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understanding the conditional correlation between the microbes. In this
high-dimensional setting, zero-inflation and unit-sum constraint for relative abundance
data pose challenges to the reliable estimation of microbial interaction networks.

Methods and Results: To identify the microbial interaction network, the zero-inflated
latent Ising (ZILI) model is proposed which assumes the distribution of relative
abundance relies only on finite latent states and provides a novel way to solve issues
induced by the unit-sum and zero-inflation constrains. A two-step algorithm is
proposed for the model selection of ZILI. ZILI is evaluated through simulated data and
subsequently applied to an infant gut microbiota dataset from New Hampshire Birth
Cohort Study. The results are compared with results from Gaussian graphical model
(GGM) and dichotomous Ising model (DIS). Providing ZILI is the true data-generating
model, the simulation studies show that the two-step algorithm can identify the
graphical structure effectively and is robust to a range of parameter settings. For the
infant gut microbiota dataset, the final estimated networks from GGM and ZILI turn out
to have significant overlap in which the ZILI tends to select the sparser network than
those from GGM. From the shared subnetwork, a hub taxon Lachnospiraceae is
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identified whose involvement in human disease development has been discovered
recently in literature.

Conclusions: Constrains induced by relative abundance of microbiota such as zero
inflation and unit sum render the conditional correlation analysis unreliable for
conventional methods such as GGM. The proposed optimal categoricalization based
ZILI model provides an alternative yet elegant way to deal with these difficulties. The
results from ZILI have reasonable biological interpretation. This model can also be used
to study the microbial interaction in other body parts.

Keywords: Gut microbiota, Microbial interaction network, Latent Ising model,
Dynamic programming, High-dimensional data, Sparse estimation

Introduction

The human microbiome, the collection of trillions of microbial organisms that live in our
body spaces, belong to one of thousands of different species [1, 2]. The organisms that
inhabit the human gut are an additional source of genetic diversity that can influence
metabolism and modulate drug interactions [3]. Recent advances in genomic technologies
enable production of thousands of 16S rRNA sequences per sample [4] and are power-
ful tools to explore the basic biology about human microbiome. Nevertheless, analyzing
microbiome data and converting them into meaningful biological insights are still chal-
lenging tasks. First, the observed absolute abundance in sequencing experiment cannot
inform the real absolute abundance of molecules in the sample which can be attributed
to the sequence depth associated with the experiment. Multiple normalization methods
have been proposed in literature to solve this problem among which total sum scaling
(TSS) has been widely used in practice [5-9]. TSS scales each sample by the total read
count and yields the relative abundance. However, the statistical analysis based on rel-
ative abundance can easily lead to spurious association due to the unit-sum constraint
[10-14]. Further complicating the analysis of microbiome data is the zero-inflated distri-
bution of read count [3]. As for the dataset in “Restults from the relative abundance of
gut microbiota” section, among the 134 taxa, there are only 6 taxa for which the propor-
tions of nonzero observations are greater than 80%. Zero inflation stems from the fact
that the majority of the amplicon sequence variants (ASVs) either physically do not exist
in the subject or are below the detection threshold for the given sample [2]. Another hur-
dle for analyzing the microbiome data is its high-dimensionality which usually involves
hundreds of microbes; consequently, models equipped for this modeling task should be
employed.

Microbial interaction network (MIN) is an indispensable tool for representing and
understanding the relationships among the microbes [1, 15-17]. Traditionally, the inter-
actions among the microbes are discovered through co-culture experiments which
routinely involve only small number of species in an artificial community [18, 19].
Modern researches try to use the data from real environments such as human gut to
infer the association among the microbes [20-23]. The corresponding statistical infer-
ences of MIN based on these observational data have received much attention in recent
years; however, the roadblocks mentioned above hinder the effective inference of MIN.
As a compromise, most of the existing studies infer the MIN under the oversimpli-
fied assumptions [24, 25]. Especially, [24] ignores the unit-sum constraint and only
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considers the microbes for which the proportions of nonzero observation are higher
than a given threshold; while in order to deal with the problem of zero inflation, [25]
pools all the sparse taxa together and forms a composite taxon which is no longer
sparse.

