
The heterogeneity of splice variants is an important

factor for TrkB receptor function. Multiple splice vari-
ants of TrkB are expressed in different cell types, and
extracellular conditions may affect structural variations,
which may be further explored by continued in vivo or
3D modeling studies. Although we focused on phos-
phorylated TrkB receptors, a previous study reported

that TrkB.T1, an isoform that lacks the kinase domain,
is the predominant TrkB receptor involved in breast
cancer metastasis [9]. In addition, our data indicate that
TrkB receptor phosphorylation is necessary for response
to microenvironmental BDNF and for successful brain
colonization.
Trk family members are also associated with members

of the EGFR family, which includes the Her2 receptor [37].
Given the clinical predilection of Her2-amplified tumors to
develop brain metastases, we explored interactions between

Fig. 4 Tropomyosin-related kinase B (TrkB) and human epidermal growth factor receptor 2 (Her2) heterodimerize and activate upon brain-derived
neurotrophic factor (BDNF) administration. a Representative post-embedding electron microscopy image (top) of TrkB and Her2 clustering at the
cell membrane upon BDNF treatment; t = 30 minutes, TrkB = 10 nm, Her2 = 20 nm. Quantification (bottom) of co-localized Her2 or TrkB receptors
relative to total Her2 or TrkB receptors, respectively (bars indicate SEM). b Western blot analysis of Her2 activated by exogenous BDNF over 1 h in
BBM1 cells. c Co-immunoprecipitation of TrkB and Her2 from BBM1 cells grown in the presence of lapatinib (50 μM) and/or cyclotraxin B (20 μM).
Her2 and TrkB immunoprecipitations were analyzed by western blotting with anti-TrkB and anti-Her2 antibodies, respectively. d Molecular model
of TrkB (left) and Her2 (right). Insets indicate amino acids on TrkB and Her2 involved in possible hydrogen bonding. e Quantification of viable BBM1 cells
grown in the presence of Her2 and TrkB inhibitors lapatinib (50 μM) and cyclotraxin B (20 μM), respectively. f Predicted model of paracrine signaling
between breast cancer cells and the brain microenvironment. Her2 receptor (orange) and TrkB receptor (purple) on the cell surface membrane (green)
are phosphorylated upon binding of BDNF (red) secreted by surrounding astrocytes (blue)
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Her2 and TrkB because TrkB heterodimerization with
EGFR could increase proliferation and migration in
ovarian cancer cells [38]. Co-immunoprecipitation and
co-localization experiments showed associations between
the TrkB and Her2 receptors (Fig. 4), and these associa-
tions increased after BDNF administration. The identifica-
tion of tyrosine kinase receptors that heterodimerize with
Her2 could provide new targets for therapy, particularly in
the context of the right microenvironment. Our data show
that dual inhibition of Her2 and TrkB receptors decreases
BBM cell viability, possibly by inhibiting BDNF-induced
activation of Her2 and TrkB (Fig. 4c, e).

Conclusions
Collectively our results suggest that BDNF signaling to
BBM cells supports colonization and tumor growth in
the brain microenvironment (Fig. 4f). TrkB may represent
a potential therapeutic target for treating or preventing
brain metastases in patients with select subtypes of breast
cancer, such as those with Her2+ disease. Further, the mo-
lecular cooperation between TrkB and Her2 receptors may
partially explain the clinical predilection of Her2+ breast
cancer patients to develop brain metastases and warrants
further preclinical investigation. Effective clinical translation
will most likely require targeting of the neoplastic “seed”
and perturbation of the microenvironmental “soil.”
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