In light of the difficulties in MIN inference, in this paper we propose the zero-inflated
latent Ising model (ZILI) for MIN aiming to address the roadblocks for analyzing the rel-
ative abundance of microbiome, i.e., (1) unit-sum constraint; (2) zero inflation; (3) high
dimensionality. Latent models such as hidden Markov models [26], state space models
[27] et al. have been widely used in economics, engineering and biology among many
others. Despite their popularity across disciplines, latent models have not been inves-
tigated for microbiome data yet. Incidentally, [28] finds that the microbiota in human
vagina could be characterized by finite states which provided a simple and intuitive under-
standing about the MIN in vagina. Inspired by the work in [28], in ZILI we assume that
each of the p microbes in microbiota can be characterized by a latent discrete random
variable Z;(1 < j < p). While for the random vector Z = (Zl, . ,Zp), the multiclass
Ising model is employed to characterize the joint distribution of Z. The relative abun-
dances for each microbe are assumed to come from a zero-inflated mixture distribution
which depends on the realization of Z. Under this modeling framework, we propose a
two-step algorithm for the model selection of ZILI. Specifically, in first step we esti-
mate the states for each component of Z by transforming the relative abundances into
categorical data. This step is implemented by an efficient dynamic programming algo-
rithm. Based on the estimated state, in second step we use L;-penalized group logistic
regression to select the nonzero parameters involved in ZILI In this way, the difficult
issues, such as the unti-sum constraint and zero inflation, will not be the concerns for
the data analysis. However, the cost for such simplication is the possible information
loss brought by the categorization of relative abundance. Through simulated data, we
investigate the performance of two-step algorithm and demonstrate its superiority over
traditional Gaussian graphical model (GGM) and dichotomous Ising models (DIS) given
that ZILI is the underlying data-generating model. We then apply both ZILI and GGM
to an infant gut microbiome dataset from the New Hampshire Birth Cohort Study. It
turns out the networks estimated by ZILI and GGM share a statistically significant part
and ZILI shows the tendency to select sparser network than GGM. Within the shared
subnetwork, Lachnospiraceae is identified as the hub taxon. On the other hand, recent
researches have found that Lachnospiraceae widely exists in human gut [29] and is related
to some severe diseases such as non-alcoholic fatty liver disease and inflammatory bowel
diseases et al [30, 31]. Since this important taxon is identified by both models, this
indicates that both ZILI and GGM can explain part of the information encoded in the
relative abundance and the ZILI model can serve as a competitive tool for the MIN
selection.

The organization of this paper is as follows. In “Zero-inflated latent Ising model for
MIN” section, the ZILI model is detailed. The related estimation procedures for ZILI are
described in “MIN selection based on ZILI” section. Simulation studies are carried out
in “Results from the simulated data” section. “Restults from the relative abundance of
gut microbiota” section is devoted to compare ZILI and GGM through gut microbiome
dataset. “Discussion” section concludes with a brief review about ZILI model.
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Method

Zero-inflated latent Ising model for MIN

In this section, we introduce the zero-inflated latent Ising (ZILI) model for the microbial
interaction network which provides an alternative way to handle the problem of unit-sum
constraint and zero inflation. Suppose that there are p taxa in the microbiota of interest.
For jth taxon (j = 1, - - -, p), let Z; denote its latent state variable which has the following

multinomial distribution,
P(Zj = k) = pji (1)

for k = 0,1,---,K; — 1 with Zf’:_ol pik = 1, where Kj represents the number of the
latent states for jth microbe (1 < j < p). For example, there may be three states for Z;
corresponding to three different states of relative abundance, (high, medium, low). This
assumption can be partly justified by the existing findings in literature [28]. The studies in
[28] found that the composition of vaginal bacterial communities can be characterized by
five states. The microbiota for a given subject can be classified into one of these five states.
The state may be affected by the exogenous factors such as sexual activity, menstruation
et al. In order to study the general relationship among the microbiota, Eq. (1) generalizes
the results in [28] and assumes there are finite states for each microbe. For ease of expo-
sition, in the following we assume that all Z;’s are K-level variables. The arguments can
be generalized to the more general situation straightforwardly for which K; may differ for
different microbes. We pool all the Z;s together and form the vector Z = (Zy, - - - , Z,) for
which multiclass Ising model is employed to characterize its joint distribution,

p pr
P(z) =cexp{d ¢z + D> bulzez) 2)
s=1 s=1 t=1
where ¢ and ¢y are the potential functions associated with sth and ¢th microbes respec-
tively. It should be noted that conventionally the variables in Ising model are dichotomous.
The general cases of multiple values are usually referred as Potts model in literature [32].
However, in order to keep the notation consistent with recent studies, e.g., [33], with a
little abuse of notation, we use the multiclass Ising model to refer to the Potts model. Our
aim is to estimate the conditional relationship among Z;s these potential functions can be
parameterized as follows. Foreach1 < s < p,and/ € {0,--- ,K —1},define I [z, =] =1

if z; = [ and 0 otherwise. Then we have

bs(zs) = Y Ogll 25 = ] (3)

leA

forse {1,2,---,p}and A= {1, ,K — 1} while

bt (z520) = ) Ouand [z = Lzt = h] (4)
(LhyeB
for (s,t) € {1,---,p}*> and B = A x A. The unknown parameters in (3)-(4) include
0=1{61,0um=1-- pt=1,--,pj#tLl=1--,K-1,h=1,--- , K—1}
Based on (2)-(4), for 1 <i < n,1 <j < p, we have the following equation hold [33, 34],
R K-1
pji = logit (P[Zj = 1 Zi—jy = zi—p)]) = 6 + D Y Ojand[zie = 1, (5)
t£j h=1
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where Zi(_]') = (Zil: cee, Zi(j—l)» Zi(j—‘—l)) ceey, Z,'p)T with ZL']' the ith observation OfZ]'. From
(5), it can be shown that 6;; is the log odds for event Z; = [ given that the other Z;5,
t # j are all zero. Similarly, 6., is the log-odds ratio describing the association between
events Z; = [ and Z; = h given that all the other components of Z are fixed to zero. For
more details about the interpretation of these quantities, see [33] and references there.
Let Ojt = (th;u, cee ,th;l(I(,l),Bjt;(1<,1)1, cee, th;([(,l)(j(,l))T. Vector 0jt reflects the rela-
tionship between Z; and Z;. If all the components of 6; are zero, Z; and Z; turn out to be
independent. If there exist nonzero components in 6, then Z; and Z; are related. In other
words, there is an edge connecting microbe j and ¢ in the microbial interaction network.

We have assumed that the relationship among microbes can be characterized by the
multiclass Ising model (2)-(4). The state variables Z;’s in Ising model, however, are latent
and can not be observed directly. Instead, the observable quantities are the relative
abundances of the microbes which ae denoted by Xj’s here. For each Xj, we assume its
distribution can be characterized by a mixture distribution which relies on the realization
of Z. Specifically, we have the following conditional distribution for X; given z; = [ for
1<I<K-1,

S (wilz = 1) = fulxp), (6)

where f;; (1 < [ < K — 1) can be any continuous distribution defined on [0, 1]. When z; is

in state zero, i.e., [ = 0, we assume

T forx =0
fow)=1"

go(x)  otherwise

for some 0 < 7; < 1. Here gjp can be any continuous distribution defined on [0, 1]. In
other words, fjo (%) is a zero-inflated distribution. Let uj; = E (XjIZj = l). Forl =0, puj is
understood as the expectation with respect to the density function gjo. Note if there are
states, [ # h such that uj; = uj,, then it is impossible to identify state / from /4 based on
absolute or relative abundance data. In order to ensure the model identifiability, without

loss of generalization, we assume,

Hjo < i1 < - < WiK—1) (7)

forl <j<p.GivenX = (Xl, . ,Xp) and its # i.i.d observations, Xy, - - - , X;;, we aim to
estimate the MIN through (1)~(7) which we call zero-inflated latent Ising model (ZILI).
The data-generating process of ZILI is depicted in Fig. 1.

Remarks 1 (1) We have adopted a zero-inflated form for density function fo while con-
tinuous form for f;; (1 < | < K—1). In other words, the zero observations can only arise from

M; M; M; My Ms M; M; Mz My Ms
M, MZ

1 1.0 11 an an 0 ag as

1 0 1 1 0 ay 0 apay 0

. 02 0 01 . . e 0 a;; 0 0 a

M; Latent Ising Model Zero-inflated Mix ture Distribution . %

Ms —_—» 1 0 2 0 0 »| ag 0 agzay 0
021 21 0 as; as; asy ass

M, 1 0 2 21 g 0 ag ag ags
Microbial Inferaction State Matrix Relative Abundance

Network
Fig. 1 Diagram of data-generating process in ZILI model
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Jio which has the smallest mean relative abundance among fi, - - - , fix—1). This assump-
tion serves to ensure the identifiability of ZILI model. In literature, the zero observations
in microbiome data are usually classified into two categories by their nature [2, 6). In first
category, the zero means the corresponding microbe physically does not exist in the subject,
or true zero. In second category, the microbe does exist in the subject; nevertheless, for this
sample, this microbe happens not to exist or be below the threshold of the testing procedure,
i.e., false zero. So our assumption about ﬁl for 0 <1 < K — 1 means that both true and
false zero’s can only come from fo. Though there is possibility that there are zeros’ that do
come from f(l # 0), we assume such probability is negligible compared with the former
case, which we believe is a reasonable simplication to the real situations. (2) Conventional
latent models, e.g state space model, typically assume the observed variables can be repre-
sented by a small number of latent variables and in this way the model dimensionality can
be reduced. In ZILI, however, the latent variables are for the observations instead of the
observed variables. Similar ideas have been used in factor analysis with the name R-type

or Q-type factor analysis respectively [35].

MIN selection based on ZILI

From Eq. (5), it can be seen that the selection of MIN is equivalent to the selection of the
nonzero components of # involved in ZILI model. In this section, we propose a two-step
algorithm to select such nonzero components of # based on X3, - - - , X;;, the observations

of relative abundance.

Step 1: state estimation
In this step, for each microbe, we aim to estimate the state Z; (1 < j < p) for each obser-
vation. For any given microbe, the proposed algorithm only involves its own observations.
So for ease of exposition, we suppress the subscript j and use the generic notation (Z, X)
to introduce the algorithm. The corresponding number of classes is denoted by K; = K.
With the observations of relative abundance, X1, X5, - - -, X},, in hand, the estimation of Z
is carried out through the following optimal classification of X1, Xy, - - -, Xj,. Without loss
of generality, we assume that the observations have been ordered, ie., X1 < X3 < -.- <
Xy, For a given integer k > 2, let b(n, K) denote a classification scheme which classifies
(X3, -+, X,) into k classes. Such classification can be depicted by the following notations,

Gl = {Xl,XQ,"',Xil}’
Gy = {Xi1+1,Xi1+2»""Xl'2}’ ®)

Gk = {Xi1<_1+1""Xn}'

With notation iy = 1, iy = n, we define the following loss function for b(#n, K),

K-1
LIb(m,K)] =" D (ip ins1) »
h=0

where
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iht1
D (iping1) = Y X — mp)?, )
i=ij,
1 ip+1
my = ——- X'.
" ipt1—ip+1 Z !

i=iy

We aim to find a classification scheme b(n, K) which can minimize loss function
L[ b(n,K)]. Such optimal classification scheme is denoted by p(n, K). It should be noted
that other more complext forms of loss function D(-) are also possible, e.g., the absolute
deviation based loss function, which is more robust for the data with outliers. However,
given the popularity of squared loss function, we will focus on (9) and leave other possible
forms for the future studies. We employ the following top-down dynamic programming
algorithm to find p(n, K) [36]. Specifically, the algorithm involves the following recursive
procedures,

Llp(n,2)] = Jmin {D(1,i —1) + D(i, m)}, (10)

Ll p(n,K)] = Krggn {L[p(i—1L,K—-1]+DG,n}. (11)

Based on (10)-(11), for given K, the algorithm can be implemented as follows. First, find
ix—1 such that

L{p(n,K)] = L [p(ix—1 — 1,K — 1)] + D(ix—1,n). (12)

Based on ig_1, denote the Kth class by Gk = {ix—1,ix—1 + 1, -+, n}. In second step,
find ig_o such that

L{p(ik-1— LK —=1]=L[p(ix-2 — LK —2)] + D (ix—2,ix — 1),

then we get the (K — 1)th class Gx—1 = {ix—2,ix—2 + 1, -+ ,ix—1 — 1}. By the same fash-
ion, all the classes G, Gy, - - - , Gk can be derived, which is the optimal solution p(n, K).
Based on p(n, K), the estimate of Z for observations in class Gy is defined as Z=k-1
fork=1,---,K.

The algorithm above assumes that K, the number of the classes, is known as a priori. In
practice, K usually is unknown and has to be determined based on the data. Though sev-
eral methods have been proposed in literature, such as likelihood ratio test in R package
mixtools [37], or BIC method in package sBIC [38], these methods have poor perfor-
mances when the data are zero-inflated. Instead, we propose the following criterion to
select K. For a given upper bound, say, K, and each K with 2 < K < K, the minimum loss
L(p(n,K)) is calculated. Define dx = L(p(n, K +1)) —L(p(n,K)) forK = 2,--- ,K—1and
let d be the mean of di’s. Then the first K with dx < d will be selected as the class num-
ber. This criterion turns out to have a better performance than the methods mentioned
above in the simulation studies in “Results from the simulated data” section. However, it
should be noted, as suggested by one of the reviewers, that the choice of K may potentially
have big impact on the final selected model. Consequently, in practice the robust way for
the determination of K is to compare multiple methods, from which domain knowledge
may be employed to choose the optimal one.
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Step 2: network selection

Equation (5) shows that, after the logit transformation, the conditional probability pj
defined in (5) is a linear function of #. Here the covariates are the indicator functions of
events {Z;; = h} (t #jh=1---,K— 1). Based on this observation, the neighborhood
method is proposed in [33] to select the nonzero components in @ for dichotomous Ising
model. In this paper the same method will be employed for the MIN selection. Specifi-

cally, for jth microbe, let 6; = (07, 07,187, ,87)
“Method” section. Based on the Eq. (5), we consider the following penalized group logistic

where 0, is defined in

regression problem,

A

0; = argmin, | —/ (0,-|2(_j)> +A Z el 02 ¢ (13)
oy

where l(0,'|z(_j)) =y, {I(Zi,' = Dlogpj + (1 — I(Z; = 1)) log(1 —pﬂ)} with pj; being
defined in eq. (5), A is the tuning parameter, mj; is the length of vector 6; and || - ||2 is
the Euclidean norm. The form of , /7;; aims to account for the varying group size of 0
[39]. Such form of penalty in (13) tends to shrink the components in same group 6;; to
zero simultaneously. For given A, the coordinate decent algorithm [40, 41] is employed
to solve (13). As for the selection of X, extended BIC proposed in [42] is adopted which
favors sparser model compared with the standard BIC. The minimization problem in (13)
is solved for each Z; (1 < j < p). With the final estimate 9 in hand, we define an edge
between Z; and Z; if there exists at least one nonzero component in either 6)jt or étj.
An alternative way to define an edge requires there exists at least one nonzero compo-
nent in both é/‘t and @t,-. It turns out these two strategies are asymptotically equivalent
[33, 43] and so we just employ the former one to select the MIN in the numerical stud-
ies. The magnitude of the components of éjt plays no role in the determination of the
edges [33, 44].

In the above, the proposed algorithm estimates the interaction network by separately
solving p conditional penalized maximum likelihood estimation problems. Alternatively,
we can form a joint conditional likelihood function for # and estimate the network
through the penalized version of the joint conditional likelihood function; however, this
approach is not computationally as stable as (13) [44]. We therefore put the focus on
the individual regression method (13). Figure 2 illustrates the workflow of the two-step
algorithm through a toy MIN.

M; M; M3 My Ms M; M; M3 My Ms
’ M; M,
ap a;p 0 ay ags 11 0 1 1
a; 0 apay 0 1 0110
0 ap, 0 0 ay |Step 1:DPAlgorithm | o ¢ (o Step 2:Nelghborh00dMethod>
a 0 agay 0 20100
* M;
0 as; as3 asy ass 012 2 1 Ms
\_ s 0 ag; ag4 ags 20211 ) M,
s elaiive Abmndince p— Microbial Interaction

Network
Fig. 2 Procedures of two-step algorithm for ZILI model
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Remarks 2 For the two-step algorithm proposed above, it is expected that the selec-
tion of MIN will be improved if we can improve the state estimates Zj’s; however, the
misclassification is inevitable in two-step algorithm which will adversely impact the final
network selection. In “Results from the simulated data” section, we investigate how the
misclassification impacts the MIN selection through simulation studies.

Results

Results from the simulated data

In this section, we investigate the performance of the two-step algorithm when ZILI is
the underlying data-generating model. As a comparison, the popular Gaussian graphi-
cal model (GGM) and dichotomous Ising model (DIS) will also be fitted using the same
dataset. Here DIS is constructed by transforming the relative abundance into 0 or 1
according to whether it is less than the median. The same algorithm in “Step 2: network
selection” section will be employed to estimate the structure of this dichotomous Ising

model.
Specifically, assume that there are p microbes with state variables Z = (Zl, e ,Zp).
Each realization of Z; (f = 1,---,p) takes value from the set {0,1,2}. The

conditional distribution of Z; (j # 1) given all the other components of Z
only depends on microbe Z; ;. As for microbe 1, the distribution of Z; depends
on microbe Z,. For such a model, the nonzero parameters involved in Eq. (5)
include (9,';1, (91*;2, 91‘(,'_1);11, 9,‘(1'_1);12, 9/'(]‘_1);21, (91'(1‘_1);22) which are assumed to be same
for all js. For each replication, these parameters are sampled from the multivari-
ate normal distribution Ng(u, £) with # = (=1,3,-08,2,-3,—4)7 and T =
diag (0.1%,0.3%,0.08%,0.2%,0.3%,0.4%).

Given the Ising model above, the Gibbs sampler is employed to generate the samples of
Z. Specifically, first a p-dimensional vector is generated where the states for each Z; are
independently sampled from the set {0, 1, 2} with equal probability 1/3. Then given all Z;,
(t # j) , the state of Z; is updated based on Eq. (5). By the same fashion, the states of all
the other Z; can be updated recursively. We run this process 200 times and the final state
of Z will be deemed a qualified representative of the underlying Ising model. Based on the
samples of Z, the samples of absolute abundance X = (Xl, e ,Xp) are generated accord-
ingto Xj|Z; =z~ N (uz, 02) with o = 10, 47 = 15, i = 20 and a given o2, Pooling all
the samples of X together leaves us a n x p matrix which represents n absolute abundance
observations for p microbes. For each column, the absolute abundances which are less
than a given percentile with rank u are replaced by zero. Here u is sampled from uniform
distribution U[O0, t] for a given 0 < 7 < 1. For each row in this zero-inflated matrix, we
then transform the absolute abundances to relative abundances by dividing each entry by
the corresponding row sum. Figure 2 shows the diagram for the data-generating process.

To compare the performances of different models, two criteria, true positive rate (TPR)
and false positive rate (FPR) will be used which are defined respectively as,

#{identified true edges}

TPR = (14)

#{all true edges}

# . .
PR — {falsely identified edges}.

15
#{all none edges} (15

An ideal algorithm should have a relatively high TPR and low FPR. There are multiple
factors that can influence the performance of the algorithm, which include the variance
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o2, the sample size 1, and the zero proportion z. For three choices o, two choices of # and
three choices of t, Table 1 lists the results of TPR and FPR for ZILI, DIS and GGM respec-
tively. Here the number of the microbes is set to be p = 60 and the number of replication
is 100. Note for GGM, there are different estimation methods available such as graphical
lasso [45], or neighborhood method [43] et al. Here in order to facilitate the comparison
with ZILI and DIS, we adopt the neighborhood method of [43]. The same model selec-
tion criterion extended BIC is used in all cases. It can be seen from Table 1 that for all
the cases considered, the proposed two-step algorithm does can select the network struc-
ture effectively while both GGM and DIS have low TPR and can not properly select the
true edges. On the other hand, all the three factors considered, i.e., variance, sample size
and zero proportion have significant impact on the performances of two-step algorithm.
Two-step algorithm has the best performance with the small o2, T and large # which is in
accordance with our expectation. In particular, a large o2 will lead to a high misclassifi-
cation rate for the state estimation which in turn results in a poor network selection, i.e.,
low TPR and high FPR.

Restults from the relative abundance of gut microbiota

In this section, ZILI is employed to investigate the conditional association among the
microbes in the infant stool samples from New Hampshire Birth Cohort Study (NHBCS),
a cohort of mother-infant pairs in New Hampshire. For this dataset, stool samples were
collected from infants at six weeks and twelve months of age, who were followed in the
NHBCS. The stool samples were characterized by 16S rRNA sequencing. The R soft-
ware package DADA21 was used to infer the abundance of amplicon sequence variants
in each sequenced sample [46]. Taxonomy at the family level was obtained by classify-
ing the sequences against the reference training dataset from the GreenGenes Database

Table 1 Comparison of ZILI, DIS and GGM based on simulated data

ZILI DIS GGM
T o n TPR FPR TPR FPR TPR FPR
10 0.5 60 0.8322 0.0110 0.0115 0.0008 0.1940 0.0347
120 0.9650 0.0024 0.0173 0.0006 0.0721 0.0058
1 60 0.7945 0.0123 0.0106 0.0007 0.0145 0.0059
120 0.9615 0.0043 0.0163 0.0005 0.1683 0.0051
2 60 0.2688 0.0256 0.0115 0.0010 0.0123 0.0061
120 0.5041 0.0187 0.0096 0.0003 0.0368 0.0046
40 0.5 60 0.7775 0.0134 0.0106 0.0009 0.1961 0.0274
120 0.9445 0.0059 0.0180 0.0005 0.1923 0.0056
1 60 0.7260 0.0139 0.0163 0.0007 0.1895 0.0276
120 0.9353 0.0067 0.0120 0.0003 0.1821 0.0057
2 60 0.2085 0.0247 0.016 0.0013 0.1328 0.030
120 0.4043 0.0194 0.0115 0.0004 0.0991 0.0055
80 0.5 60 04443 0.0217 0.0720 0.0086 0.2346 0.0465
120 0.6090 0.0148 0.1115 0.0071 0.2248 0.0144
1 60 0.4088 0.0214 0.0681 0.0085 0.2321 0.0477
120 0.6020 0.0149 0.1138 0.0071 0.2196 0.0146
2 60 0.1538 0.0247 0.0493 0.0084 0.1851 0.0514

120 0.2820 0.0207 0.0938 0.0065 0.1620 0.0142
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Consortium (Version 13.8). There were 398 six-week and 316 twelve-month samples with
varying abundances across 134 taxonomic families.

For each taxon, if the proportion of nonzero observations is less than 1%, then the num-
ber of classes is set to be Kj = 2 and the observations are classified according to whether
it is zero or not. Otherwise, the upper bound of K] is set to be K = 6. Then we follow
the two-step algorithm to select the network. In order to gain insights from the difference
between ZILI and GGM, the networks based on GGM have also been selected using the
neighborhood method. In light of the severe zero inflation in the dataset, it is inappropri-
ate to assume the GGM for the whole dataset. To alleviate the problem of zero inflation,
we choose to use the subsets of this dataset to construct the GGM networks. Specifically,
for each s = 10%,20%, - - - ,80%, we extract the corresponding subset from the original
dataset which only includes the microbes whose proportions of nonzero observations are
greater than s. For each of these subsets, GGM is fitted using the neighborhood method.
The ZILI network involves 134 microbe taxa while the eight GGM networks only involves
eight subsets of these 134 taxa. So in order to compare the ZILI network with the eight
GGM networks, we extract the subnetworks from ZILI networks for each s. For each
of the extracted network, we then compare it with the corresponding GGM network in
terms of their connectivity and the results are listed in Table 2.

In Table 2, each row corresponds to a pair of ZILI and GGM networks. For two
microbes, (0,0) represents there is no edge connecting them in both ZILI and GGM
network; (0,1) represents there is an edge in ZILI network while no edge in GGM net-
work; (1,0) represents there is an edge in GGM network while no edge in Ising network;
(1,1) represents there is an edge connecting them in both ZILI and GGM network. The
columns 3-6 in Table 2 list the numbers of the edges falling into these four categories
respectively. The relationship of ZILI and GGM is our primary interest. To this end, the
x? test for the independence of ZILI and GGM is carried out and the corresponding
adjusted p-value’s are listed in the last column of Table 2. Note the p-value here is based
on the estimated networks rather than the relative abundance. So we call them condi-
tional p-value. These p-value’s suggest that the networks of ZILI and GGM are closely
related, even though ZILI and GGM are based on entirely different assumptions about
how the data are generated. A more detailed inspection reveals that most of the edges
selected by ZILI are also selected by GGM and GGM selects far more edges than ZILI In
other words, ZILI is more conservative than GGM in terms of edge selection.

Table 2 Comparison of microbial interaction networks selected by GGM and ZILI

ZILI
(0,0) (1,0) (0,1) (1,1) p-value
10% 589 58 6 13 0.0000
20% 357 37 3 9 0.0000
30% 182 38 2 9 0.0000
GGM 40% 137 25 2 7 0.0000
50% 89 23 2 6 0.0022
60% 55 17 0 6 0.0005
70% 46 15 0 5 0.0252
80% 19 6 0 3 0.0445

The data are the relative abundances of microbiota in infant gut from NHBCS
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The ZILI network and all the GGM networks corresponding to the threshold s =
10%, 20%, - - - ,80% are available in the supplementary materials. Figure 3 presents the
subnetwork that is shared by the ZILI networks and GGM network corresponding to
s = 10%. From Fig. 3, it can be seen that Lachnospiraceae is selected as hub taxon by
both ZILI and GGM. It has been discovered in literature that R. gnavus, one of the mem-
bers in Lachnospiraceae family, has high frequency in infant gut [29]. Lachnospiraceae
has close connections with severe human diseases, such as inflammatory bowel diseases
(IBD) [30], non-alcoholic fatty liver disease [31]. The R. gnavus ATCC 29149 strain pos-
sesses the complete Nan cluster involved in sialic acid metabolism for the production
of an intramolecular trans-sialidase [47]. It has also been demonstrated recently that R.
gnavus produces iso-bile acids. The iso-bile acids detoxification pathway influences the
growth of one of the predominant genera in the human gut, i.e., the Bacteroides [48].
In summary, Lachnospiraceae plays an active role in human metabolism which in turn
impacts the growth of the other taxa in the gut microbiota. In this respect, it is not
surprising to find its wide connections with other members of the microbiota.

Discussion

The prosperous microbiome datasets have led us to a new level of biological researches.
Nevertheless, how to gain scientific insight from these complex datasets through novel
statistical methods remains a big challenge for researchers. In light of the difficulties in
MIN selection, we propose a novel zero-inflated latent Ising model (ZILI) to this problem.
In ZILI, the relative abundances of microbiota are assumed to follow a mixture distribu-
tion which relies on the realization of a latent Ising model. Through simulation studies,
it is shown that under given scenarios, the proposed two-step algorithm for the inference

. Comamo! ceae
Corynebagteriaceae Oxalobacteraceae

Aerocotcaceae

Christengenellaceae

) ) Pasteurtllaceae
QIogibacteriaceae. n/wﬁ?
Gemeltaceae

Erysipelotrichaceae

Ruminocsggaceas Coriobaeteniaceae Peptostrepgdcoccaceae

. ’ Turicibacteraceae
Verrucomitfobiaceae
Enterobdcteniaceae

Carnobacteriaceae
Bifidobatteriaceae
Fig. 3 The overlappted subnetwork in GGM network and ZILI nework
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of ZILI can select the true network structure effectively while Gaussian graphical model
and dichotomous Ising model have little power to recover the network structure. For a
microbiome dataset from New Hampshire Birth Cohort Study, it is shown that ZILI is
more conservative compared with Gaussian graphical model. Among the edges shared
by these networks, a hub taxon is selected which has close connections with human
metabolism. These findings indicate that ZILI can serve as an competitive model to esti-
mate the microbial interaction network. On the other hand, we only consider the problem
of model selection in this paper. In order to gain more insights about the conditional cor-
relation beween microbes, quantitative characteristics like parameter estimates should be
taken into consideration which will be studied in our future studies.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/513040-020-00226-7.

Additional file 1: The file Networks.pdf includes the gut microbial interaction networks selected by ZILI model and
Gaussian graphical model with thresholds, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% respectively. These networks are
used in Table 2 to investigate the relationship between ZILI and GGM.
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